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EXPECTED NUMBER OF EXCURSIONS ABOVE CURVED BOUNDARIE.
BY A RANDOM WALK

FIMA C. KLEBANER

An asymptotic relation for the expected number of excursions above a boundary
g(n) by a random walk Sn, n = 1,2, . . , N is given in terms of an integral involving
g. An integral test is given to determine whether the total excursion time has finite
expectation. If some moment assumptions hold then the expectation of the total
excursions is finite if and only if J°° t1*2g~1{t)exp (—g2(t)/2>)dt < oo.

1. INTRODUCTION

Let X\, X2, be i.i.d. zero mean random variables with finite variance a2 . Let
N

= 5Z -^n • Let Yjv be the number of times Sn visits intervals In, n = 1,2,..., N.

This note studies the asymptotic behaviour of EYN . It is well known that if
/„ = / , a finite interval, then EYN ~ CN1/2, N —» oo. (see for example Breiman
[1, p.229.]) Here we take In to be (3(71), oo), where g is some positive function.
It is convinient to write g{n) = anl'2h(n) for some function h. We shall assume
that h is monotone. In the case when h(n) = 0(1),n —> oo, it is easily seen that

N
EYH — 53 P{Sn > n^^Ofl)) ~ CN, N —» oo, as a consequence of the Central Limit

n=l

Theorem. So we shall assume that h is nondecreasing to oo. In what follows C stands
for a positive constant, F and ij> stand for the distribution and the characteristic
function of X\.

2. RESULTS

THEOREM 1. Suppose that E | Xi | s< oo and that Cramer's condition
limsup | ip(t) |< 1 holds. Then

(1) EYN ~C I /i-1(t)exp (-h2(t)/2)dt, N -> oo.

Received 7 March 1989

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/90 SA2.00+0.00.

207

https://doi.org/10.1017/S0004972700018013 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018013


208 F.C. Klebaner [2]

Moreover C = (2n)~1' if the integral diverges or if F is the normal distribution

function.

COROLLARY 1 . The expected number of visits of In by Sn, n — 1,2,. . . is finite

if and only if

(2) / h-1(t)exp(-h2(t)/2)dt<oo.

It is interesting to to compare the above criterion (2) with Feller's criterion for the
total number of visits, which states that the number of visits of In by Sn, n = 1, 2 , . . .
is finite if and only if

(3) / " hW1 exp (-h2(t)/2)dt < oo.

See Feller [3, p.211], also Feller [5]. When this is the case it is said that the corresponding
function g belongs to the upper class. Note that if h grows to infinity in such a way
that the integral in (2) is infinite and the integral in (3) is finite then the total number
of excursions above g is almost surely finite but it has infinite mean. The function that
provides a boundary between the upper and lower classes is the function from the law
of the iterated logarithm, in the sense that for h(t) of the form (1 + e)(21oglogi)1'2

the integral in (3) converges for e > 0 and diverges for e ̂  0. For functions h(t) of the
form (21og< + (1 + e) log log t) ' the integral in (2) converges for e > 0 and diverges
for e ^ 0. In the spirit of Feller's criterion, (2) may be considered as a criterion to
belong to the upper class in the mean.

If Xi possesses moments of order less than five then the conclusion of the theorem
remains valid for some classes of functions. The method of proof shows how to describe
them. Theorem 2 illustrates this. Of course, other generalisations are possible.

THEOREM 2 . Suppose E \ Xx | 3< oo, limsup | ip(t) |< 1.

(i) If h-2(n)exp(h2(n)/2) = O{nll2), n -> oo, then the integral in (1)
diverges and (1) holds.

(ii) If £ h-\n)n-ll2 < oo, tiien ]imEYN = C < oo.
n=l

COROLLARY 2 . Suppose (1) holds, h! exists and h(x)h'(x) ~ ax*1, x —• oo.

(i) If 0 < a < 1 then

EYN ~ (1 - a)-1CNh-\N)exp (-h2{N)/2), N -> oo.

