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1. Introduction. The nonabelian tensor square G <S> G of a group G is generated by
the symbols g<8>h, g, h e G, subject to the relations

gg'®h = (gg'®gh)(g®h) and g®hh' = (g®h)(hg®hh'),

for all g, g', h, h' e G, where gg' =gg'g~1- The tensor square is a special case of the
nonabelian tensor product which has its origins in homotopy theory. It was introduced by
R. Brown and J. L. Loday in [4] and [5], extending ideas of Whitehead in [6].

In their seminal paper [3], R. Brown, D. J. Johnson, and E. F. Robertson raise the
question if a general estimate can be given for d(G <8> G) in terms of d(G), where d{G) is
the minimal number of generators for a group G. The topic of this paper is to give an
estimate for d{G®G) in terms of d{G) in case G is nilpotent of class 2 (Theorem 3.1).
For a group being free nilpotent of class 2 we show this estimate is sharp (Theorem 3.3).
This is done by explicitly determining the nonabelian tensor square of a free nilpotent
group of class 2 on n generators as a free abelian group of suitable rank. In case n = 2, R.
Aboughazi in [1] obtained the result using a different method.

Based on results in [3], it follows that the tensor square of a nilpotent group is
nilpotent, where cl(G®G) = cl(G') or cl(G') + L We will show that for a group G of
class 2, the tensor square G ® G is always abelian (Proposition 2.2). This fact enables us
to use the concept of a crossed pairing in our computations. We define it here in the case
relevant for tensor squares. For the general case of a nonabelian tensor product we refer
to [3].

DEFINITION 1.1. Let G and L be groups. A function <j>: G X G —> L is called a crossed
pairing if

) , (1.1.1)

') (1.1.2)

for all g, g',/i,/T e G.

Crossed pairings allow us to determine homomorphic images of G <8> G as follows.

PROPOSITION 1.2 [3]. A crossed pairing <j> determines a unique homomorphism of
groups <j>*:G®G^>L such that <j>*(g<8>h) = <f>(g, h) for all g, h e G.

The fact that G <8> G is abelian in our case allows us to use crossed pairings explicitly
in our computations. In [2] this method has been used to determine the nonabelian tensor
square of all 2-generator p-groups of class 2, where p is an odd prime. Until then it seems
that crossed pairings have only been applied in theoretical context, e.g. Proposition 7 in
[3]. In cases where G<8)G fails to be commutative, the extensive calculations involved and
conjecturing the group L pose an obstacle to using this method.
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2. Basic results. It follows from general results in [3] that c l (G®G)^2 if
cl(G) = 2. We are able to lower this bound. This is fundamental in establishing the desired
estimates for d(G ® G) if cl(G) = 2.

The following familiar expansion formulas for groups of class 2 are stated here
without proof and will be used without further reference.

LEMMA 2.1. Let G be a group of nilpotency class two. Then, for any a, b e G and any

« e Z ,

[a,b"] = [a",b] = [a,b]" and (ab)" = anb"[b,dp.

The first results now follow.
PROPOSITION 2.2. / / G is a nilpotent group of class two, then G<S>G is abelian and

l®=[x,y]®[x',y']forallx,y,x',y' e G.

Proof. By Proposition 3 in [3], we have

(x <8>y)(x'<8>y')(x <8>y)"' = (l*-v]xr <S> [ry]y') = (x'<8>y'),

since G' is central in G, and hence [x®_y,x'®y'] = 1®. Thus G<8>G is abelian. Again by
Proposition 3 in [3] we have [x<8>y,x'®y'] = [x,y]®[x', y']\ thus [x,y]<S>[x',y'] = l<Sl.

PROPOSITION 2.3. Let G be a group of nilpotency class 2. Then the defining relations of
reduce to

®[x,y]), (2.3.1)

x ®yy' = (x ®y)(x ®y')(x ® [y,y'])([y, x] ®y') (2.3.2)

for all x, x'', y, y' E C .

Proof. Let x, x', y, y' be any elements in G, where cl(G) = 2. By the defining
relations for the tensor square and Proposition 2.2, we obtain

xx' ®y = (xx'®*y)(x ®y) = ([x,x']xr ® [x,y]y)(x

Thus (2.3.1) holds. Similarly, by expanding x®yy' we obtain (2.3.2).

