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The workshop was organised to discuss the validity and limitations of existing functional markers of Se status in human subjects and to identify
future research priorities in this area. Studies presented as part of this workshop investigated: the bioavailability of Se from different dietary
sources; potential functional markers of Se status; individual variation in response to Se; the effect of marginal Se status on immune function.
The workshop highlighted the need to define the relationship between functional markers of Se status and health outcomes.

Selenium status: Bioavailability: Immune function: Food Standards Agency workshops

The UK Food Standards Agency (FSA) convened a workshop
on 11 June 2003 to review and evaluate current knowledge
regarding the assessment of Se status. The results from
recently completed studies were presented, both FSA- and
non-FSA-funded, and the workshop was chaired by Professor
Roger Sunde.

Background

The mineral Se is essential for a wide range of biochemical
functions, which are mediated by at least twenty-five Se-con-
taining proteins (selenoproteins); these include glutathione
peroxidases (GPx), iodothyronine 5'-deiodinases, sperm cap-
sule selenoprotein and thioredoxin reductase (Behne & Kyria-
kopoulos, 2001; Kryukov et al. 2003). Se functions in the
body as an antioxidant, in thyroid hormone metabolism,
redox reactions, reproduction and immune function.

Se is present in foods mainly as the amino acids selenocys-
teine (animal products) and selenomethionine (cereal

products). Se supplements contain either Se-enriched yeast,
predominantly as selenomethionine, or the inorganic forms,
selenite or selenate; some Se-enriched yeast supplements
may also contain significant amounts of selenite (Rayman,
2004). The inorganic forms of Se appear less effective than
selenomethionine in raising plasma Se concentrations and
GPx activity (Levander er al. 1983; Xia et al. 2005). The
absorption, distribution and excretion of Se from food is simi-
lar to selenomethionine, but different from sodium selenite
(Hawkes et al. 2003), making it difficult to extrapolate results
from studies using inorganic forms to foods.

Dietary intakes of Se are largely determined by geochem-
ical environment, i.e. the Se content of the soil from which
foods are derived. The dietary Se intake of European popu-
lations has fallen by approximately 50 % over the last 30
years and this is probably related to the decreased use of
North American wheat for bread flour and its replacement
by European Union varieties, which produce flour and bread
of a much lower Se content (Rayman, 1997). Current average
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Se intakes are above the threshold for deficiency diseases, but
are below dietary reference values.

Dietary reference values for Se intake have been based on
the assessment of the amount required to maximise blood or
plasma GPx activity. Blood and plasma GPx activities plateau
once intakes of selenomethionine reach 40-50pg/d
(Yang et al. 1987; Duffield et al. 1999; Xia et al. 2005). It
is unclear what changes in GPx activity truly represent. A pro-
spective study of patients with suspected coronary artery dis-
ease observed an inverse association between erythrocyte GPx
activity and risk of CVD; sex and smoking status were associ-
ated with erythrocyte GPx activity, but there was only a weak
association with plasma Se concentrations (Blankenberg et al.
2003). It is important, therefore, to reliably and accurately
define Se status and Se requirements for optimal health.

Assessment of selenium status

There are a number of biochemical indices used to assess Se
status, including short-term measures, such as plasma or
serum and urinary Se concentrations, and longer-term status
measures, such as erythrocyte, toenail and hair Se concen-
trations. There are, however, no accepted ‘normal’ reference
ranges due to the variation in Se status between countries
(Thomson, 2004).

There are limitations with the use of plasma Se concen-
trations as a measure of Se status. The organic forms of diet-
ary Se, but not the inorganic forms, have been shown to be
incorporated non-specifically, in the place of methionine,
into erythrocyte Hb and plasma albumin (Burk et al. 2001).
Plasma Se concentrations have also been shown to be nega-
tively associated with C-reactive protein concentrations
(Sattar et al. 1997; Ghayour-Mobarhan et al. 2005).

Measurement of individual selenoproteins, therefore, may
provide more accurate and useful information than total Se
alone (Patching & Gardiner, 1999). Measurement of the con-
centration or activity of only one selenoprotein, however, may
be insufficient, because of differences in the responses of sele-
noproteins to various levels of Se. Animal and in vitro cell-
culture work suggests that turnover rates differ among seleno-
proteins in response to Se depletion and there is preferential
incorporation of Se into some selenoproteins (Patching &
Gardiner, 1999; Behne & Kyriakopoulos, 2001; Pagmantidis
et al. 2005). There is unlikely to be any single indicator of
functional Se status, but rather a series of markers that apply
to specific aspects of Se status (Thomson, 2004).