(ii) If a > 1 then the total excursion time has finite expectation.
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3. EXAMPLES

Let h(x) = {y2i-1 2a-i lnj x J , where lni x is the i t h iterate of the function lnx,

x>C.
1. Let 0 < Oj ^ 1 / 2 and suppose that X\ satisfies the conditions of Theorem

2, or 1/2 < oi < 1 and Xi satisfies the conditions of Theorem 1. Let j be the first
index for which aj ^ 0, and take a.j > 0. Then h(x)h'(x) ~ ai/x if a\ ^ 0, and
h(x)h'{x) = o(l/z) if aj = 0. Hence

k
~ 1 / 2EYN ~ ON1'111 ln;~

1/2 JV J J l n ^ ' N,

where C = (1 - o1)-1(4aJ-7r)-1/2 .

In particular, the expected number of excursions above e in the law of the
iterated logarithm by 5n(2cr27iln2 n) is asymptotically given by

2. Let a-i — 1. Then h(x)h'(x) ~ 1/x and this case is not covered by Corollary
2. Take a,- = 0 for i > 3. Evaluation of the integral in (1) gives EYN ~ Cln1/2~aj N,
where C = (47r)~1/2(l - aj)"1, provided a2 < 1/2; EYN ~ Cln2 ./V.where C =
(4TT)~1/2 if a2 = 1/2; and EYN ~ C if a2 > 1/2.

4. PROOFS

The following lemma is instrumental in the proofs.

LEMMA 1. Let an = fe-1(n)exp(-A2(n)/2), 6n = £* = i h3k-1(n)n-k/2

exp (-/i2(n)/2) . Tien

(4) ^
n=l n=l

and

oo W / N

(5) ^ a n = oo= i .^6 n = of X ) a "
n=l n=l \n=l

PROOF: Let e > 0 be arbitrary and un = h(n)n~1/6 .

N N N

n=l n=l
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To evaluate the first sum in (6) we use the inequality

(7) xT exp ( -x 2 /2 ) ^ ( r / e ) r / 2 , r > 0 x > 0,

which is obtained by maximising the function in the left hand side of (7). Choosing
d = 3(14/e)7 we obtain for all x > 0

fc=l

Using this inequality with x = h(n) we have

(8) bn = J2 h3k-\n)n-kl* exp (-h?(n)/2) < C ^ - ^ n ^ 2 .
*=i

Thus

(9)
N N oo

n=l n=l n=l

where Ci — 2Ci. To evaluate the second sum in (6) notice bn = (u^ + u® + u^jan

Hence

N N

(io) x 6"7(u" < e ) < 3 e 3 E a " ' ife<1-
n=l n=l

Let now X) an < oo. Then from (6) (9) and (10) it follows that
n=l

n=l n=l

oo

which is (4). Let £] an = oo. For a given e > 0 choose M so large that for all N ̂  M ,
n=l

N

C2 < e7 X) an- Hence from (6), (9) and (10)
n=l

/ N \ / N \ -1

\n=l / \n=l /

which is (5). D
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P R O O F OF THEOREM 1: Denote by I(A) the indicator of set A. $ and / denote
respectively the standard normal distribution and the density functions. We have

JV NJV N

N = Y, I(SneIn) = £ l(sn > *nl"h(n))t
ln=l n=l

and

TV

(11) EYN = Y,
n=l

Let Fn(x) = P(Sn < an1/2!), then proceeding from (11)

(12) EYN = f ; (1 - Fn(h(n))) = f ; (1 - *(fc(n))) + £ (*(fc(»)) - Fn(h(n))).
n=l n=l n=:l

Using the inequality

o-^ l - o-2) exp (-o2/2) < / " e x p (-t2/2)dt < a"1 exp (-a2/2),

see Feller [4, p.175] we obtain

(13) J (1 - #(A(n))) < oo «. f; fc-^n) exp (-/*2(n)/2) < oo.
n=l n=l

Moreover, if the series diverges

v) f ) (1 - *(&(«))) ~ f ) h~\n) exp (-A2

n=l n=l

(14) = ^ an ~ / fc"1^) exp (-h\t))dt, N
n=l 1 ' 1

OO.

