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ABSTRACT. As a result of the coupling effects of 
longitudinal stress gradients, the perturbations flu in 
glacier-flow velocity that result from longitudinally varying 
perturbations in ice thickness M and surface slope l1cx are 
determined by a weighted longitudinal average of ~hM and 
tI>~cx, where ~h and ~a are "influence coefficients" that 
control the size of the contributions made by local M and 
l1cx to the flow increment in the longitudinal average. The 
values of ~h and ~cx depend on effects of longitudinal stress 
and velocity gradients in the unperturbed datum state. If 
the datum state is an inclined slab in simple-shear flow, the 
longitudinal averaging solution for the flow perturbation is 
essentially that obtained previously (Kamb and Echelmeyer, 
1985) with equivalent values for the longitudinal coupling 
length R and with ~h = n + I and ~cx + n, where n is the 
flow-law exponent. Calculation of the influence coefficients 
from flow data for Blue Glacier, Washington, indicates that 
in practice ~cx differs little from n, whereas ~h can differ 
considerably from 11 + I. The weighting function in the 
longitudinal averaging integral, which is the Green's 
function for the longitudinal coupling equation for flow 
perturbations, can be approximated by an asymmetric 
exponential, whose asymmetry depends on two "asymmetry 
parameters" 11. and 0, where 11. is the longitudinal gradient of 
R(= dR/dx). The asymmetric exponential has different 
coupling lengths R+ and R_ for the influences from 
up-stream and from down-stream on a given point of 
observation. If 0/ /J. is in the range 1.5-2.2, as expected for 
flow perturbations in glaciers or ice sheets in which the ice 
flux is not a strongly varying function of the longitudinal 
coordinate x, then, when dR/dx > 0, the down-stream 
coupling length R+ is longer than the up-stream coupling 
length R~ and vice versa when dR / dx < O. Flow-, 
thickness- and slope-perturbation data for Blue Glacier, 
obtained by comparing the glacier in 1957-58 and 1977-78, 
require longitudinal averaging for reasonable interpretation. 
Analyzed on the basis of the longitudinal coupling theory, 
with 4R + 1.6 km up-stream, decreasing toward the 
terminus, the data indicate n to be about 2.5, if interpreted 
on the basis of a response factor tP + 0.85 derived 
theoretically by Echelmeyer (unpublished) for the flow 
response to thickness perturbations in a channel of finite 
width. The data contain an apparent indication that the 
flow response to slope perturbations is distinctly smaller, in 
relation to the response to thickness perturbations, than is 
expected on a theoretical basis (i.e. ~a/~h + n/ (Il + I) for a 
slab). This probably indicates that the effective I is longer 
than can be tested directly with the available data set owing 
to its limited range in x. 
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RESUME. Couplage du gradient de contrainte dans 
/'ecoulement des glaciers: ll. Attenuation longitudinale de la 
reponse de l'ecoulement aux faibles perturbations d'epaisseur 
de glace et de pente de la surface. Comme resultat des 
effets de couplage des gradients de contrainte, les 
perturbations l1u de vitesses d'ecoulement du glacier qui 
resultent des perturbations variables longitudinalement dans 
l'epaisseur de glace M et dans la pente de surface l1a, sont 
determinees par une ponderation longitudinale de la 
moyenne de tl>hM et ~~a., oil ~h et </la sont des 
"coefficients d'influence" qui contrOlent l'importance des 
contributions produites par les variations locales I1h et l1a, it 
une augmentation d'ecoulement dans une moyenne 
longitudinale. Les valeurs de tl>h et ~a dependent des effets 
des gradients de contraintes longitudinales et de vitesses par 
rapport it un etat repere non perturbe. Si l'etat de reference 
est une couche inclinee en ecoulement de cisaillement 
simple, la solution de moyenne longitudinale pour la 
perturbation d'ecoulement est essentiellement celle obtenue 
anterieurement (Kamb et Echelmeyer, 1986) avec des valeurs 
equivalentes pour la longueur J de couplage longitudinal et 
avec ~h = n + I et tl>cx = n, oil nest I'exposant de la loi 
de fluage . Des calculs des coefficients d'influence a partir 
des donnees du Blue Glacier, Washington, indiquent qu'en 
pratique ~a ne differe que peu de n bien que ~h puisse 
s'ecarter considerablement de n + 1. La fonction de ponder
ation dans l'integrale de moyenne longitudinale, qui est une 
fonction de Green pour equation de couplage longitudinal 
de perturbation d'ecoulement, peut-etre approchee par une 
exponentielle asymetrique, dont l'asymetrie depend de deux 
"parametres d'asymetrie /J. et 0, oil 11. est le gradient longi
tudinal de J (= dJ / dx). L'exponentielle asymetrique possede 
deux longueurs differentes de couplage J + et 1_ pour 
l'influence d'amont et d'aval sur un point donne 
d'observation. Si 0/11. varie de 1,5 a 2,2, comme prevu pour 
des perturbations d'ecoulement dans des glaciers ou des 
nappes de glaces pour lesquels le flux de glace n'est pas 
une fonction etroitement lie a la coordonnee longitudinale x, 
alors, quand dR / dx > 0, la longeur de couplage aval 1+ est 
superieure a celle amont 1_, et vice versa quand dR/dx < O. 
Les donnees des perturbations d'ecoulement, d'epaisseur et 
de pente, obtenues par comparaison des etats de 1957-58 it 
celui de 1977-78 necessitent un moyenage longitudinal pour 
une interpretation raisonnable. Analyses dans I'optique de la 
tMorie de couplage longitudinal, avec 41 1,6 km it 
I'amont et decroissant vers le front, les donnees conduisent 
a un n voisin de 2,5, dans le cas ou I'interpretation est 
conduite sur la base d'un facteur de reponse tP = 0,85 
obtenu theoriquement par Echelmeyer (non publie) pour la 
reponse de I'ecoulement aux perturbations dans un chenal de 
largeur non-infinie. Les donnees contiennent une indication 
apparente qui conduit it reponse d'ecoulement aux 
perturbations de pente nettement moindre par rapport it 
celle due aux perturbations d'epaisseur, que celle qui est 
attendue selon la tMorie (c'est-a-dire: tl>cx/ tI>h = n/(n + I) 
pour en plaque). Ceci indique probablement que la longueur 
effective I est plus grande que celle qui peut etre testee 
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directement sur les donnees disponibles compte tenu de leur 
domaine limite en x. 

ZUSAMMENFASSUNG. Kopplung von Spanllungsgradienten 
im Gletscher fluss: ll. Mittelung der Flussreaktion auf 
kleine Storungen der Eisdicke und der Oberflachenneigung in 
Liingsrichtung. AIs ein Ergebnis des Kopplungseffekts longi
tudinaler Spannungsgradienten werden die StOrungen t.u in 
der Gletscherfliessgeschwindigkeit, die von longitudinal 
schwankenden StOrungen der Eisdicke t:Jz und der Ober
fHichenneigung !la verursacht werden, durch ein gewichtetes, 
longitudinales Mittel von tPhM und tPcPa bestimmt, wobei 
tPh und tPa "Einflusskoeffizienten" bedeuten, die das Ausmass 
der Beitr1ige durch lokale M und !la zum Flussinkrement im 
longitudinalen Mittel regeln. Die Werte von tPh und tPa 
hl1ngen von Auswirkungen der L1ingsspannung und 
Geschwindigkeitsgradienten im ungest1irten Ausgangszustand 
ab. Wenn der Ausgangszustand eine geneigte Tafel mit 
einfachem Scherfluss ist, stimmt die longitudinal mittelnde 
LOsung fUr die FlussstOrungen im wesentlichen mit der 
Uberein, die bereits frUher (Kamb und Echelmeyer, 1986) 
erhalten wurde, jedoch mit 1iquivalenten Werten fUr die 
longitudinale Kopplungsl1inge J und mit tPh = n + I und tPa 
= n. wobei n den Exponenten des Fliessgesetzes bedeutet. 
Die Berechnung der Einflusskoeffizienten aus Fliessdaten fUr 
den Blue Glacier, Washington, zeigt, dass in der Praxis tPa 
nur wenig von n verschieden ist, w1ihrend tPh betrachtlich 
von n + I abweichen kann. Die Gewichtsfunktion im longi
tudinal mittelnden Integral, die Green's Funktion fur die 
longitudinale Kopplungsgleichung fUr FlussstOrungen ist, 

I. INTRODUCTION 

In Part I (Kamb and Echelmeyer, 1986[b]) we showed 
that an approximate treatment of the role of longitudinal 
stress gradients in glacier flow gives a semi-quantitative 
description of how the influences of local thickness and 
surface slope of an ice mass are effectively averaged 
longitudinally to drive the actual flow. This treatment, based 
on a perturbation approach that linearizes the basic flow
coupling equation (Part I, equation (8), hereafter referenced 
as equation (1-8» so as to give simple, comprehensible 
results, is developed into a general description of the flow 
of ice masses, under the approximation that longitudinal 
variations in flow are calculable as perturbations from an 
overall average flow. 

The perturbation approach can be used with greater 
exactness and rigor to treat small perturbations in flow that 
are caused by small changes in ice thickness and surface 
slope of the sort that develop in a glacier as a result of 
climatic change or during the gradual recovery and 
build-up after a surge. A manifestation of the effect of 
longitudinal stress gradients in this context is seen in the 
conclusions that Echelmeyer (unpublished) reached concerning 
observed perturbations in the flow of Blue Glacier 
(Washington) due to a secular change in the ice surface: the 
flow perturbations correlate much better with longitudinally 
averaged thickness and slope changes than with local values. 
Longitudinal coupling theory is needed to provide a proper 
framework for interpreting perturbation-response measure
ments of this type so as to yield information on glacier
flow rheology. 

