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The influence of surface roughness on transition to turbulence in a Mach 4.5 boundary
layer is studied using direct numerical simulations. Transition is initiated by the
nonlinearly most dangerous inflow disturbance, which causes the earliest possible
breakdown on a flat plate for the prescribed inflow energy and Mach number. This
disturbance primarily comprises two normal second-mode instability waves and an oblique
first mode. When localized roughness is introduced, its shape and location relative to
the synchronization points of the inflow waves are confirmed to have a clear impact on
the amplification of the second-mode instabilities. The change in modal amplification
coincides with the change in the height of the near-wall region where the instability
wave speed is supersonic relative to the mean flow; the net effect of a protruding
roughness is destabilizing when placed upstream of the synchronization point and
stabilizing when placed downstream. Assessment of the effect of the roughness location
is followed by an optimization of the roughness height, abruptness and width with the
objective of achieving maximum transition delay. The optimization is performed using
an ensemble-variational (EnVar) approach, while the location of the roughness is fixed
upstream of the synchronization points of the two second-mode waves. The optimal
roughness disrupts the phase of the near-wall pressure waves, suppresses the amplification
of the primary instability waves and mitigates the nonlinear interactions that lead to
breakdown to turbulence. The outcome is a sustained non-turbulent flow throughout the
computational domain.
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1. Introduction

When high-speed transitional boundary layers encounter surface roughness, the resulting
interaction is difficult to anticipate. Depending on the location and shape of the roughness,
and the state of the boundary layer, transition to turbulence may be promoted or delayed.
Even in the latter case, a longer sustained laminar flow may be a result of taming a
particular route to turbulence, but other instability waves may become more amplified.
Nonetheless, the potential thermal and mechanical benefits of a sustained laminar state
in flight are such that roughness has previously been explored as an effective strategy
to delay transition in high-speed boundary layers (Fujii 2006; Marxen, laccarino &
Shagfeh 2010; Riley, McNamara & Johnson 2014; Fong et al. 2015; Zhao, Dong & Yang
2019). In the present effort, we examine the influence of roughness location and shape
on laminar-to-turbulence transition in a Mach 4.5 zero-pressure-gradient boundary layer
using direct numerical simulation (DNS), and explain the observed shifts in transition
location. We subsequently perform an optimization of the roughness parameters to achieve
the longest possible delay of breakdown to turbulence within our simulation domain.

1.1. Stability of high-speed boundary layers

The work by Lees & Lin (1946) extended the Rayleigh inflection-point criterion to
compressible flows. At the generalized inflection point, d,(0dyu) vanishes, where p and u
are the base-state density and streamwise velocity and dy, = d/dy is the derivative in the
wall-normal direction. The key implication is that a compressible, zero-pressure-gradient
boundary layer can be inviscidly unstable, unlike the incompressible counterpart which
has a viscous Tollmien—Schlichting instability. Mack (1969, 1984) performed extensive
linear stability computations of the compressible boundary layer and identified an infinite
sequence of inflectional instabilities at high Mach number, the first two of which are now
known as the first and second Mack modes. This spectrum of discrete, unstable modes
was also identified by Smith & Brown (1990) and Cowley & Hall (1990) using asymptotic
analysis in the limit of infinite Mach number. The higher-order modes are reported to be
unstable over relatively small ranges of high frequencies.

Mack’s first mode reaches its maximum energy near the generalized inflection point of
the boundary-layer profile, or the local maximum of pdyu. Mack’s higher modes, which
only exist at high Mach number, are rooted in acoustic waves that are trapped inside the
boundary layer near the wall in a region where the phase speed of the wave c is locally
supersonic relative to the mean flow u, or ¢ — u > a where a is the local speed of sound.
While most of these modes are inviscid, the analysis by Smith (1989) showed that the
first modes are of a viscous-inviscid kind; directed outside of the local wave-Mach-cone

direction, i.e. mode angles higher than tan_l(\/MgO — 1) where M, is the free stream
Mach number, these modes exhibit a triple-deck structure.