As a consequence of Proposition 2.3 we have the following results.

COROLLARY 2.4. / / G is a group of nilpotency class two, then the following relations
hold for all x, y, z e G:

l9, (2.4.1)

l9, (2.4.2)

(2.4.3)

Proof. Observe that j:_y = [x,_y]_yx in any group. Consider the element
G®G, where cl(G) = 2. Expand first as

xy®z = (x®z)(y<8>z)([x,y]<8>z)(y<2>[x,z])
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by Proposition 2.3, and secondly as

xy®z = [x,y]yx<S)z = ([x,y]®z)(yx®z)
= ([x,y]®z)(x®z)(y®z)([y,x]®z)(x®[y,z))
= (x®z)(y®z)(x®[y,z]).

Equating the terms from the two expansions yields

Note that by Proposition 3 in [3] we have (JC ®[_y, z])'1 = (x®[z,y]) and multiplying both
sides by x ® [z,y] yields (2.4.1). Similarly, expanding x <S)yz in the same fashion as above,
we obtain

Multiplying both sides by ([*, z]®)0 yields (2.4.2). In order to derive the last relation,
multiplying (2.4.1) and (2.4.2) together yields

= (x ® [y, Z])(x ® [y, z])-l([y,x] ® z)([y,x] ® *)"'([*, z] ®y)(y ® [x, z])

To establish our primary result we shall need the following technical lemmas.

LEMMA 2.5. Let G be a group of nilpotency class two. Then: for x, yu... ,yn e G,

x ® n y,=n (x ®yi) n n a*,

fory,

forxx

xu. ..,xne

,xn, v, , .

G,
n n

Vn S G,

[(xi<S>y)fl'n(xj
1 1=2y=i

(2-5.2)

n */ ® n yy=n n ̂  ® ̂
1=1 j=\ / = i y = i

with

n m
M=nn

;=l/=2

y-i
El (by.-ff ]®yk)Y\

i=2

i - ln
A = l

mn
y=i

m cac/i ca^e f/ie empty product is interpreted as the identity.

Proof. The proof of (2.5.1) and (2.5.2) is by induction on n using Proposition 2.2 and
2.3 as well as Corollary 2.4. The expansion of (2.5.3) is obtained by combining (2.5.1) and
(2.5.2). The details are omitted.

The next lemma is an immediate consequence of (2.4.3) and (2.5.3).

LEMMA 2.6. Let G be a group of nilpotency class two, then for any x, y e G and any
integers m and n

x" ®ym = (JC ®y)"m{y <g> [x,y])"ri)(x ® [x,y])m("\
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3. Main results. We proceed now with the main result of this paper, giving an
estimate for the number of generators of G ® G in terms of the number of generators of
G, provided cl(G) = 2.

THEOREM 3.1. Let G be a group of nilpotency class two with d(G) = n, then

This theorem can be easily obtained using the lemmas of the preceding section.
However, for use in our final theorem we need an explicit expression for each g ® h in
terms of the generators obtained in the above theorem. The proof of Theorem 3.1 will
reflect this.

Proof of Theorem 3.1. Let {x{,... ,xn} be a minimal generating set for the group G.
We shall show that G®G is generated by all elements of the form JC,®JC;, l < / < n ,
\<j<n, Xi<Si[Xj,xk], \<i<n, \<j<k<n. Let g, h e G. Then g and h can be
represented as g = UV and h = U'V, where

U=f[xTi, V= n [XnXk]'»,
1 = 1 l£/<*Sn

U' = f\xT:, V'= El [*y, **] '* ,

with integers m,, m,', ljk, l'jk. Thus every generator g®h of G®G can be then written as
UV® U'V. Since both V and V" are in the center of the group, then

UV ®U'V = (U®U')(U® V')(V ® U')(V <g> V).