To evaluate the second sum in (12) we use the Edgeworth expansion for .Fn.(See Feller
[3, p.541], Petrov [6, p.159].) Assumptions of the theorem imply

(15) Fn(x) = *{x) + f(x
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where o(ra~3/2) as n —» oo holds uniformly in x, Rk{x) is a polynomial of order 3k —I,
which depends on F only through the first five moments of F and does not depend on
n, k = 1,2,3. Letting x = h(n) in (15) we obtain

£ (*(Mn)) - Fn(h(n))) = £ /(*(»)) £ Jfc(fc(n))n-*/2 + o ( V >/2), JV - oo.
n=l n=l i=l

Since Rk(x) = 0(x3k~1), x —* oo, we obtain

(is) 53 (* Wn)) - *"«(*(»))) = ° ( E H •
n=l \n=l /

(1) now follows from (12) by (14), (16) and Lemma 1.
Finally if F is the standard normal distribution function then the second sum in

(12) is identically zero and the Theorem follows by (14). U

PROOF OF THEOREM 2: Taking the expansion for Fn in the form found in Petrov
[6, P.169]

(17) Fn(x) - *(x) + /(z^xjn-1/2 + Qn(x),

where

(18) \Qn(x)\<(l+\x\3y

with o(n - 1 / 2 ) , n —* oo being uniform in x. Let cn = ^(njn"1/2 exp (—h2(n)/2) and
dn=\Qn(h(n))\. Then by (17)

(19) | *(&(«)) - Fn(h(n)) |< C(cn + <!„).

Since for all x large enough x~2exp (x2/2) > exp(i), and by the assumption in (i).
A~2(n)exp (h2(n)/2) < Cn1/2, we have for all n large enough h(n) < Clnn, which
implies that

an = ft-1(n)exp(-/i2(n)/2) > Cifc-'^Jn"1/2 > C2n-^2 In"3 n,

oo JV / JV \
and 53 an = oo. Lemma 1 implies ^Z cn = of 53 a " I • From the definition of dn it

n=l n=l \n=l /
AT / JV \

that dn = o(an), n —* oo. Hence 53 dn = ol 53 °" ) > an(^ statement (i) of the
n=l \n=l /

is seen

Theorem now follows by (12) and (14).
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In the second case, due to monotonicity of / i~ 3 (n)n~ 1 / 2 , convergence of the series

£ fc-^njn-1/2 implies limfc-3(n)n1/2 = 0. Hence h(n) > C n 1 / 6 , which implies that
n=l
oo oo oo
53 an < oo. By Lemma 1 £3 °n < °°- ]C ^n < °° by the assumption in (ii) and

n=l n=l n=l
(18). The Theorem now follows from (12), (13) and (19). D

PROOF OF COROLLARY 2: The proof follows directly from the following Lemma
2. D

LEMMA 2 . Let k(x) > 0 be such that k'(x)/k(x) ~ a/x,x -> oo.

(i) IIa > - 1 then J™ k(t)dt = oo and J* k(t)dt ~ (o + l)~1xfc(a!), a; -> oo.
(ii) If a < - 1 tien / " k(t)dt < oo.

Notice that if k(x) = h-1(x)exp (-h2(x)/2) then k'(x)/k(x) h'(x)h(x) so
that Corollary 2 follows. The proof of Lemma 2 can be found in Dieudonne [2,
pp.81,82]. It is obtained by integration by parts. / * k{t)dt = xk(x)- ifc(l)- f* tk'(t)dt,
and /* (k{t) + tk'{t))dt = xk(x) - Jfe(l). By the assumption tk'(t) ~ ak(t), so that
/* (fc(t) + tk'(t))dt ~ (a + 1) / " k(t)dt and Lemma 2 follows. The result also holds for
a = 0, see Dieudonne [2] for details.
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