Four Se-containing GPx are found in different cell fractions
and tissues of the body (classical, GPx1; gastrointestinal,
GPx2; plasma, GPx3; phospholipid hydroperoxide, GPx4)
(Arthur, 2000). There is a close relationship between plasma
GPx activity, and erythrocyte GPx activity, and blood Se con-
centrations up to 1-27 wmol/l (100 wg/l), above which enzyme
activity plateaus (Thomson ef al. 1977; Rea et al. 1979). Pla-
telet GPx may be a more sensitive indicator of increasing Se
intake than erythrocyte GPx, showing increases in activity
within 1-2 weeks of commencing supplementation (Levander
et al. 1983; Thomson, 2004), which might be related to the
shorter lifespan of §—14d of platelets, compared with 120d
for erythrocytes.

There are two selenoproteins in human plasma, GPx3
and selenoprotein P. Selenoprotein P is the major form and is

involved in Se transport (Akesson et al. 1994; Persson-Moschos,
2000; Burk et al. 2003); two isoforms of selenoprotein P may
exist in human plasma (Gao et al. 2004).

Professor BjérnAkesson presented results from studies
investigating the plasma concentrations and activity of the
selenoproteins selenoprotein P and GPx3. Selenoprotein P
was shown to account for at least 40 % of total plasma Se
and GPx3 for between 10 and 16 %, with the remainder prob-
ably being protein-bound selenomethionine, mainly to albu-
min (Huang & Akesson, 1993).

A study of healthy adults from seventeen European regions
demonstrated considerable variation in selenoprotein P con-
centrations (Marchaluk et al. 1995). Serum Se and selenopro-
tein P concentrations were strongly correlated, with some
indication of a plateau in selenoprotein P concentration. Diet-
ary Se intakes, for example, from fish, have been associated
with increased plasma selenoprotein P and GPx3 concen-
trations (z&kesson et al. 1997; Hagmar et al. 1998).

Selenoprotein P concentrations were shown to increase in
response to Se supplementation in subjects with a low Se
status (baseline intake 40 wg/d), but not in subjects with a
higher status (baseline intake 100 wg/d) (Persson-Moschos,
2000). In response to selenomethionine supplementation, sele-
noprotein P concentrations may plateau at a higher intake
level than plasma GPx activity (Xia et al. 2005). The different
plateaux attained by different selenoproteins could represent
useful functional markers of Se status in different ranges of
Se status.

Professor John Arthur presented the results from an FSA-
funded trial in healthy subjects (n 69) with low plasma Se con-
centrations (< 1-0 umol/l) who were randomised into one of
three groups supplemented for 6 weeks with either 50 g
sodium selenite daily (n 23), 100 wg sodium selenite daily
(n 23), or placebo (n 23).

Se supplementation increased plasma Se concentrations and
resulted in a dose-dependent increase in plasma selenoprotein
P concentrations; GPx3 activity was increased by the higher
dose only. In granulocyte and lymphocyte analyses, Se sup-
plementation had no effect on GPx4 activity and lymphocyte
GPx4 mRNA abundance; however, the higher selenite dose
did increase lymphocyte, but not granulocyte, GPx1 activity
and 5-lipoxygenase activity.

Overall, the results support the determination of several sele-
noproteins as the best method to assess population Se status.
Plasma selenoprotein P concentrations did not plateau at the
highest supplemental dose of selenite in the population studied.

The absorption and metabolism of selenium from different
dietary sources

Professor Sue Fairweather-Tait presented results from a study
investigating how the dietary source of Se affects its absorp-
tion and metabolism in human subjects (Fox er al. 2005).
Wheat, garlic, and cod fish were intrinsically labelled with
"7Se or ¥Se stable isotopes. Labelled meals were fed in
random order to fourteen adults, with a minimum washout
period of 6 weeks between each test meal. Apparent absorp-
tion was measured as luminal loss using a faecal monitoring
technique over an 8 d period. Plasma appearance of the isotope
was measured at 7, 24 and 48 h post-ingestion. Se absorption
was higher from wheat (81-0 (sp 3-0) %) and garlic (78-4
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(sp 13-7) %) than from fish (56-1 (sD 4-3) %). The lowest
plasma concentration was observed after the fish meal at all
three time points, with a peak at 24 h, whereas wheat produced
the highest plasma concentration at all three time points and
peaked at 7h. Se absorption from wheat and garlic was
higher than from fish, and inter-individual variation was
low. The forms of Se and food constituents appear to be key
determinants of post-absorptive metabolism.

The results of this project demonstrate that Se from fish,
wheat, garlic, yeast and selenite is metabolised differently,
demonstrating that supply to body tissues depends on chemi-
cal form.