In this paper (Part II), which is based on Echelmeyer 
(unpublished, p. 133-50), we develop a perturbation 
treatment that shows how longitudinal stress gradients affect 
the flow response of a glacier or ice sheet to small 
thickness and slope changes from an original datum state in 
which longitudinal variations in flow are already present. 
The differential equation for the longitudinally coupled 
perturbations, obtained in section 2, is solved in section 3, 
and the result is applied to field data from Blue Glacier in 
section 4. 
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kann durch einen asymmetrischen Exponentialausdruck 
angenahert werden, dessen Asymmetrie von zwei 
"Asymmetrie-Parametern" Il und 0 abhl1ngt, wobei Il den 
longitudinalen Gradienten von J (= dR/dx) darstellt. Der 
asymmetrische Exponentialausdruck hat unterschiedliche 
Kopplungsll1ngen J+ und R_ fUr die EinflUsse von stromauf
wl1rts und stromabwl1rts auf einen bestimmten 
Beobachtungsort. Wenn O/Il im Bereich von 1,5-2,2 liegt, 
wie man fUr Fliessst1irungen in Gletschern oder Eisdecken 
erwarten kann, in denen der Einfluss nicht stark mit der 
Ll1ngskoordinate x schwankt, und wenn dR/dx > 0, dann ist 
die KopplungsHinge R+ stromabw1irts 11inger als C.; das 
umgekehrte gilt, wenn dR/dx < 0. Daten fUr Fluss-, Dicke
und NeigungsstOrungen am Blue Glacier, die aus Vergleichen 
des Gletschers in den Perioden 1957/58 und 1977/78 
gewonnen wurden, erfordern longitudinale Mittelung, wenn 
sie vernUnftig interpretiert werden sollen. Bei einer Analyse 
auf der Basis der longitudinalen Kopplungstheorie mit 4R = 
1,6 km stromaufwl1rts, abnehmend gegen das Gletscherende, 
ergeben die Daten fUr n einen Wert von etwa 2,5; der 
Interpretation liegt ein Reaktiollsfaktor tjJ = 0,85 zugrunde, 
der theoretisch von Echelmeyer (unver1iffentlicht) fUr die 
Flussreaktion auf DickestOrungen in einem Kanal von 
begrenzter Weite hergeleitet wurde. Die Daten enthalten 
offensichtlich einen Hinweis darauf, dass die Flussreaktion 
auf NeigungsstOrungen im Vergleich zu der auf 
Dickest1irungen deutlich kleiner ist, als man theoretisch 
erwarten kann (d.h. tPa/tPh = n/(n +1) fUr eine Platte). Dies 
ll1sst vermuten, dass die effektive L1inge J grOsser ist als 
der mit den verfUgbaren Daten bestimmbare Wert; der 
Bereich in x erscheint dafiir zu beschrl1nkt. 

2. LONGITUDINAL COUPLING OF PERTURBATIONS IN 
ICE THICKNESS AND SURFACE SLOPE 

To obtain a differential equation for longitudinally 
coupled flow perturbations, we begin with the exact 
longitudinal equilibrium equation derived in Part III (Kamb, 
1986), equation (III-21), for the plane-strain flow of a 
limitlessly wide glacier or ice sheet. The flow geometry and 
the definitions of the thickness and slope variables are 
given in Figure 1. We choose an x-coordinate axis parallel 
to the mean slope of the glacier surface, and assume that 
the longitudinally fluctuating angle 6 between the x-axis 

Fig. 1. Coordinate system alld flow geometry assumed in 
analysis of effects of longitudinal coupling Oil the flow 
response to perturbations in ice thickness h(x) and surface 
slope a(x). The flow is two-dimensional (plane strain). 
and the diagram is drawn in the plane of strain. 
containing the local flow vectors. The x-axis has 
inclination angle )' in the flow plane; )' is chosen to 
minimize the departure angle 6( x). u( x) is the mean flow 
velocity in the x direction . averaged over the local ice 
thickness. 
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and the local surface slope can in this way be made small 
enough that terms of order 62 and higher in equation 
(III-21) can be neglected. We further assume that the longi
tudinal surface curvature is small enough that hdex/dx - 6 
so that the curvature term in equation (111-21) can be 
neglected, and that there is no basal sliding, so that 
os' = 0 in equation (III-21). The equilibrium equation then 
reduces to 

d _, 
pghsina + 2-;-(hT xx) + T 

dx 
(I) 

where T s is basal shear stress, h is ice thickness, ex is local 
surface slope, 9 is local bed slope relative to the x-axis, 
T~x is the "vertically" averaged longitudinal stress deviator 
in equation (III-2), and T is as defined in equation (111-3). 

Following the approach in Part I, section 2. we 
introduce two basic relationships between the y-averaged 
~ow velocity u and the stresses: 1. T~x = 2ndu/dx, where 
n is the y-averaged effective longitudinal viscosity defined 
in equation (1-6). 2. A relation between T sand U, for 
which we here take, in place of equation (I-I), the more 
general form in equation (1-31), involving the effective 
shear viscosity 'I defined in equation (1-30): T s = 311u/h. 

Echelmeyer and Kamb: Stress-gradient coupling in glacier flow 

recognizing that the n' so defined is not necessarily the ex
ponent n in the flow law, because of the complicated 
functional form of 'I involving its dependence on du/dx as 
well as on ulh. Because of this dependence, n' in Equation 
(3b) can be a function of x. We nevertheless expect that in 
normal glacier-flow situations the n' defined by Equation 
(3b) will not depart greatly from the flow-law exponent. 

The partial derivative symbols in Equations (3a) and 
(3b) give recognition that in principle, as noted above, 11 
depends not only on T S but also on dujdx. With this 
recognized, in principle there should be added to Equation 
(3a) a "cross term" containing the effect of the perturbation 
du1/dx on the quantity l1u/h. We have, however, omitted 
this term, in the spirit of equations (1-1) and (1-9), which 
assume that the shear flow is so strongly dominated by the 
shear stresses (measured by T s) that the effect of a small 
perturbation in longitudinal strain-rate can be neglected. The 
inclusion of the "cross term" leads to numerous small 
complications and also to an interesting effect that is, 
however, not due to stress-gradient coupling per se and is 
therefore beyond the scope of the treatment here; it will be 
developed in a separate paper. 

To lowest order in the perturbations, we obtain from 
Equation (2), after cancelling the datum-state terms that 
separately satisfy Equation (2) exactly, 

-4 - h 71.:::.::l + n ==.a. + h n :::n.. d [ [- du du ] du 1 
dx 0 0 dx 1 dx 1 0 dx 

Both n and 'I are in general complicated functions of both 
u/h and du/dx, although in limiting cases they reduce to 
the simple forms represented by equations (1-1) and (1-7). 
Putting the above relationships into Equation (I), we obtain 
the basic flow-coupling equation 

-4 ~[hndii] + (I +2sin29)rr u = pghsina + T. 
dx dx h 

(2 ) 

We now introduce small perturbations about an original 
datum state that satisfies Equation (2): h = ho + hi' U = uo 
+ up a = a o + al' 9 = 90 + Bp n = no + nI' and T = 
To + T l' where subscript 0 designates the datum state and 
1 the perturbations. The perturbation in 9 is designated 61 
because '"'/ is held fixed, so that a change in 9 is the same 
as a change in bed slope 6; such a change would come into 
consideration if we wanted to compare the flows expected 
over two beds that differed slightly from one another. 

In carrying out the perturbation of the function l1u/h. 
we write 

u 
11-

h { ~I r5.. ~]l To I + Sln(U/ h) 0 lllo ho 
(3a) 

where TO is the unperturbed basal shear stress. Equation 
(3a) is a generalization of equation (1-9), in which the 
derivative SlnT s / Sln(u/ h), the slope of the logarithmic 
relation between u/h and T s under the conditions of the 
datum state (represented by the symbol I Q in Equation 
(3a», takes the place of the I/ n in EquatIOn (1-9). The 
representation of T s in Equation (3a) as a function of the 
velocity-thickness ratio u/h is consistent with the form of 
equations (1-30) and (1-31) as well as with equation (I-I), 
and it also has an empirical basis (Raymond, 1978, p. 812). 
We will here put· 

n' 

SlnTB - ---=""---
Sln(ii/ h) [ 

Sln'l I ]-1 
1- SlnT

s 
0 ' 

(3b) 

·The right-hand equality is derived from InT s = In311 + 
In(u/ h) by taking differentials and solving for the ratio 
dlnTs/dln(u/h) in terms of dln'l/dlnTs . 

(4) 

The way in which the viscosity perturbation '\ is 
coupled to the flow perturbation u1 can in principle be cal
culated from equations (1-6) and (1-22). In the limiting case 
where n is dominated by the longitudinal strain-rate and 
the relationship in equation (1-6) simplifies to equation 
(1-7), it follows by differentiating equation (1-7) that 

dn 

10 
~. -H-)~l~;l n1 

d [::] 

(5a) 

and thus 

-~ 71
0 dx 

+ 
duo I _ d~ 

n1 dx = n-nodx . (5b) 

The dependence of n on du/dx is weakened, relative to 
that indicated by equation (1-7), when the effects of shear 
stresses, related to non-zero T s' are brought into consider
ation. This weakening is seen, for example, in the fact that 
as '!:B increases, the magnitude of the slope of the curves 
of n versus du/ dx in figure 3 of Part I decreases. We will 
allow the weakening to be represented by replacing n in 
Equation (5a) by a quantity n' smaller than n, in the range 
I , n' ~ n. (When n' = I. n1 = 0 in Equation (5a), which 
is the limiting case where du 1/dx has a negligible effect on 
n.) The n' so introduced is analogous to the n' in Equation 
(3b) in that it represents the slope of the differential 
relation between perturbations in longitudinal strain-rate and 
stress deviator under the conditions of the datum state. In 
fact, 

[ 
Slnn ]-1 

n' - 1+ 
- Sln(du/dx) 10 

(5c) 

which shows formally the analogy with n' in Equation 
(3b).· Although n' can thus be a function of x, we assume 

• Equation (5c) is derived by solving Equation (5b) for n 
(renamed n '), substituting the first relation for n1 in 
Equation (5a), gathering factors to form the logarithmic 
derivative, and cancelling the common factor nodutldx in 
numerator and denominator. 
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that it is slowly enough varying that its x-derivative can be 
ignored. 