Mack’s modes are potential precursors of transition in compressible boundary layers,
and both the first- and second-mode waves have been observed in various experiments
(see e.g. Kendall 1975; Lysenko & Maslov 1984; Stetson & Kimmel 1992; Casper et al.
2016; Kegerise & Rufer 2016; Laurence, Wagner & Hannemann 2016; Zhu et al. 2018; Liu
et al. 2019). At high-subsonic and moderate-supersonic speeds, boundary-layer transition
in low-disturbance environments occurs as a result of excitation and amplification of
instabilities that resemble Mack’s first-mode waves. As the Mach number increases, the
generalized inflection point moves to the outer region of the boundary layer and the
growth rate of first-mode instabilities becomes smaller than the second-mode instabilities.
The latter dominate transition in high-Mach-number supersonic and hypersonic

968 A24-2


https://doi.org/10.1017/jfm.2023.523

https://doi.org/10.1017/jfm.2023.523 Published online by Cambridge University Press

Roughness for transition delay in high-speed boundary layers

boundary layers. According to inviscid linear stability (Mack 1984), the growth rate of
the second mode exceeds that of the first mode, for an adiabatic flat-plate boundary layer,
at M ~ 4, where M, is the free stream Mach number. For cooled boundary layers, the
second mode could become the dominant instability at even lower Mach numbers.

More recent work has pointed out that extending the terminology of first and second
model to viscous flows may not be pertinent (Tumin 2007; Fedorov 2011; Fedorov &
Tumin 2011). Instead, the discrete modes were distinguished as follows. The slow mode,
or mode S, has a phase speed that approaches the slow acoustic wave ¢/uso =1 — 1/Mso
in the limit «d < 1, where « is the streamwise wavenumber of the wave and § is the local
boundary-layer thickness. This limit is achieved, for example, near the leading edge when
« is finite and 6 — 0. In the same limit, the fast mode, or mode F, has a phase speed that
approaches the fast acoustic wave c/ux = 1 + 1/M,. Fedorov & Tumin (2011) argued
that, in terms of the spatial stability of an adiabatic wall at a finite Reynolds number, there
only exists one unstable discrete mode, mode S, which exhibits features of the inviscid
first-mode or second-mode instabilities depending on frequency and Reynolds number.
Mode F can also become unstable, for example, in a cold-wall boundary layer. As the
Reynolds number increases downstream of the leading edge, the phase speed of mode S
increases and that of mode F decreases until they synchronize. The synchronization point is
an important modulator for many stability features of high-speed boundary layers (Fedorov
2011; Fedorov & Tumin 2011; Fong et al. 2015; Zhao et al. 2018; Park & Zaki 2019; Dong
& Zhao 2021; Jahanbakhshi & Zaki 2021). For example, Park & Zaki (2019) examined
the sensitivity of the linear stability of high-speed boundary layers to the distortions of the
base velocity and temperature profiles; they showed that the sensitivities of modes S and
F to the distortions increase with Reynolds number, but near the synchronization point,
there is a sudden drop and jump, respectively, in the sensitivities. Despite the arguments
by Fedorov and Tumin, the terminology ‘first mode’ and ‘second mode’ remain widely
adopted by the high-speed boundary-layer research community, and is therefore retained
herein.

1.2. Effects of roughness on transition to turbulence

Introducing isolated or distributed roughness elements can promote breakdown to
turbulence, relative to a smooth surface, by increasing the amplification rate of existing
instabilities or spurring a new one. Examples include the generation of wakes and unstable
shear layers downstream of tall roughness elements (Ergin & White 2006), and formation
of streamwise vorticity behind shorter roughness elements that can initiate stationary
cross-flow instabilities in three-dimensional (3-D) boundary layers (Radeztsky, Reibert
& Saric 1999). Our interest is, however, in carefully designed roughness elements that can
delay transition.