Influence of selenium on viral pathogenesis and host
immune function

The discovery that the juvenile cardiomyopathy, Keshan dis-
ease, is likely to have a dual aetiology involving both a
deficiency of Se and an infection with an enterovirus has led
to the study of the relationships between nutrition and viral
infection (Beck et al. 2000, 2003). Of particular interest is
the potential effect of Se deficiency in the host on the virus
and the overall host—virus interaction.

Dr Jean Handy described how an amyocarditic strain of
coxsackievirus B3 (a member of the enterovirus family of
picornaviruses) converted to virulence when inoculated into
Se-deficient mice, not only producing myocarditis in the
deficient mice, but also acquiring virulence in adequately
nourished animals. This conversion was accompanied by
point mutations at six of seven RNA bases where the amyocar-
ditic coxsackievirus B3 differs from a known virulent strain;
each of these six positions mutated to the base found in the
virulent virus (Beck et al. 2003).

In GPX knockout mice fed an Se-adequate diet, the virus
developed the same virulence-enhancing mutations as in the
Se-deficient mice (Beck et al. 1998), supporting the hypoth-
esis that the effect of dietary Se was related to its antioxidant
activity. This hypothesis is further supported by experiments
in which mice fed on a diet adequate in Se, but deficient in
vitamin E, were infected with the amyocarditic coxsackievirus
B3, and the virus again developed similar alterations in viru-
lence and identical base changes in the genome to those
observed in Se-deficient mice (Beck, 1997). The reasons
why a deficiency of antioxidants might promote accelerated
viral mutation are a subject for further investigation, and
could include direct oxidative damage to the viral RNA as
well as oxidative stress-mediated alterations of cellular com-
ponents involved in viral replication.

A mild strain of influenza, influenza A/Bangkok/1/79, also
exhibits increased virulence when given to Se-deficient mice
(Beck et al. 2001). This increased virulence is accompanied
by multiple changes in the viral genome, in a segment pre-
viously thought to be relatively stable. These findings high-
light the importance of adequate host nutrition to help
protect against viral challenge.

Professor Malcolm Jackson presented findings from an
FSA-funded study that investigated the effect of Se status
and subsequent supplementation on immune function and
poliovirus handling in adults with marginal Se status
(Broome et al. 2004). Adult subjects (n 60) with relatively
low plasma Se concentrations (<1-2 wmol/l; approximately

60 % of those screened) received 50 or 100 g Se (as sodium
selenite) or placebo daily for 15 weeks in a double-blind trial.
All subjects received an oral live attenuated poliomyelitis vac-
cine after 6 weeks and enriched stable "*Se intravenously 3
weeks later.

Se supplementation resulted in a dose-dependent increase in
plasma Se concentrations and the body exchangeable Se pool
(measured by using "*Se); the higher dose increased lympho-
cyte GPx4 and GPx1 activities.

The production of interferon-y and IL-10, measured after in
vitro stimulation of whole blood with the poliovirus antigen 0,
7, 14 and 21d after poliovirus vaccination, was increased in
the supplemented groups on day 7. Peak interferon-y and
IL-10 production in the placebo group occurred on day 14,
suggesting that an earlier response had occurred in the sup-
plemented groups. T cell proliferation also peaked earlier in
the supplemented groups. The humoral immune response
was unaffected.

Se-supplemented subjects also showed more rapid clearance
of the poliovirus, and the poliovirus RT—PCR products recov-
ered from the faeces of the supplemented subjects contained a
lower number of mutations. The segment of the viral genome
that was amplified is a region that is known to be naturally
variable between poliovirus isolates and these data indicate
that Se supplementation reduces this natural variability poss-
ibly through reducing replication of the virus.

Se supplementation enhanced immune function and viral
handling in subjects with a low baseline plasma Se concen-
tration. If these findings are applicable to other RNA viruses,
then other important pathogens may be affected by host Se
status; this is potentially relevant to emerging viral diseases,
where the Se nutrition of the host may play a role in viral
evolution.

As observed elsewhere (Brown et al. 2000), there was con-
siderable individual variation in response to Se supplemen-
tation, which may have implications for attempts to improve
Se status across populations.

Individual variation

The incorporation of Se into selenoproteins involves synthesis of
selenocysteine tRNA and incorporation of the amino acid seleno-
cysteine into the selenoproteins during translation of the mRNA
(Hesketh & Villette, 2002). This process requires a specific struc-
ture, the selenocysteine insertion sequence, within the 3’ untrans-
lated region (3'UTR) of the selenoprotein mRNA. Animal and
cell-culture studies indicate that 3'UTR sequences are important
in determining the prioritisation of Se for synthesis in one seleno-
protein rather than another when Se supply is limiting (Bermano
et al. 1996). Selenoprotein mRNA are degraded and selenocys-
teine incorporation efficiency is affected under Se-limiting con-
ditions according to their ranking in the hierarchy of
selenoproteins (Muller et al. 2003).