The partial derivative symbols in Equation (5c) are 
written in recognition that in general n is a function not 
only of du/dx but also of TB' In writing the perturbation 
in the form of Equation (5b), we make the assumption, 
analogous to what is done in Equation (3a), that the main 
perturbing effect on the longitudinal stress is the change in 
longitudinal strain-rate du/dx, and we omit the effect of 
perturbations in TB on the longitudinal stress, which would 
in principle appear as a "cross term" in addition. Inclusion 
of this term leads to numerous small complications that will 
be treated in the subsequent paper mentioned above. 

The formulation of the perturbations in Equations (3) 
and (5) frees the treatment here of the approximations that 
would be introduced by assuming the simple flow relation
ships in Equations (I-I) and (1-7). This can be done 
because in the small-perturbation treatment . we need only 
the derivatives, at datum-state conditions, of the flow 
relationships. The cost of doing it is the appearance of the 
parameters n' and n", which are not necessarily the same 
as the flow-law exponent n, and which may give the 
treatment an empirical flavor, although n' and n" could in 

principle be calculated from Equations (3b) and (5c). In 
addition, this approach brings out explicitly a limitation on 
the theory that is involved in omitting the "cross terms" in 
Equations (3b) and (4a) as discussed above. 

If now we introduce Equation (5a) into Equation (4), 
and collect terms, re-arrange, mUltiply through by n' / T 
and by I/ O + 2sin2eo)' and utilize the relation~ 
dh/dx = -exl + /31 and To = pghosin~ (which simply 
represents the local shear stress To in terms of an effective 
slope ~, as in Part I, section 7), we obtain 

(6) 

where 

(7) 

n' sina + 4n' ha ~[n ~) ~h E I + _..::.:.::.=a. " 
b sin~ bT 0 dx 0 dx ' 

(8) 

(9) 

(10) 

These relations are valid for all angles ao and eo ' 
The "influence coefficients" ~h' ~a' and 4>/3 in 

Equations (8)-{IO) govern the effects of the perturbations 
hI' a!, and /3 1 on the flow via their contributions to the 
right-hand side of Equation (6). Their values depend on the 
local stress and flow conditions in the datum state , as well 
as on n' , and they are thus functions of x. 

The influence coefficients 4>h and q,a reduce to 4>h = 

I + n' and 4>a = n' for the datum state of the 
perturbation treatment in Part I (the inclined slab), for 
which ao and 80 are small, all longitudinal derivatives are 
zero, and ~ = ao' In that treatment we replace n' with n, 
because we use equation (I-I) instead of Equations (3a) and 
(3b). In that treatment also, the analog of the perturbed 
flow-coupling Equation (6) lacks the n" in the denominator 
of the term on the far left, and has n instead of no there. 
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This reflects a key difference between the two perturbation 
treatments, in Part I the perturbation being treated in such 
a way that an unperturbed quantity 170 never appears. 
Except for this non-trivial difference, and except for the 
possible difference between n' and n, the present treatment 
of longitudinally coupled flow perturbations from a general 
datum state reduces exactly to the treatment in Part I under 
the conditions stated above. 

With the definitions 

(11) 

and 

(12) 

which are similar to equations (1-11) and (1-12), and with 
neglect of the effects of the Tl term (see Part IV; 
Kamb and Echelmeyer, 1986[a]), Equation (6) can be 
written 

(13) 

This differential equation has the same basic form as 
equation (1-13). The meaning of the parameters J and 0 is 
the same as discussed in Part I, sections 3 and 5. Because 
the factor n" in the denominator of Equation (11) may be 
in the range I to n, as noted above, the averaging length 
scale given by Equation (11) can be somewhat shorter than 
that from equation (1-11), evaluated in Part I, section 5. 

3. SOLUTION OF DIFFERENTIAL EQUATION FOR 
LONGITUDINALL Y COUPLED FLOW PERTURBA TIONS: 
ROLE OF ASYMMETRIC LONGITUDINAL AVERAGING 

The solution of Equation (13) by the Green's function 
method used to solve equation (1-13) in Part I reveals some 
distinct differences that arise because of the fact that while 
Uo and To in equation (1-11 ) are constants at the rough 
level of approximation used in Part I, in Equation 0 I) they 
(and also b and possible n' and n") are here functions of 
x, being features of a datum state that in general involves 
longitudinal variations in flow and stresses. Because of this, 
the parameter a, from Equation (2), is no longer equal to 
the parameter jL defined by 

dl dinS 
jL=-=a+--J 

dx dx 
( 14) 

where S An' up/ bn "To' Detailed features of the solution 
for a = jL , obtalDed in the Appendix to Part I, are 
modified when a ~ jL . 

The modified solutions, for a ~ jL, are developed in 
the Appendix to this paper, following an initial section in 
which the relationship between a and jL for situations of 
interest is established . The results of the Appendix are 
summarized below, and their implications discussed. 

The Green's functions G(x I x'), obtained in the 
Appendix (section A .2) and discussed in sections A.3-A.6, 
serve to generate the solution of Equation (13) by means of 
the "longitudinal averaging integral" 

J
X 2 

F(x' )G(x I x' )dx' (15) 

Xl 

where Xl and x 2 locate the head and terminus of the 
glacier, and where, from Equation (13), 

F(x) (16) 
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(In Equation (IS) we replace the ·source point" coordinate t 
of the Appendix by x' , following the notation of Part I, 
section 3.) The Green's function thus acts as a weighting 
function in the longitudinal average of the effects of the 
perturbation h l' ai' and 61 on the flow response. In 
general, the Green's function for longitudinally varying 1 
and non- zero 0 can be approximated by an asymmetric 
exponential as in Equation (A-23) 

where 

(l7b) 

and where the - sign applies for x' < x, the + sign for 
x' ;. x . This is an exponential with different scale lengths 
(or coupling lengths) up-stream (x' < x) and down-stream 
(x' > x) from the "point of observation" at x . Since the 
amount and type of asymmetry are controlled by jI. and 0 , 

we may call these the "asymmetry parameters". For 
jI. = 0 = 0, Equation (17) is the exact Green's function and 
is the simple symmetric exponential, with coupling length I, 
used in Part I (equation (I-IS». The parameter v in 
Equation (17) can be chosen to make Equation (l7) 
represent as well as possible the exact Green's functions for 
jI. ~ 0, 0 f. O. For linearly varying R{x) with 0 / jI. = I, the 
case treated in the Appendix to Part I, the Green's function 
is approximately symmetric, and v ~ 0 is a good choice, so 
that '+ = C = R{x). For o/ jI. = 3/ 2, which is thought to 
be the condition most generally applicable to flow 
perturbations , there is distinct asymmetry (I+ ~ R_) , and 
v 'I< +0.7 is a good choice. From Equation (l7b), and in 
agreement with intuition, the down-stream coupling length 
1+ is longer than the up- stream coupling length ._ if 
jI. > 0 (I increasing down-stream), and vice versa if jI. < O. 
For o/ jI. > 3/ 2, the amount of asymmetry increases; thus for 
o/ jI. = 9/ 4, the choice v '" +1.2 in Equation (l7) is good. 
For jI. = 0, with 0 ~ 0, Equation (17) becomes the exact 
Green's function, with Vjl. replaced by o. 

The ratio o/jI. - 3/ 2 applies for flow perturbations of 
a wide ice sheet under conditions where the ice flux in the 
datum state is longitudinally constant (or nearly enough so), 
and in which longitudinal vanatlOns in , are not 
predominantly controlled by longitudinal variations in 1)0 ' 

For flow in a channel of finite width, of parabolic cross
section, the constant ice-flow condition corresponds to 
0/ jI. = 9/ 4, hence the asymmetry in the Green's function 
tends to be greater for valley glaciers than for wide ice 
sheets, for a given value of jI.. 

In asymmetric longitudinal averaging, with the use of 
Equation (17) in the integral in Equation (IS), the practical 
range of integration (the "averaging interval") can reasonably 
be taken to be x - 21_ (x' , x + 2'+, in accordance 
with the form of the exponential, as illustrated in F igure 2 
("averaging length" 21+ + 2C '" 41) . {To do this, the right 
side of Equation (l7a) should be multiplied by the 
additional scaling factor (I - e- 2r l . ) Although , ± in 
Equation (17b) is a function of x via I{x ) in Equation (17), 
in the integration in Equation (IS) it is a constant, except 
for the switch from 1_ to '+ as x' passes through x. 

Figure 2 shows qualitatively the anticipated pattern of 
weighting-function asymmetry along the length of a glacier, 
based on the expectation that R will decrease as the 
terminus and head of the glacier are approached and also 
on going into ice falls . 