Depending on the shape and location, roughness contributes to (i) receptivity (Dong,
Liu & Wu 2020; Liu, Dong & Wu 2020) and/or (ii) local scattering of perturbations,
by roughness-induced mean-flow distortion, non-homogeneous forcing and non-parallel
effects (Wu & Dong 2016; Xu et al. 2016; Dong & Zhao 2021). When the roughness is
small compared to the local boundary-layer height, these effects can be studied within the
framework of triple-deck theory (Stewartson 1969; Smith 1973; Wu & Dong 2016; Dong
& Zhao 2021). Using a large-Reynolds-number asymptotic analysis, Dong et al. (2020)
showed that the distortion of a small free stream acoustic wave by the curved wall of an
isolated surface elements of height 4 < § contributes to receptivity, and the amplitude
of the resulting eigenmode scales with O(4/3). In addition, the interactions between the
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roughness-induced mean-flow distortion and the acoustic wave leads to receptivity that
scales as 0([h/8]Re6_1/ 3), where Res is the Reynolds number based on 8. In another
study, Liu et al. (2020) performed DNS and asymptotic analysis at moderate and large

Reynolds numbers, respectively, to show that the amplitude of the excited viscous Mack

first mode for the strong receptivity regime scales as 0([h/8]Re)lc/ 4), where Re, is the
Reynolds number based on the distance from the leading edge.

Two notable early experimental studies that reported transition delay on a roughed wall
are the works by James (1959) and Holloway & Sterrett (1964). The former examined
two-dimensional (2-D) roughness elements in free flight tests with 2.8 < May, < 7,
and the latter tested spherical roughness elements mounted on a flat-plate in a Mach 6
wind tunnel. More recent experiments in which roughness-induced delay of transition
was observed were conducted by Fujii (2006), Bountin et al. (2013) and Fong et al.
(2015). The measurements by Fujii (2006) were on a Mach 7, 5 degree half-angle sharp
cone on which either a wavy 2-D or spherical roughness elements were mounted. He
found that, at high stagnation temperature and pressure conditions, transition was delayed
when the wavelength of wavy-wall roughness is similar to the unstable second mode
(approximately 2§); spherical roughness elements had little effect on the location of
transition to turbulence. At low stagnation temperature and pressure conditions, however,
both the wavy wall and spherical roughness elements promoted transition to turbulence
relative to a smooth wall. Bountin er al. (2013) examined the effects of a wavy wall on
stability of a Mach 6 boundary layer. They observed flow over the shallow-grooved plate
was stabilized in a high-frequency band and destabilized at low frequencies, emphasizing
that roughness must be carefully selected depending on the flow regime taking into account
potential environmental disturbance spectra that may force the boundary layer. Fong et al.
(2015) studied a Mach 6 flow over a flared cone with initial half-angle of 2 degrees
with six equi-spaced, 2-D elliptical roughness elements. They reported that second-mode
instabilities can be damped if the roughness is placed downstream of the synchronization
point of the fast and slow second modes. However, it is noteworthy that in this experiment,
the roughness had an unanticipated effect of promoting the amplification of the first-mode
instability.

Computational and theoretical studies have also examined the influence of roughness on
high-speed boundary-layer stability (Duan, Wang & Zhong 2010; Marxen et al. 2010; Riley
et al. 2014; Groskopf & Kloker 2016; Zhao et al. 2019; Dong & Zhao 2021; Haley & Zhong
2023). We first consider the impact of 2-D modifications of the surface. Using DNS, Duan
et al. (2010) studied a Mach 5.92 boundary layer on a flat plate with an isolated 2-D elliptic
bump and drew similar conclusions as Fong et al. (2015). The DNS by Marxen et al. (2010)
examined the impact of 2-D hyperbolic-shaped isolated roughness on a flat-plate boundary
layer at free stream Mach 4.8. Depending on modal frequency, the roughness element can
either amplify or damp the disturbance waves. Riley ef al. (2014) investigated the effect of
2-D compliant panels (convex or concave panel buckling) on boundary-layer stability for
Mach 4 flow over a wedge. They used linear stability theory and the parabolized stability
equations, and showed that placing panels near the leading edge of the wedge promotes
naturally occurring high-frequency disturbances. However, placement near the trailing
edge enhanced stability. Most recently, Zhao et al. (2019) used the harmonic linearized
Navier—Stokes equations to evaluate the effect of a 2-D hump or indentation on a flat
wall on boundary-layer stability. They confirmed that the synchronization points of the
instability waves are critical modulators of the impact of roughness. The earlier referenced
study by Dong & Zhao (2021), which developed large-Reynolds-number asymptotic theory
for the impact of localized roughness on first and second Mack modes, attributed the
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dominant roughness effect to the interaction of the oncoming perturbation with the mean
flow distortion in the main layer and the inhomogeneous forcing from the curved wall.
Most recently, Haley & Zhong (2023) investigated how a single roughness strip and an
array of six sequential strips influence stability of second modes on a Mach 8 straight blunt
cone. For both cases, they observed stabilization of high-frequency and destabilization of
low-frequency modes. As for 3-D roughness elements, Groskopf & Kloker (2016) studied
their impact on a Mach 4.8 boundary layer over a flat plate. The roughness parameters
included the spanwise width to streamwise length ratio, height and skewing angle with
respect to the oncoming flow. The authors observed that, in the wake of obliquely placed
elements, strong low-speed streaks are generated due to the induced cross-flow. Oblique
placement was also associated with larger amplification of instabilities.