Professor John Hesketh presented results from an FSA-
funded study which identified a common single nucleotide
polymorphism (T/C at position 718) in the 3'UTR of the
GPX4 gene that was close to, but not within, the predicted
selenocysteine insertion sequence element. In sixty-six sub-
jects, the observed frequencies of the allelic variants at this
position were 25 % TT, 34 % CC and 41 % TC (Villette et al.
2002). No correlation between genotype and lymphocyte
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GPx4 activity was observed; however, individuals with the CC
genotype had higher lymphocyte 5-lipoxygenase total product
concentrations than the 77 and 7C genotypes. This suggests
that GPx4 may play a regulatory role in leucotriene synthesis.

Analysis of samples from selenite supplementation trials
showed no effect of supplementation on lymphocyte GPxl1,
GPx4, thioredoxin reductase 1 and 2, and selenoprotein X
mRNA abundances. Se supplementation may affect concen-
trations of these selenoproteins during translation of mRNA
into protein. Individual variation in response to different diet-
ary Se intakes may also occur during translation.

Genetic variation in a variety of selenoprotein genes could
influence selenoprotein activity and response to dietary Se
(Méplan et al. 2006), including one that has been reported
to affect GPx1 activity (Hu & Diamond, 2003).

Discussion

There is a growing body of evidence suggesting that intakes of
Se above the normal nutritional range may confer health ben-
efits, and that it may no longer be appropriate to rely on blood
or plasma GPx activity to indicate optimal Se intake (Rayman,
2002). A detrimental effect of higher Se intakes on sperm
motility has also been demonstrated, however (Hawkes &
Turek, 2001), which requires further investigation with
regard to its consequences for male fertility. What the conse-
quences of less than maximal selenoprotein activity and
expression are, and whether optimal health depends upon
their maximisation, has yet to be determined.

The metabolism of the different dietary forms of Se needs
further investigation, using food-based and supplemental
approaches, to determine the pools into which Se is channelled.

Food sources of Se may contain other components that
affect Se-dependent processes and such potential confounding
factors should be considered when Se-responsive genes and
proteins are measured as indicators of human Se status. For
example, fish also contain n-3 PUFA which have been
shown to increase both GPx1 and GPx4 expression in vitro
(Sneddon et al. 2003); equally, I deficiency may induce both
iodothyronine deiodinase activity and GPx1 activity (Arthur,
1999). Se has strong interactions with heavy metals such as
Cd, Ag and Hg in marine foods and may protect against the
toxic effects of these metals (Furst, 2002). Binding of Se to
these metals may, in turn, reduce the bioavailability of Se
from foods (Rayman, 2000).

It will be important to determine the response of different
selenoproteins to dietary forms of Se in dose—response
trials; equally, it will be important to associate functional con-
sequences, for example, immune function, with different diet-
ary intakes. Establishing the various plateaux reached by
different selenoproteins in response to dietary forms of Se
and, in particular, their relation to health outcomes will be
paramount in determining optimal Se status and intakes.

Screening for relevant polymorphisms with functional con-
sequences may also lead to a greater understanding of individ-
ual variation in Se requirements. There is considerable
information on the roles of selenoproteins in rodents (Behne
& Kyriakopoulos, 2001), but the distribution and roles of
selenoproteins in different human tissues are not well
known. Further research is required to elucidate the role and
metabolic functions of selenoproteins in human subjects.

The possible effects of confounders, such as smoking and
kidney and liver damage, on the concentrations of individual
selenoproteins may limit their utility as markers of Se status
and need to be adjusted for when using these measures.

Conclusions

The associations between Se status, immune function and viral
response represent key areas for future research. It was noted,
however, that no health problems have been attributed to the
low Se status in the New Zealand population (Robinson,
1988). Adaptive responses to decreased intakes of Se, for
example, reduced excretion (Hawkes et al. 2003), may be
important. In Europe, there is as yet no evidence to suggest
that there have been adverse effects associated with the
decrease in Se intake.

Recommendations
The following research recommendations were identified:

(1) Further investigation of the role of Se in immune func-
tion;

(2) Further development of functional measures of Se status;

(3) Further investigation of the metabolism of the different
dietary forms of Se;

(4) Further research into individual variation in response to Se.
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