From Equation (A-23b), the exact Green's function for 
the case where R{x ) in Equation (13) is a linear function of 
x and where 0 = constant = (3/ 2)jI. is 

G{xlx' ) 
21{x) .;t.;7 

(IS) 

in which the + sign applies for x' ' x , the - sign for 
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I averaging __ _ 
r- length 

211-+/,1 

--------------~------==~ 

Fig. 2. Schematic representation of asymmetric weighting 
functions for longitudinal averaging of the effects of 
perturbations ill ice thickness and slope on the flow 
response. The scheme used is explained by the upper 
diagram, which shows a plot of the asymmetric weighting 
function in Equation (17) (here designated W, as in 
Figure 12) as a function of x' around a particular "point 
of observation" x, for a particular choice of Vjl. (- 0.55) . 
In the lower diagram , such plots of W,( x') are shown 
schematically around five poillts xl' ... xS' The weighting 
for averaging around x, is approximately symmetrical , 
while for the other points it is distinctly asymmetrical; the 
diagram shows the sense of asymmetry expected near the 
head and terminus , and near an ice fall. 

x ' ~ x . (The actual sign of the exponent depends also on 
the sign of jI., as Equation (IS) indicates.) The range of x' 
in Equation ( IS) is limited to jJ.X' ;. jJ.X - R{x) . Since the 
approximate representation of Equation (IS) by Equation 
(17) (with v = +0.7) becomes somewhat poor for jI.;;:; I, 
Equation (IS) should be used in Equation (IS) under those 
conditions of rapid longitudinal variation of 1 and high 
asymmetry. 

The function in Equation (IS) is actually symmetric for 
x in the immediate vicinity of x ; asymmetry as in 
Equation (l7) develops progressively outward. The detailed 
features of the asymmetry are shown in Figures S, 9, and 
10. Figures 9 and 10 also show how well Equation (IS) is 
approximated by the asymmetric exponential in Equation 
(17) with v taken as 1. 

The expectable extent of overall asymmetry, as 
measured by the ratios ,~, and '---.I', is shown by the 
values in Table 1. They are calculated from Equation (17b), 
with v = 1, for several values of jI., which are based on 

T ABLE I. ASYMMETRICAL AVERAGING LENGTHS l -

AND '+ 
Calculated from Equations (17b) and (19) with v - I and 

o/ jI. - 3/2 

. / ho -{crl3) 
deg 

jI. LJ. .~. 

2 2 0.023 0.98 1.02 

2 5 0.05S 0.94 1.06 
2 10 O. IIS 0.S9 1.12 
2 20 0.243 0.79 1.27 
6 I 0.035 0.97 1.04 
6 2 0.070 0.93 1.07 

6 5 0.175 0.84 1.19 

6 10 0.353 0.71 1.41 

6 20 O.72S 0.51 1.96 

If a 6 > 0 (jI. < 0), the numbers in column 4 and 5 are 

to be interchanged. 

glacier geometry in terms of the 
(a - B) = -tan-l {dho/dx). For a given 
0/ jI., the longitudinal gradient of ice 
related to jI. by 

"convergence angle" 
value of the ratio 

thickness dho/dx is 

2S9 
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(19) 

which is obtained form Equation (12) with neglect of the 
contribution to a from dTlo/dx. The values in Table I are 
based on a/p. - 3/2. For J/h = 2, the practical upper limit 
of p. is about 0.3, whereas for J / h = 6 (which seems 
possible on the basis of Part I, table I), we might encounter 
p. - I. 

There are indications that the form of Green's function 
is only moderately sensitive to non-linearities in R(x) , so 
that the weighting functions in Equations (18) or (17) are 
applicable in a practical way to actual situations where the 
longitudinal variations in l(x) are not strictly linear but do 
not depart too wildly from linearity. The effect of 
longitudinal varIation in p. can, on the basis of equation 
(IA-22), be taken into account in a rough way by replacing 
J in Equations (17) or (18) by 

(20) 

The practical approximate solution of Equation (13), 
obtained by combining Equations (IS), (16), and (17) into a 
single formula based on the above discussion is 

where J ± is given by Equation (l7b) and F(x) by Equation 
(16). In these formulae jJ. = dJ/dx. 

The effects of the asymmetry in longitudinal averaging 
on the flow response ul(x) are likely to be small in general, 
first because p. is probably in general small as noted above, 
and secondly because ul is not in general very sensitive to 
modest changes in the shape of the weighting function in 
Equation (15). However, an exception occurs in places 
where ho decreases to low values so that F(x ) has an 
exaggerated sensitivity to thickness perturbations via the 
h / ho term in Equation (16). Such places are near the ends 
o} a glacier and near ice falls . The inordinate influence that 
such places would tend to exert via longitudinal coupling on 
the flow response of adjacent, more "normal" parts of the 
glacier will tend to be suppressed and mitigated by the 
effects of asymmetric averaging, because the decrease in ho 
toward these places will in general be 'reflected in a 
decrease in J toward them. The asymmetry of the weighting 
function in such situations, suggested in Figure 2, will tend 
to shield the flow response in adjacent parts of the glacier 
from the influence of these places where the extreme 
response conditions arise. However, very near the terminus 
the treatment here tends to fail for other reasons. 

4. APPLICATION TO AN OBSERVED PERTURBATION 
IN GLACIER FLOW 

From 1957 to 1977, Blue Glacier (Washington) increased 
in thickness by a few tens of meters. At the same time, 
there was a general decrease in surface slope, corresponding 
to a longitudinal gradient (a down-glacier increase) in the 
thickening. The combined effect of these changes was a 
marked increase, up to 40%, in the flow velocity. The 
changes have been documented by Echelmeyer (unpublished), 
building upon the basis laid in 1957-59 by Meier and 
others (1974). From the measured perturbations, a 
comparison can be made between the observed flow 
response and the response expected from the slope and 
thickness perturbations with and without longitudinal 
averaging. 

Figure 3a shows a plot of the observed ul/ho values in 
relation to the corresponding local perturbation hl/ ho 
without longitudinal averaging. The values of the local per
turbations al/aO are given alongside the plotted points in 
the figure . Throughout this discussion and in Figures 3-7 
we use as our numerical measure of the perturbations u/uo' 
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Fig . 3. Flow perturbation data for Blue Glacier. (a) 
Perturbations in flow velocity ul/ Uo (expressed as 
percentage change) are plotted against the corresponding 
local perturbations in ice thickness hl / ho' The associated 
local perturbations in surface slope al/ aO' in per cent 
( measured over a longitudinal interval of 350-500(m 
centered on each data location) , are given alongside each 
data point. The perturbation quantities are calculated 
logarithmically from the observed flow and surface 
profile in 1957-58 and 1977- 78 as explained in the text . 
Data are from Echelmeyer (unpublished ). ( b) Plot of 
perturbation data after performing symmetric longitudinal 
averaging of thickness and slope perturbations according 
to Equation (24), with averaging length 4J = 1.6(km in 
Equation ( A- 21 ). The averaged values (al/ cxO > are given , 
in per cent, alongside each data point . 

al/ aO' and hl/ho the quantities In(un/ ul), In(an/al ), and 
In(hn/ hl ), where subscripts I and n refer to values measured 
in 1957-58 and 1977-79, respectively. We consider this to 
be the optimum way to handle perturbations that are not 
truly infinitesimal (see Echelmeyer, unpublished, section 5.1), 
and it avoids the ambiguity in the choice of Uo that arises 
if linear quantities such as (un - u1)/ uO are used. The 
logarithmic pert urbation values are expressed in per cent. 

In Figure 3a there is considerable scatter of the data 
points about a bi-linear regression line of the type 

(22) 

that would be expected for the response to small changes in 
thickness and slope for flow 10 a cylindrical channel 
without effects of longitudinal stress gradients (Echelmeyer, 
unpublished, p. 258). Here 'I' is a response factor whose 
value depends on the shape of the channel cross-section and 
for Blue Glacier is approximately 0.85 (Echelmeyer, 
unpublished, p. 284). The scatter in Figure 3a is not so 
great as to obscure the existence of the expected regression 
of ul/ uO against hi/ho' but there is no detectable correlation 
of ul/ uO with the al/ cxO values, which scatter widely. 

The expected effect of longitudinal stress-gradient 
coupling in modifying Equation (22) is obtained by 
application of Equation (21). It can be written, for small 
0:6, 

(23) 

where the angular brackets represent the weighted 
longitudinal averaging specified by the integral in Equation 
(~I) and where. the influence coefficients ~h and ~a are 
given by EquatIOns (8) and (9). The response factor 'I' in 
Equation (23), which is not present in Equation (16), is 
introduced on the basis of the reasoning developed by 
Echelmeyer (unpublished, sections 9.2-9.4) for channels of 
finite width, leading to Equation (22). Inasmuch as Equation 
(21) describes perturbations ul in the mean velocity Ii, in 
applying Equation (23) to observed perturbations in the sur
face velocity u we assume that the two perturbations at any 
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point are the same, or are proportional as they are 
theoretically in simple-shear flow. 

If, as a first step, we were to assume that the 
influence coefficients had the approximate values 
cPh ... I + nand cPa ... n (as in the treatment in Part I) and 
for consistency were also to omit the distinction between ~ 
and ao (see section 2), then the expected relation in 
Equation (23), with 'i' taken as constant, would be 

(24) 

Figure 3b shows accordingly the result of replotting the 
data points after applying longitudinal averaging to the hl/ho 
and a/ao values. The averaging is done with a symmetric 
exponential weighting function (Equation (17) with jL = D), 
for simplicity; the expected decrease in 1 near the terminus 
is represented by taking the averaging length to vary with 
x as follows: for x < 0.6 km, 41 = 1.6 km; 
0.6 < x < 1.2 km, 41 = 1.2 km; x > 1.2 km, 41 = 0.8 km. 
The variation in Uo under the integral sign in Equation (21) 
is. ignored. The averaged values <al/aO >, in per cent, are 
given alongside the data points in Figure 3b. 