Expanding V®V by Lemma 2.5 and observing Corollary 2.2, we obtain V <8>V = 1®.
We expand the three remaining terms according to Lemmas 2.5 and 2.6. It follows easily
that

n

= n n (JC,- ®[jcy,JC*])""*-"1*.

n n

Expansion by Lemma 2.5 yields U®U' = U U {x"h®xf>) • M, where
/=iy=i

^ = n n n ([Xj, x,\ ®Xkp
m^ fifi'fi (Xk ® [*,, Xi\r

m^.
1=1 y=2 *=i y=i i=2 *=i

By combining terms, applying Lemma 2.6, and reindexing we can show that

U®U' = flf\ (x,, ® jcyr^fl ft (xi®[xhxj]pi"ii)-m^\
1 = 1 / = 1 1 = 1 y = l

Thus the tensor square is generated by the desired elements.
If n - 2, then G ® G is generated by

, JC,®AT,, X2®X2, xl®[xl,x2], x2®[xl,x2\.
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Thus d (G®G)<6 = |(4 + 6 - 1 ) , the desired result. Now let n > 3 . There are n2

generators of the form xt®Xj and n(n — 1) generators of the form x,®[xj,JC,-], i^j.
Initially there are n(n - 1)(« - 2) generators of the form Xj<8>[xj,xk] for distinct /, /, k.
Since [XJ,xk] = [xk,Xj]~l it follows from Proposition 3 in [3] that we can assume j<k.
However by Corollary 2.4 we have *, <B> [xj, xk] = (XJ <g> [JC,-, xk])(xk ® [xj, *,]). Thus there are
only 2(") = irt(« - l)(/i - 2) generators of the form x> ® [xj, xk] necessary, and therefore

d(G ® G) < n2 + n(n - 1) + %n(n - \)(n - 2) = \n{n2 + 3n- 1).

REMARK. It should be noted that the above can be extended to the case where G is
not finitely generated. In particular, d(G <8> G) £ d(G) if d(G) is an infinite cardinality.

Our next result shows that the estimate for d(G<S>G), as given in Theorem 3.1, is
sharp. We will show that for G = Fn/y3(Fn), the free nilpotent group of class 2 on n
generators, equality holds in Theorem 3.1. For n-2 this already has been shown in [1].

THEOREM 3.2. For any positive integer n ^ 2 the tensor square of a free n-generated
nilpotent group of class 2 is free abelian of rank \n(n2 + 3n - 1).

Proof. By Theorem 3.1 we already have that the rank of this group is at most
5«(n2 + 3n - 1 ) . We now show that the rank is at least this number. For brevity set
~3€n = FJy3(Fn), and let Wn = <*„... ,xn). Every g e % can be written as

8= I ! *r<g)- I ! [xh

with unique integers /n,(g) and /,*(#). Thus there are well-defined functions m, for
1 < i < n and ljk for \<j<k<n from "3tn to Z.

We note that m,{gh) = m,{g) + m,(/i), ljk{gh) = ljk(g) + ljk{h) - m,{h)mk{g), m,(*h) =
nii(h), and ljk(

gh) = l]k(h) + w,(g)m;(/i) - /7i,-(/i)/My-(g). We define now functions z,y, zUj, z,>,,
zijk, from Wn x 3£ to Z by

zll{g,h) = m,(g)ml(h), ' l< i<« , l s / < n , (3.2.1)

, /i) = ,

( W / O ) + m,(g)/n,(/0K(/0 - mj(g)), 1 ^ i < / ̂  n, (3.2.2)

) l ^ y < « ^ n , (3-2-3)

- m,(h)ljk{g)

+ m,(h)mfe)mk(h) - m,(gH(/zK(g), 1 < i <;<*<= n, (3.2.4)
m,{g)ljk{h) - mj(h)ljk(g) + mk{g)ljj{g)

(3.2.5)
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To check that the z#, where z* is one of the mappings defined in (3.2.1)-(3.2.5), is a
crossed pairing, we have to verify by Definition 1.1 that

zj?g',gh) = zt(gg',h) - z*{g,h) = z*(g',gh) - z*(g',g).

It follows from Proposition 1.2 that each z* lifts to a homomorphism, and thus $fn®2i?n

has at least rank \n{nz + 3n - 1), and the theorem is shown.
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