1.3. Objectives

The above discussion highlights both the wealth of discoveries from experimental,
theoretical and numerical studies of roughness in transitional high-speed flows, and also
the challenge in anticipating the impact of roughness on transition. The outcome depends
on the roughness parameters, including shape and location, and on the details of the flow
configuration. A choice that does not guarantee robust transition delay can, therefore, lead
to an undesirable, potentially catastrophic outcome especially given the uncertainty in the
environmental conditions relevant to high-speed flights. In the present work, we examine
the key roughness parameters that impact transition to turbulence in a flat-plate boundary
layer at Mach 4.5. We then optimize these parameters to achieve maximum transition
delay within our computational domain. The inflow condition in our simulations is the
nonlinearly most dangerous disturbance at the prescribed level of inlet energy, which was
previously computed for the same configuration (Jahanbakhshi & Zaki 2019). The delay
of the associated transition mechanism using surface roughness is analysed in detail.

This paper is organized as follows. Computational aspects, inflow condition and the
roughness geometry are introduced in § 2, while validation of the computational model is
provided in Appendix A. The results and discussions are reported in § 3, and are followed
by a summary in § 4.

2. Computational framework

Direct numerical simulations are performed to study the influence of surface roughness on
transitional high-speed boundary layers, and specifically the capacity to delay breakdown
to turbulence. The flow satisfies the compressible Navier—Stokes equations, and a sample
flow configuration is provided in figure 1. The contours show the streamwise velocity
of a boundary layer over a protruding roughness. Throughout this work, flow variables
are non-dimensionalized using the free stream velocity iiso, density foo, temperature Tno
and viscosity [i~, Where e represents dimensional quantities. Lengths are normalized
using the Blasius scale at the inflow, 1=/ LooX0/ Poolleo, Where Xg is the distance of the
inflow plane from the virtual boundary-layer origin. In terms of these reference scales,
we define the Reynolds number Re; = ,500&002/ floo, Which is equivalent to /Rey, =
v/ PoollcoX0/ oo Both values are equal to the non-dimensional location of the inflow plane,

X0 = X0 /i = /Rey, = Re;, while the Reynolds number based on the streamwise distance
is given by Re, = Re;x.
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Figure 1. Schematic of transitional boundary-layer flow over a flat plate with an isolated, protruding
roughness element. Contours show the streamwise velocity # normalized by its free stream value, #oo.

x Adiabatic wall

In non-dimensional form, the compressible Navier—Stokes equations are

d

SV (fi=f) =0, @)
where g = [p pu E]' is the state vector, f; = [pu puu+ pl u(E+ p)]' represents
inviscid fluxes, f, =[0 7 (u-7 — 0)]" are the viscous fluxes and (e)' denotes the
transpose. In the equations, p is the density, u = [u v w]' is the 3-D velocity vector, p
is the pressure, E = pe + 0.5pu - u is the total energy, e is the specific internal energy, T
is the viscous stress tensor, @ is the heat-flux vector and / is the unit tensor. The system of
equations is closed by assuming a calorically perfect gas whose thermodynamic properties
are related by

1" 1"

p=(y—Dpe and T=y(y—M2e, (2.2a,b)

where T is the temperature, y is the ratio of specific heats, Moo = tico[(y — I)EPTOO]_I/ 2

is the free stream Mach number and ¢, is the specific heat at constant pressure. The viscous
stress and heat flux are modelled as

uvVT

(y — D)M2 Re/Pr’
(23a.b)

|:Vu + (Vo) + (ﬁ - %) (V. u)l] and 6 = —
nw 3

"
T=—
Re;

respectively, where p is the dynamic shear viscosity, up is the bulk viscosity and Pr is the
Prandtl number.