The replotting of the data in Figure 3b, with 
application of longitudinal averaging, reduces the scatter in 
the regression of ul/uO against <h/ho >, by comparison with 
Figure 3a. The remaining scatter, other than that from 
observational error, should according to Equation (24) be 
due to variations in <a/ao >. As a result of the longitudinal 
averaging, the variations in <a/«o> are greatly reduced 
from the variations in the local values a /a, as the 

b . F ' 3' d ' I 0 num er~ m Igure m Icate. In Figure 3b, some 
correlatIOn can be seen betw~en the (a / ao > values and the 
departures of the data pomts from the regression line 
drawn, the points with the algebraically larger (a / a > 
values tending to fall above the line and those with lmo~e 
negative <al/ a O > values below it, as expected from 
Equation (24). However, the extent of departure is only 
about one-third of what would be expected from Equation 
(24) with n = 3. The non-zero intercept of the regression 
line on the ( uI/ u > axis in Figure 3b is a separate 
indication of the effect of slope change on the flow. If the 
regression line is not biased by a correlation between 
(al/ aQ > and <hl/ ho >, the intercept can be in terpreted as 
the flow perturbation resulting from the mean of the 
per~urb~tions <al/ aO > for all of the available data points, 
which IS -6 .7%, from the numbers in Figure 3b. On this 
basis, the intercept value of -8.5% (Fig. 3b) corresponds to 
an n value (1.3) in Equation (24) that is again about 
one- third as large as what we would expect if n is the 
normal flow - law exponent. On the other hand, the slope of 
the regression line in Figure 3b corresponds to a "normal" 
value n = 2.7 if interpreted by Equation (24) with 
'i' = 0.85. 

A more refined level of consideration of the 
perturbation data is attained by using the actual values of 
the. inf1uen~e coefficients cPh and cPa in Equation (13), 
which take mto account the dependence on effects of longi
tudinal stress gradients in the datum state. From Equations 
(8) and (9) they can be written (for small a) 

cPh = I + n' [~+ jh], 
o 

(25) 

Echelmeyer alld Kamb: Stress-gradient coupling in glacier flow 

cPa =II'(I+ja) (26) 

where 

[n ~] 
o dx (27) 

and 

(28) 

In Equations (25)-{28), the quantities cos <Xo and b that 
appear in Equations (8) and (9) have been taken to be I 
for practical purposes. As in Part I, section 7, ~ in 
Equation (25) is the effective slope that relates to the 
unperturbed local basal shear stress via the relation 
To - pghosin~. As indicated in equation (1-24), ~ is 
essentially a weighted longitudinal average of ao ' 

To evaluate the effects of the datum state on the 
influence coefficients. we list in Table H the values of 'i' 
ao/~' jh' and ja for each of the data points for Blu; 
Glacier (the center-line point of each transverse profile 
where u, h, and a were measured in 1957-58 and 1977-78). 
The quantities jh and ja in Equations (27) and (28) are 
calculated from a curve uo(x) based on the velocity values 
listed (which are for 1977-78). and with no taken constant 
at 5 bar a, which is about as low a value as seems 
possible, consistent with J/h ... 2 (see Part I, table I). From 
the numbers in Table. H, it appears that j a is commonly 
small enough to be disregarded. In contrast, the values of 
j h are generally large enough to have a definite effect on 
the flow response to thickness perturbations. The variations 
in ao/~ are also large enough to affect the response 
appreciably via Equation (25). 

If we define two variables U and n as follows 

(29) 

(30) 

we can restate the relationship in Equation (23) In the 
simple form 

U=n'n. (31) 

To evaluate the perturbation data from Blue Glacier on 
the basis of Equation (31), the indicated longitudinal 
averages in Equations (29) and (30) are carried out with the 
aQ/~' h, and 'I' values in Table H, and the resulting pairs 
of perturbation quantities U and n, from Equations (29) and 
(30), are plotted as points in Figure 4b. The averaging is 
exponentially weighted, with both longitudinal variation and 
(near the terminus) asymmetry in coupling lengths J J as 
indicated in Table H. For comparison, U and n t;";.sel on 
local values of the perturbations and influence cLoefficients 
without longitudinal averaging, are plotted in Figure 4a. Th; 

TA BLE 11. DATUM-STATE EFFECTS ON INFLUENCE COEFFICIENTS FOR BLUE GLACIER 

Profile x Uo ao/~ jh ja 'I' C R+ jL 

km cm d-l km km 

-0 .33 15.3 1.06 -0.23 -0.01 (0.85) 
-0.11 14.8 1.03 -0.15 0.00 0.85 0.4 0.4 0 

H 0.15 14.3 0.90 0.31 0.00 0.77 0.4 0.4 0 
G 0.34 15.2 0.95 -0.09 +0.01 0.81 0.4 0.4 0 
F 0.51 15.6 1.06 0.08 +0.01 0.70 0.4 0.4 0 
E 0.75 16.6 1.10 -0.63 0.00 0.89 0.3 0.3 0 
0 0 .97 14.6 1.22 0.16 +0.03 0.88 0.3 0.3 0 
c 1.11 13.6 0.87 0.21 -0.02 0.84 0.3 0.2 -0.2 
B 1.34 12.8 0.78 0.19 0.00 0.78 0.25 0.15 -0.25 
A 1.40 13.2 1.00 0.10 0.01 (0.80) 
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Fig. 4. Flow perturbation data for Blue Glacier plolted in 
terms of the perturbation variables U and n (in per cent) 
according to the framework provided by longitudinal 
coupling theory in Equations (29)-(31). The quantities UL 
and nL plolted in (a) are calculated according to the 
format of Equations (29) and (30) but without 
longitudinal averaging. while in (b). U and n are calculated 
with longitudinal averaging as specified in Equations (29) 
and (30). The local values of '1', ao/~' and vh used in 
calculating n for the data points are listed in Table 1I. 
The longitudinal averaging parameters l± are given in the 
text. The open circle is the result of a symmetric 
longitudinal average with 4J = 1.0 km for the B-profile 
point. showing the sensitivity of this result to the choice of 
averaging parameters. 

application of longitudinal averaging greatly improves the 
relationship among the data points in Figure 4b, converting 
a complete scatter into a tolerable regression between nand 
U values. However, the regression is not well fitted by a 
straight line. Moreover, it does not pass through the origin, 
which violates a requirement of Equation (31). The cause 
of this anomaly can be traced, at least formally, to a 
relatively suppressed flow response to slope perturbations in 
relation to the response to thickness perturbations, a feature 
already discernible in the data in Figure 3b as discussed 
earlier. If we modify the perturbation quantity n in 
Equation (30) as follows 

(32) 

by introducing, ad hoc , a second response factor ~, for the 
effect of slope perturbations, then we find that the choice 
~ = 0.35 yields a reasonable regression line between U and 
n' (Fig. 5), passing through the origin. Its slope corresponds 
to 11' = 2.5. However, since we think, on a theoretical basis 

25 

20 

15 

U(%) 

10 

• 

15 

Fig. 5. Blue Glacier perturbation data in terms of the 
modified variable n' in Equation (32). with a 
slope-response factor ~ = 0.35 . 
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(Echelmeyer, unpublished, section 9.1), that ~ = 1, we are 
reluctant to accept the above interpretation, with drastically 
reduced ~, as more than a formal explanation of the data. 

An alternative formal explanation would be that for 
some unknown reason ja in Equation (30) consistently 
assumes a value of about -2/3; however, we see no way 
that this large, consistent value could arise from Equation 
(28), or from effects of the TI term in Equation (6) (see 
Part IV). 

Probably a better conclusion is that the proper 
averaging length is longer than that used in the longitudinal 
averaging in Figures 3 and 4, so that the variations in 
(al/aO> are further suppressed. We cannot test this idea 
directly with averaging calculations, because the limited x 
range of the data set prevents meaningful averages with 
longer I . 

However, the following considerations suggest that the 
idea has merit. Over the range of observation (-0.3 , x , 
1.3 km) the hl/ho values scatter around a linear trend in x 
(Fig. 6). If this trend were to continue outside the range of 
observation, symmetric longitudinal averages would give 

30 
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Fig. 6. Variation of the perturbations hl/ ho and al/ a O with 
longitudinal coordinate x in Blue Glacier. The dashed line 
is a linear regression fitted to the hl/ ho values. Data from 
Echelmeyer (unpublished). 

hl / ho values following this linear trend better and better as 
the averaging length is increased. At the same time, since 
al/aO is approximately proportional to the longitudinal 
gradient of h/ho (as Figure 6 shows), longitudinal 
averaging will give (al/aO> values tending to a constant as 
the averaging length is increased. For a long enough 
averaging length, therefore, the ul/U

O 
values should show a 

response to hl/ho varying linearly along the length of the 
glacier, while the response to al/aO should appear only as a 
constant shift, resulting from the constant value of the 
longitudinally averaged (al/aO >. In conformity with this 
expectation, a plot of u/uo against hl/ho (where 1l1/ho is 
the value given by the linear trend in Figure 6 for each 
observation point x) shows a good linear regression (Fig. 
7).· The slope of the line in Figure 7 (ignoring the point 
for profile B) corresponds to n = 4.1 (assuming 'I' = 0.85), 

• The point from farthest down-glacier (profile B) falls well 
above the regression line, doubtless because of the sharp 
up-swing in hl/ ho values above the linear trend in Figure 6 
for x > 1.3 km, approaching the terminus. The influence of 
this up-swing is evident in Figure 3b, in which the 
corresponding point for profile B does not fall above the 
regression line; it is also suggested by the fact that the 
point for profile B in Figure 7 moves much closer to the 
regression line when plotted at the position of the local 
h/ho value (open circle in Figure 7). 
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Fig. 7. Flow perturbation ul/ u
O 

for BlulJ. Glacier plotted as 
a function of thickness perturbation hl/ ho given by the 
linear trend in Figure 6 evaluated at the points of 
observation. The open circle is for the B-profile point . 
re-plotted at the local value of hl/ ho' The regression line 
has slope 4.35 and ordinate intercept -14%. 

and the intercept value (ul/uO 0: -14% at hl/ho - 0) corres
ponds to n - 3.0 if for the constant average value (a/ao> 
we take the actually measured average value (al >/ <ao > 
= -4.6% over the interval of observation 
-0.33 , x , 1.34 km. These reasonable n values differ from 
those implied by Figure 3b, as discussed above, perhaps 
because of effects entering the longitudinal averaging 
integrals from outside the interval of direct observation. The 
outside data have to be based on estimates from topographic 
maps of relatively modest accuracy and are therefore much 
less reliable than the data from inside the interval. This is 
especially the case for B, the lowermost profile. 

The rather reasonable behavior of the perturbation data 
in the treatment of Figure 7 might be interpreted as an 
indication that in Figure 6 the fluctuations of the a l / a o 
values from a constant value and of the h/ho values from 
a line of constant slope represent only observational error, 
except perhaps for the B-profile point. Although the 
assessment of observational error in relation to this 
possibility is too complicated and extensive an issue to enter 

APPENDIX 

SOLUTION OF DIFFERENTIAL EQUATION (13) 

By B. KAMB and K .A. ECHELMEYER 

A.1. RELATION BETWEEN cr AND IJ., AND BETWEEN 
h AND I 

If the ratio l/h is (approximately) constant, so that 
l / h = k ... 2, as suggested by the results in Part I, then, 
from Equations (l2) and (14), 

a 

where u 

u 

To the 

I 

2 

is a 

I -
2 

d In ~ = I 
dx k 2IJ. + v 

parameter defined, analogously to 

dlnTip 

dx 

extent that longitudinal variations 

(A- I) 

cr, by 

(A-2) 

in are 
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into here, this points up the fact that longitudinal (as well 
as lateral) averaging of the hl/ho and al/aO data is helpful 
in suppressing noise due to observational error, as well as 
in taking into account the actual effects of siress gradients. 

Because this paper is concerned with the framework 
for evaluating flow-perturbation data under the influence of 
effects of longitudinal stress gradients rather than with the 
interpretation of the results themselves, we shall defer a full 
discussion of the data and their interpretation to a separate 
paper. It is, however, clear from the foregoing discussion 
that in interpreting such data it is helpful to use 
longitudinal coupling theory, and that, indeed, without 
bringing in the effects of longitudinal averaging, especially 
its damping of longitudinal variations in the local surface
slope perturbation a l , it would not be possible to make 
good sense out of the data for Blue Glacier. 
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dominated by vanatlOns in h rather than Tio' so that v is 
negligible, we can conclude that cr/ /J. - t in this case. 

The idea that l / h is approximately constant is 
intuitively appealing and applies in a general way in 
comparing I values of one glacier with another, as Part I 
shows. However, for the detailed longitudinal vanatlOn, 
along the length of a given glacier, of the coupling length 
1 applicable to the flow perturbations considered here, and 
given by Equation (11) with the x dependences of the 
several variables involved, a different relationship between I 
and h is appropriate. It is derived from the consideration 
that the longitudinal variations in ho, uO' and To in a given 
glacier occur subject to the constraint that the ice flux is 
an only slowly varying function of x . If we therefore 
introduce the ice flux Qo (per unit width) 

(A-3) 

and then evaluate Equation (11) in terms of ho and Qo' 
eliminating Uo and To' by using equation (I-I) and Equation 
(A-3), we obtain 

_ [4n' cl
l / n ] t _ t (n-l) / 2n l/n 

I - bn' no Qo ho ' (A-4) 

293 

https://doi.org/10.3189/S0022143000015616 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000015616


Journal 01 Glaciology 

If we take Qo as constant so far as longitudinal varIatIOn 
of • is concerned, which is an adequate approximation 
locally except perhaps near the terminus and near the head 
of the glacier, then ... nb/2ho l/S (for n = 3) is the 
appropriate relationship for longItudinal variations in •. (The 
possible longitudinal variations of h, n', and n" are here 
disregarded.) It therefore follows from Equations (12), (14), 
(A-2), and (A-4) that 

0-
d s--.l 3 

• - In(. 7) ,) - - jI. 
2 dx 0 2 

I 

2 
u. (A-5) 

If again v is neglected, we obtain the result o/jI. = 3/ 2 for 
the longitudinal variations that can be expected due to 
longitudinal variation in ~, ho, To' and uo. 

Near the terminus, where the longitudinal variation of 
Qo is not negligible, it may be appropriate to consider that 
a is approximately constant, particularly if the ice 
configuration is roughly wedge-shaped. In this case, it is 
appropriate to cast • in terms of a o and ho: 

• - [4:'"~1 t ifot pgao)(n-l)/2ho(n+l)/2. (A-6) 

If we take ~ as constant and proceed as before, we have 
(for n - 3) ... nol/2h~, hence 

I 3 
o - 4"1' + 4 \I. (A-7) 

An amendment to the considerations in Part I, for flow 
in a channel of finite width, is necessary because of the 
factor 1.1 in equation (1-21), which alters the relation I' = 0 

used in the Appendix to Part I. If we differentiate equation 
(1-19), neglecting the doubtless small longitudinal derivative 
of I and remembering that in this case Uo and Tare 
constants (perturbation conditions of Part I), we obtain 0 

I' _ !4nUol d~ =~. dln( h7'j) 
To dx 2 dx 

and if we then combine this with equation (1-2 1), 
neglecting likewise dw/dx, and using Equation (A- 2) (but 
with 110 replaced by 11), we obtain 

3 
o - 1.11' - (1.1 -I)u = - I' - - \I 

2 2 
(A-8) 

where we have taken 1.1 = 3/ 2, for a parabolic channel (Part 
I, section 4). If u is neglected, we have again the 
relationship 0/1' = 3/ 2. Thus, the role of longitudinal 
coupling in the flow of valley glaciers, expressed in terms 
of the longitudinal averaging integral in equation (IA-13), 
will involve a weighting function (Green's function) of the 
t~pe given in section A.3 below, which differs appreciably 
from the functional form obtained in the Appendix to Part 
I for flow in limitlessly wide channels. This modification 
applies insofar as longitudinal variations in J are dominated 
by variations in h, rather than in 11; if the latter dominate, 
I' = 0 remains valid. 

By use of the same procedure that underlies the 
results given in Part I, section 4, it can be shown that for 
a glacier flowing in a finite-width channel, a flow 
perturbation ul(x) of the type considered in section 2 of 
the present paper is governed by a longitudinal flow
coupling equation that has the same general form as 
Equation (13), with • and 0 given by 

(A-9a) 

and 

o _ .!..J[W dlnho + dlnno ] 
2 dx dx 

(A-9b) 
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which are entirely parallel to equations (1-19) and (1-21). &> 
is the channel-shape factor in the datum state and 1.1 = h/h, 
as in Part I, section 4. If we use these equations as the 
starting point in the procedure by which we derived 
Equation (A-5) from Equations (A-3) and (A-4) above, we 
obtain 

3 3 
0= - 1.11' - (~-I)u. 

2 2 
(A-IO) 

For a parabolic channel (1.1 - 3/2) and with neglect of \I, 

Equation (A-ID) gives the relationship 0/1' = 9/4. 
Thus there is a substantial range in the possible 0,1' 

relationships, depending on the applicable circumstances of 
the longitudinal variations that occur. The different relation
ships found above, in Equations (A-I), (A-5), and (A-7), 
correspond to different relationships between I and h. The 
0,1' relationships in Equations (A-8) and (A-ID) involve in 
addition the effect of finite channel width. If longitudinal 
varIatIOns in no' h, n', or n were also to enter 
significantly, the range of possible 0,1' relationships would 
expand even further. Thus, for example, if the source of 
the longitudinal variation in • were wholly in variations of 
h, n, or n", we would have 0 = 0, whereas if it were 
wholly in variation of no' we would have 0 = 1'. However, 
the most generally applicable relationship, based on the 
above discussion, appears to be 0/1' = 3/2, if the 
longitudinal variation of I is not dominated by longitudinal 
variation of 110 • 

Where longitudinal variations in 110 do dominate, a 
different approach to the 0,1' relation is advantageous. We 
start from Equation (14), treat n', h, and n" as constants, 
and introduce the possible variation in To in terms of the 
variation in 110 via equations (I-I) and Equation (A-3), 
assuming constant Q o. This leads to 

o -
I • d

I' - - =- _zo. 
6 Uo dx 

(A-I 1) 

The last te~m on the right, evaluated for I / hp ~ 4 (see 
Part ~i sectIOn 5)~ ho - 300 m, Uo lOO m a-I, I duo/dx I s; 
0.05 a , has magllltude s; 0.1. We can therefore say that in 
this case, for the magnitudes of longitudinal strain-rates that 
typically occur, 0::: I' :I: 0.1. If I' is rather greater than 
0.2, then the approximation 0 III I' becomes appropriate. As 
is seen below, it is only for I' ~ 0.5 that really pronounced 
deviations occur from the simple exponential Green's 
function as in Equation (A-2l), so that for dominating 
longitudinal variation in 110 it seems appropriate to assume 
that 0 III I' in general, and therefore to use the Green's 
function solution given in the Appendix to Part I. 