The DNS adopt a finite-difference discretization of the governing Navier—Stokes
equations on a structured Cartesian grid. A sixth-order-accurate central difference scheme
in the split form by Ducros et al. (2000) is adopted for the inviscid fluxes, and is replaced by
a fifth-order-accurate weighted essentially non-oscillatory scheme with Roe flux splitting
near shocks. The viscous fluxes are computed using a conservative discretization that has
the resolution characteristics of a sixth-order scheme. Time is advanced by a fourth-order
accurate Runge—Kutta method. To simulate complex geometries, a cut-stencil method
(Greene et al. 2016) is implemented that changes the discretization of the governing
equations near the body and applies the boundary conditions just at the interface between
the solid and the fluid. The method generates precise locations for the body. Validation
of the original algorithm for Cartesian geometries is available in the literature (see e.g.
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Larsson & Lele 2009; Johnsen et al. 2010; Kawai & Larsson 2012; Volpiani, Bernardini &
Larsson 2018), and the newly implemented cut-stencil method is discussed in more detail
in Appendix A.

The operating gas is air for which the Prandtl number is Pr = 0.72 and the ratio of
specific heats is y = 1.4. The Mach number in the free stream is Mo, = 4.5. Sutherland’s
law (Sutherland 1893) models the temperature dependence of the dynamic viscosity, and
Stokes’ hypothesis relates the dynamic and bulk viscosity coefficients. The streamwise
position of the inflow plane is xo = \/Rey, = 1800, which was selected based on the

transition Reynolds numbers in high-altitude flight tests being ,/Re,, > 2000 for M, > 4
(Harvey 1978; Schneider 1999). At the inlet plane, the Blasius base-state is prescribed
along with a superposition of linear instability waves. The amplitudes and relative phases
of all the modes were optimized in an earlier study (Jahanbakhshi & Zaki 2019) such
that they lead to the earliest possible breakdown to turbulence on an adiabatic flat plate
(see also § 2.1). Periodic boundary conditions are enforced in the homogeneous spanwise
direction, convective outflow is prescribed at the right and top boundaries, and the bottom
boundary is a no-slip adiabatic wall.

The extents of the computational domain in the streamwise, wall-normal and spanwise
directions are respectively L, = 2984, L, = 204 and L, = 150. The domain is discretized
using a uniform grid in the horizontal directions with Ny = 2985 and N, = 151 points.
A hyperbolic tangent stretching of the grid with Ny, = 189 points is used to discretize
the wall-normal direction. The wall-normal grid spacing that was adopted throughout
this work is reported in figure 2(a), as well as a finer grid that was used to verify grid
independence. At the inlet plane, the main grid has 54 points within the boundary layer.
Figure 2(b,c) provides evidence of grid independence by comparing the main and finer
grids. The figures report the skin-friction coefficient,

Twall

= —) 2.4)
0.5p00tt2,

Cr

and the disturbance energy,

[y pp— pT 02 T2
= — olu' - u' 4+ -+ = d , 2.5
2/0 (”{ } (y—l)yM%o{pZ =) 22

as a function of /Rey. Over-line denotes averaging in time and in the homogeneous
spanwise direction, and the primed variables are the perturbations with respect to this
average. As demonstrated in figure 2, a finer resolution does not yield any perceptible
changes in the skin friction, the disturbance energy or the mean streamwise-velocity
contours (we also confirmed grid-independence of the spanwise and time-averaged
variance). Additionally, we verified that the instability modes prescribed at the inlet and
their nonlinear interactions, leading to transition, are all fully resolved, and that our
predictions of transition are grid independent.