A.2. DIFFERENTIAL EQUA nON AND GREEN'S 
FUNCTION FOR 0 ~ I' 

As in Part I (Appendix), we seek the Green's function 
for the solution of Equation (13) in the simplest situation 
where there is longitudinal variation in " namely, where 
J(x ) varies linearly with x so that, in accordance with 
Equation (14), 

(A-12) 

10 is the value of .(x) at the arbitrarily chosen origin 
x = O. Boundary conditions on u l are based on the 
discussion in Part I (Appendix), and are introduced below. 
Also, as in Part I, it is convenient to transform the longi
tudinal coordinates x, ~ to 

z !..a. 
I' 

+ x, ~ = !.o. + t . 
jI. 

(A-l3) 

If we now introduce Equation (A-12) into Equation (13) 
and follow the procedure given in the Appendix to Part I, 
we find at once that the Green's function must be a 
solution of 

(A-14) 
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except at the "source point" z = ~, 

first-derivative jump must occur. Solutions 
(A-14), for constant IL and a, are of the type 

G = azp . 

where the 
of Equation 

(A-IS) 

By introducing Equation (A-IS) into Equation (A-14), 
we find that the constant p must satisfy 

I = 0, 

the roots of which are 

(A-16) 

For the two solutions of the type in Equation (A-IS), 
involving p+ and p~ respectively, two separate factors a+ 
and a_ in Equation (A-IS) are to be chosen. To satisfy the 
boundary conditions G ~ 0 as 1 z 1 ~ 0 and ~ .. (see Part I, 
Appendix), the solution with p_ must apply for 
ILZ ~ IL~ ~ 0, and the solution with p+ for 0 , ILZ , IL~ , 
where again ~ is the z-coordinate of the "source point". 
(The inclusion of IL in these inequalities makes them handle 
correctly the required relations for both negative and 
positive IL.) To find the ~ dependence of G, contained in 
the a± in Equation (A-IS), we can proceed just as is done 
in the Appendix to Part I, applying the continuity condition 
and the first-derivative jump condition (equation (IA-7» on 
the Green's function at z = ~. The result is 

(A-17) 

Here the subscript + applies for IL~ ~ ILZ, the subscript -
for IL~ , jl.Z . The scaling constant c is given by 

-1 I~ 1]2 I c = 2j1. - - - +-. 
2 IL2 

(A-IS) 

Unlike equation (IA-17), the Green's function in 
Equation (A-17) does not in general have (z,~) symmetry 
(or reciprocity); this symmetry holds only if P± = -I - P'f' 
which is satisfied only for al IL = 1. The reason for this is 
that the differential operator Ax corresponding to Equation 
(A-14) is not self-adjoint unless IL = a. The adjoint 
operator corresponding to Ax is 

• a2 
Ar = _jl.2~2 -- - 2j1.(21L - a)~ 
~ a~2 

and G(z 1 ~), as a function of ~, satisfies the equation 

AtG(Z I~) = &(z - 0 

as it should (Stakgold, 1979, p . 200). The lack of self
adjointness ofAx does not interfere with the stated 
procedure used for obtaining the Green's function in 
Equation (A-17), but in general it will cause some 
additional terms to appear in the expression in equation 
(IA-4) for the solution of the differential equation (see 
Stakgold, 1979, p. 210, equation (2.29». However, for the 
boundary conditions used here, with u

1 
~ 0 at the 

boundaries, these additional terms vanish. 
It is useful to rewrite Equation (A-17) in the form 

(A-19) 

(+ for IL~ ~ ILZ, - for IL~ , jl.z), which shows that in 
examining the ~ dependence of the Green's function it is 
convenient to consider G as a function of Vz; in this con
text the effect of the z on the left side of Equation 
(A-19) can be considered as a z-dependence of a scaling 
factor c(jl.zr 1 . 

Echelmeyer and Kamb: Stress-gradient coupling in glacier flow 

A.3 . GREEN'S FUNCTIONS FOR alIL - 3/2 

For alIL = 3/2, from Equation (A-16) we have 

so that the Green's function in Equation (A-19) is 

2ILz~ G(z I~) = [~] (A-20) 

(- for ~ ~ z, + for ~ 'z; here jI. drops out of the 
inequalities because the effect of its sign is expressed in the 
exponent as written in Equation (A-20); but note that for 
jI. < 0, we require both ~ and z to be non-positive, while 
for IL > 0, they must be non-negative.) 

As Equation (A-20) shows, the form of the Green's 
function, as a function of ~/z, depends only on the 
parameter IL. Figure S shows the form of the function for 
several values of jI.. The G values plotted are scaled by the 
same integral condition used in the Appendix to Part I 
(equation (IA-19». 

05 1.0 15 1.0 1.5 10 

Vz-

Fig. 8. Exact Green's functions for linearly varying J( x) 
with o/IL = 3/ 2, from Equation (A-20), for several 
different values of IL. Detailed explanation as in Figure 
12 of Part I . 

Figure 8 is the analog of figure 12 of Part I (hereafter 
referenced as figure 1-12). By comparing these figures, we 
can see how the change in the a,jI. relationship affects the 
Green's function. In a gross, overall way, the functions for 
alIL = 3/2 (Fig. 8) are more positively skewed than those 
for 01 IL = I (fig. 1-12), in the sense that the curves tend 
to drop more slowly for 1 ~ J increasing above 1 z I, and 
more rapidly for 1 ~ 1 decreasmg below 1 z I· Because G is 
forced to zero as z ~ 0, the curves for o/IL = I develop a 
notable "bulge" on the left, with vertical tangent at z = 0 
for IL > I /./L, whereas, because of the skewness, such a 
"bulge" does not appear in the curves for alIJ. = 3/2, at 
least up to IL = 2. In greater detail, the functions for 
al IL = 3/2 are in fact perfectly symmetric in the immediate 
vicinity of ~/z = I (as follows from the fact that the + 
and - exponents in Equation (A-20) are equal and 
opposite); the positive skewness appears progressively at 
finite distances away from ~ = z. The curves for al IJ. = I, 
on the other hand, show in detail a mixed skewness: for ~ 

near z, the skewness is negative, while for ~ farther from 
z it becomes positive, such that the "gross overall skewness· 
is small, at least for moderate values of IL. For both 
al jl. = I and alIJ. = 3/2 the skewness goes to zero with IL, 
and as IL ~ 0 the curves tend to the symmetric exponential 
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exp(-I~ - z l/l!z) _ exp(-It - x1/1) 
Go 2 2jLZ - 21 

(A-21) 

as indicated in Part I (Appendix). 

A.4. COMPARISON WITH ASYMMETRIC EXPONENTIAL 

The features of skewness or asymmetry are seen in 
more detail by comparing the Green's function from 
Equation (A-20) with the symmetric exponential Go from 
Equation (A-21) and with a positively skewed asymmetric 
exponential that is the Green's function GI for Equation 
(13) when both 0 and I are taken to be constants: 

Equation (A-22) is the Green's function for the case where 
If. is set equal to 0 while retaining non-zero o. It can be 
obtained by the foregoing procedure, starting with Equations 
(A-16) and (A-17), and taking the limit I! .... 0 while 
a ~ O. (It can also be obtained directly from Equation (13) 
(or rather from equation (lA-IS) in Part I) by Fourier
transform methods, or from equation (IA-6) by trial of an 
exponential solution, followed by application of equation 
(IA-7).) 

A comparison of G. Go' and Cl is made in Figure 9, 
for three values of If.. All values are scaled by the integral 
condition as in equation (IA-19) in Part I. In calculating G

I 
from Equation (A-22) we take I equal to 1f.Z, and for a we 
take the value of If. used in calculating G from Equation 
(A-19). 

Figure_9 is the analog of figure 13 of Part I, in which 
curves of GI(t/z) are also plotted (dashed curves). What we 
see in the comparisons in Figure 9 and figure 13 of Part I 
is that while for a/ I! - I (fig. 1-13) the sxmmetric 
exponential G9 is a much belter approximation to G than is 
the asymmetnc exponential GI' for a/If. - 3/2 (Fig. 9) the 
asymmetric exponential gives the (somewhat) better 
approximation, at least for If. , 1/2. (For If. - I the 
comparison should be extended at least to t /z = 3, in order 
to cover the scaled range 0 , t/z , I + 21'; over the 
~nterval 2' Vz , 3,_ the _approximation of Cl to G 
Improves and that of G to G worsens, for O/ I! 2 3/ 2.) 

To illustrate the 8reen's function in Equation (A-20) 
in the context in which it will be used in practice, we 
transform it from coordinates z,t back to coordinates x,t 
by Equation (A-I3): 

~ -I ±----

(lower signs for t , x, upper for t ~ x). With If. Z 1/4, 
we plot G as a function of t, for four values of x, in 
Figure 10. Also shown for comparison in Figure 10 is the 
asymmetric exponential GI from Equation (A-22), calculated 
with a - 1/4 and I - 10 + jI.X. The values G plotted are 
rescaled by G - 210./i+ I!G. The response of the Green's 
function to the increase in 1 with x is clearly shown, and 
the asymmetry of the curves is visible. (For a change in 
the sign of I!, the asymmetry of the functions in Figure 4 
would be reversed, as would also their sequence from left 
to right.) Figure 10, which is the analog of figure 14 in 
Part I, shows that the asymmetric exponential in Equation 
(A-17) gives about as good a representation of G for 
a/If. = 3/2 as the symmetric exponential does for a/If. = I. 

Based on what we see in Figure 9, for If. , 1/2, an 
even better overall representation of G by GI would seem to 
be given by taking 0 in Equation (A-22) to be 
approximately 0.7 times the value of I! used in Equation 
(A- 20). What gives the best representation depends, 
however, on what part of the function G(~) is considered 
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most important. The discussion of the "shielding" role of 
asymmetric averaging, at the end of section 3, suggests that 
the most important part of the asymmetric Green's function 
is near where I(x) .... 0, which is the tail of the curve near 
the left-hand edge of Figure 9. If so, the asymmetric 
exponential with 0 in Equation (A-22) taken equal to If. in 
Equations (A-20) or (A-23) is clearly preferred, even for 
If. El; very near t = 0, this is also true for the case 
0/ If. - I (see fig. 13 in Part I). 

The approximations involved in the asymmetric 
exponential can of course be avoided simply by using 
Equation (A-23) in Equation (15), and this is probably re
quired if I!;e I. For this purpose Equation (A-23a) is 
better recast in the form given in Equation (18), which is 

(A-22) 

obtained by multiplying Equation (A-23a) through by 
(I + If.X/l o) and using Equation (A-12), as follows: 

21(x)~G(X 10 = 

'f 
~ 

'1'----

[
leX) + I!t -I!x ] 

lex) 
(1+1f.~] lex) 

(A-23b) 

The merits of the asymmetric exponential in Equation 
(A-22) are its relative simplicity, its clear relation to the 
symmetric exponential, and the clear way that it displays 
the overall asymmetry of the Green's function. This is made 
even clearer by noting that Equation (A-22) can be written 

21A + V21!2 G(x 1 t) = e -I t - xl/l± (A-24a) 

where 

the lower sign applying for t < x, the upper for t jI x. 
We have here replaced a in Equation (A-22) by VI!, where 

(A-23a) 

V is a pOSItive quantity whose value can be chosen to 
maximize the agreement between Equations (A-24) and 
(A-23); from the previous discussion, v would seem to be 
in the range 0.7 to I for the case a/If. 2 3/2. The 
quantities 1_ and 1+ can be called the "up-stream coupling 
length" and "down-stream coupling length", respectively; they 
are discussed in section 3. 

Strictly, the Green's function in Equations (A-19) or 
(A-20) applies to a solution of Equation (13) in the form 
of Equation (IS) over the semi-infinite interval from 
Xl - -lo/I! to x 2 = +'" for I! > 0 (or from XI - - to 
x 2 = -IQ/If. for I! < 0). In practice, the interval xl'x2 is of 
course finite, and the singularity at X = -lo/I!, where 
lex) = 0, is probably not included. As discussed in Part I 
(Appendix) for the case I! - 0 - 0, we can reasonably 
expect that the solution for the semi-infinite interval will 
apply as a good approximation to the finite interval, as 
long as the interval is long compared to the coupling 
lengths involved, and as long as the "point of observation" x 
is far enough from the boundaries that the function values 
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Fig . 9 . Comparison 0/ exact Green's fUllctiolls (dotted 
curves) for olj.L = 3/ 2 with symmetric exponelltials (solid 
curves) and asymmetric exponentials with v = 1 (dashed 
curves ). These curves are calculated from Equat ions 
( A-20). ( A-21 ). and (A-24). respectively. with 1 taken 
equal to ILZ. Detailed explallation as in figure 13 of Part 
I . 

1.6,.-----,.-------,,-----,.------,---,.------,-----,.------,------,----, 

I' -2.6 

-1.0 

1.2 

CCrlO 
0.8 

0.4 ! 

) 
Q.

4 
.' 

Fig. 10. Green's function for al IL = 3/ 2. IL = 1/ 4. shown 
in terms of fUllction s of ~ for four separate values of x . 
The dotted curves are the exact Green's fUllction as in 
Equation (A -23). and the solid curves are its approximation 
by asymmetric exponentials from Equation ( A-24). scaled 
to the same peak heights. Detailed explanation as in figure 
14 0/ Part I. 
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G(x I Xl) and G(x I x 2), for t at the boundaries Xl and x~, 
are small. In terms of the approximating asymmetrIc 
exponential in Equation (A-24), this means that X should be 
farther than distances -2J ± from the boundaries. 

A.S. GREEN'S FUNCTIONS FOR alp. = 9/4 

Because alp. = 9/4 is appropriate for flow 
perturbations in valley glaciers (see section A.I), we give in 
Figures 11 , 12, and 13 a representation of the Green's 

10 -

15 

10 

0 5 

1.0 1~ 3.0 

Vz -
Fig. 11 . Exact Green's functions for a/ p. = 9/ 4. plotted as 

ill Figure 8. from Equation (A-25 J. 

o 0.5 
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1.0 

6(0 
0.5 

1.0 

6(~) 
0.5 

1.0 

0.5 

0.6 0.8 

Vz -
1.0 

6-,/· ·· · ... . 

1.0 

Vl -

1.5 2.0 

.... 

- -:.:::.:..:.:. ........... -...~.":"::.--
..... .. 

1.2 1.4 

Fig . 12. Comparison of Green's functions for a/ IL = 91 4, as 
in Figure 9. The dotted curves are the exact Green 's 
functions . the dashed curves are asymmetric exponentials 
with v = 1. from Equation (A-24) . and the solid curves 
are symmetric exponentials. Scaling and other details are 
as explained in figure 13 of Part I. 
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1.6,-----,- ---,----,----,----,---,-----,---,-----,---, 

% ' -2.6 

- 1.0 

1. 2 

CCrlO 
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0.4 

Fig . 13. Green's function for o/ IL· 9/ 4, IL = 1/ 4, as in 
Figure 10. The dotted curves give the exact Green's function 
as in Equation (A-26), and the solid curves the asymmetric 
exponential representation for v • I, from Equation (A-24). 

functions for this case, entirely parallel to the representation 
for O/IL - 3/2 in Figures 8, 9, and 10. The functions are 
calculated from 

and 

3 
- '" 

[ t-X)4 
I+IL-

J(x) 

.491'2 + 16/ 41L 

(A-26) 

wherein the upper sign applies for t ~ x, the lower for 
t , x . Equations (A-2S) and (A-26) are of course obtained 
from Equations (A- 16) and (A-17) with O/IL = 9/ 4. J(x) in 
Equation (A-26) is the linear function in Equation (A-12). 
The plotted values G and G are scaled in the same way as 
in section A-6. 

Figure II shows that the Green's functions for 
O/ IL z 9/4 have increased skewness by comparison with the 
functions in Figure 8. In Figure 12, the advantage of the 
asymmetric exponential in Equation (A-24) in representing 
G, by comparison with the symmetric exponential from 
Equation (A-21), is even clearer than in Figure 9. For 
IL = 1/4 it appears that the choice v'-' 1.2 in Equation 
(A-24) would give about the best overall match between 
Equations (A-24) and (A-26). The plot of Equation (A- 26) 
in Figure 13 shows that the Green's function can be well 
represented by the asymmetric exponential but again 
suggests that the asymmetry of the exact Green's function 
for O/IL = 9/4 is somewhat greater than that of Equation 
(A-26) with v a I. 

Although the Green's functions in Figure II are more 
asymmetric than the corresponding functions in Equation 
(A-I), one cannot draw the simple conclusion that 
asymmetry in longitudinal averaging will generally be more 

. important in valley glaciers than in ice sheets. The reason is 
that for an ice sheet and a valley glacier with the same 
thickness profile ho(x), while 0/ IL is greater for the valley 
glacier, I' will in general be smaller according to Equation 
(19), both on account of the factor (0/ IL) in Equation (19) 
and because we expect from equation (1-19) that J/ho will 
be smaller for the valley glacier. The two changes, in O/ IL 
and in IL, approximately compensate in their net effect on 
the overall asymmetry of the Green's function. 

A.6. OTHER VALUES OF O/IL 

Cases other than O/IL z I, 3/2, and 9/4 can of course 
also be treated on the basis of Equation (A-17). General 
features to be expected are as follows. For 0/ IL in the range 
3/2 to .. , the Green's function is asymmetric in the same 
general way as it is for 0//1. - 3/2 or 9/4, the extent of 
asymmetry increasing as 0//1. increases, for fixed /I.. As O/IL 
decreases below I, the type of mixed asymmetry described 
above (section A.4) for 0/ IL - I, with reversed skewness for 
t near x, becomes more and more pronounced, and the 
symmetric exponential becomes a poor representation. 
Because section A.I indicates that for a "wedge-shaped" 
terminal region the case 0/ IL - 1/4 seems to arise, this calls 
into question the detailed applicability of the foregoing dis
cussion of asymmetry to such a terminus. However, further 
modifications in the treatment of the terminal region are 
also needed for a different reason, namely, that the pro
gressive predomination of basal sliding as the terminus is 
approached (except in polar glaciers) will invalidate the flow 
relation in equation (I-I) on which the conclusion 
o/ IL = 1/4 for this case is based in section A.I. 

A.7. EFFECT OF NON-LINEAR J(x) 

Although the Green's functions in Equations (A-23) 
and (A-26) are strictly valid only for the linear function 
J(x) in Equation (A-12), there are two indications that the 
form of the Green's function is not very sensitive to non
linearities in J(x). I. In the Appendix to Part I it is found 
that the form of G around an "angular minimum" in J(x), 
where there is a discontinuity in slope of I(x) giving 
effectively a non- zero d2J/dx2 (and higher derivatives), is 
not much altered from that for /I. = 0; the alteration can be 
expressed as a modest change in the effective local J, given 
by equation (IA-22). 2. If Equation (A-12) is replaced by 
the non-linear relation 

(A-27) 

the Green's function for 0//1. = I can be found as a 
solution to equation (IA-6), involving combinations of 
Modified Bessel Functions of order zero. When these are 
evaluated by methods similar to those used in the Appendix 
to Part I, but with more complexity, results very similar to 
those portrayed in figures 1-13 and 1-14 are obtained. 
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