2.1. Inflow instability modes

The inflow disturbance is synthesized as a superposition of linear stability eigenmodes
of the local boundary-layer profile, which span the relevant range of frequencies w and
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Figure 2. (a) Wall-normal grid size and (b—d) sample flow over the optimal roughness for delaying transition.
(b) Downstream behaviour of the skin-friction coefficient. (¢) Downstream evolution of the disturbance energy.
(d) Contours of averaged streamwise velocity in the vicinity of the roughness; colours are from the herein
adopted resolution (Ny, Ny, N;) = (2985, 189, 151), and dashed lines are from the finer grid (N, Ny, N;) =
(3978, 279, 201).

spanwise wavenumbers f;:

q 0.y, 2.0 = > Mgy, p.)(y) explaxo — i(Bz + wi))). (2.6)
w,B;

The eigenmodes at each (w, B;) pair are obtained by substituting the ansatz g( y) exp(ox —
i(B;z + wt)) in the linear perturbation equations, and the resulting spatial eigenvalue
problem is solved for the spectrum of eigenfunctions ¢(y) and associated complex
eigenvalues o = o, + ic;. Only the linearly most unstable wave, which in the present
study is the slow mode, was retained at each (w, ;) pair. The linear-stability operators
and solution algorithm are standard (see e.g. Park & Zaki (2019), for details).

For a prescribed level of the total disturbance energy, Jahanbakhshi & Zaki (2019)
optimized the amplitudes and phases of the inflow instability waves to achieve the earliest
possible transition to turbulence on a flat plate. The spectral makeup of the resulting
nonlinearly most dangerous inflow disturbance is provided in figure 3(a), as a function
of the normalized frequency and integer spanwise wavenumber:

L
F= x 10° and kZE'B i (2.7a,b)
exO 27
The modal energy, &F i), is defined as
IR pT p*p  T*T
S =5 [ (pEwe A P e e
) =7 ), G- yM% | B 72

(F.kz)

where hatted variables are the Fourier coefficients in frequency-spanwise wavenumber
space and star denotes the complex-conjugate transpose. At the inlet plane, the total

disturbance energy is 3 p ; Er k) =2 ¥ 1075.
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Figure 3. The inflow instability waves. (a) The spectral energy. (b—g) Profiles of the important modes:
(b,c) mode (110, 0), (d,e) mode (100, 0) and (f,g) mode (40, 3). Magnitude (thick); real part (dash—dotted);
imaginary (dotted) part of the mode shapes. The horizontal thin lines (top to bottom) mark the 99 %
boundary-layer thickness and the relative sonic line ¢ — u = a.

Mode (F, k;) w B ooy, o)

(110, 0) 0.198 0 (0.0039, 0.2166)
(100, 0) 0.180 0 (0.0004, 0.1950)
(40, 3) 0.072 0.1257 (0.0011, 0.0840)

Table 1. Parameters of the inlet instability waves. Definitions are provided in § 2.1.

Figure 3(a) shows that the majority of the total energy, approximately 95 %, is assigned
to only three inlet waves: (110, 0); (100, 0) and (40, 3). The parameters for these three
waves are provided in table 1; our simulations resolve each wavelength with 29 to 75 grid
points in the streamwise direction and 50 to 151 points in the span. The streamwise velocity
and pressure of the associated eigenfunctions are plotted in figures 3(b)-3(g). The pressure
profiles in figures 3(c) and 3(e), for modes (110, 0) and (100, 0), have a single zero crossing
in the wall-normal direction, and are second-mode instabilities. Jahanbakhshi & Zaki
(2021) decomposed the momentum-density vector of these waves into acoustic, entropic
and solenoidal components, and confirmed that both (110, 0) and (100, 0) have acoustic
characteristics, in agreement with the interpretation by Mack (1984). The associated
pressure perturbations reflect back and forth between the wall and the sonic line of the
relative flow. Mode (40, 3) with no zero crossings is a first-mode vortical instability. Each
of these three modes plays an important role in causing the earliest transition location at the
present total level of energy. For example, removing one of the modes and redistributing
its energy to the other instability waves leads to a downstream shift in transition onset.

Figures 3(b), 3(d) and 3(f) show that the second-mode instabilities reach their
maximum values below the relative sonic line close to the wall, while the first-mode
instability is appreciable beyond the relative sonic line, close to boundary-layer edge. The
difference in the wall-normal dependence of the two classes of instabilities makes the
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Figure 4. (a,b) Spatial growth rate, «,, (c,d), streamwise wavenumber, «;, and (e,f) phase speed, w/«;, of
modes S (solid line) and F (dash—dotted lines) corresponding to the instabilities (a,c,e) (110, 0) and (b.d,f)
(100, 0). The red dots indicate the synchronization point, the dotted lines mark the start of the computational
domain in our DNS and the dashed lines represent the phase speed of acoustic waves. Reproduction of figure 5
by Jahanbakhshi & Zaki (2021).

second-mode waves more susceptible to control strategies that are applied at the wall, e.g.
short roughness elements or wall heating/cooling.

The synchronization of the fast and slow modes has a significant impact on the
instability waves. Figure 4 reports the spatial growth rates, streamwise wavenumbers and
phase speeds of modes F and S at (F, k;) = (110, 0) and (100, 0). These results are obtain
using parallel, spatial, linear-stability theory and confirm typical characteristics of slow
and fast modes for a high-Mach-number flow over an adiabatic flat-plate (Fedorov &
Tumin 2011). The growth rates of modes F, in figures 4(a) and 4(b), show a discontinuity
at the location where the phase speed approaches unity, which corresponds to crossing
the continuous branch of entropy and vorticity modes. Figures 4 (c) and 4(d) show that
at low Reynolds number, modes S and F follow the slow and fast acoustic branches,
¢ =1F1/Mq, of the spectrum. Figures 4(e) and 4(f) show the evolution of the phase
speeds, which approach one another with Reynolds number until they synchronize. The
Reynolds numbers at synchronization are +/Re, = 1811 for mode (F, k;) = (110, 0) and
/Re,, = 1988 for mode (100, 0).

2.2. Geometry of roughness elements

The wall geometry iz,(x) is defined over three streamwise segments: x < Xp, Xo < x < Xy
and x > Xp. In the first and last segments, the wall is flat, and therefore A, = 0. In the
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Case Xlpl X1p3 XIml X1m3 X2pl X2p3 X2ml X2m3
n +1 +3 -1 -3 +1 +3 —1 -3
Xo, Xn) (2000, 2250) (2250, 2500)

(Hy, Wy, L)) (3.0, 72.5,0.06) (3.0,72.5,0.06)

Table 2. Geometrical parameters for examining effects of location and shape of the roughness on transition to
turbulence. The boundary-layer thickness in the reference, flat-plate case is 899 = 14.7 at X1 and 899 = 15.6 at
X2.

range Xo < x < Xy, a 2-D roughness element is defined,

hy = E[tanh(Lr[x — X, + W,]) — tanh(L,[x — X, — W,])] sin (l’l]‘[ ﬂ) , (29
2 Xy — Xo

where H, >0, W, >0, L, >0, X, = (Xo+ Xy)/2 and n € Z are the geometrical
parameters that respectively determine the maximum height, streamwise extent,
abruptness, centre (location of maximum height) and streamwise integer wavenumber of
the roughness. Note that the surface function is not C? continuous at x = Xy and Xy,
which can trigger numerical instability. To obtain a surface function that is C? at all x,
we reconstruct the above surface topography using a fourth-order spline in which the
first and final knots are at x = Xo and x = Xy. This spline reconstruction is given by
h, = B4[(BIB4)_IBIIAzr], where By € RNV-*Ne i a matrix whose columns are B-splines
of order 4 and N, is the number of control points. In a discretized domain, A, = h,(x) and

izr = fzr(x) are vector quantities in RNxx1 space. The size of the control points, N, is set
such that the residuals function (h, — ilr)T(hr — izr) <1072,

The geometrical parameters of eight roughness elements are summarized in table 2.
These surface topographies will be adopted in numerical simulations to examine the
effect on transition, and the results will be discussed in § 3.1. The eight configurations
involve two roughness locations and four wavenumbers: the designation ‘X1’ references
cases with roughness elements positioned between Xy = 2000 and Xy = 2250, while ‘X2’
has Xo = 2250 and X = 2500. These locations were informed by the synchronization
locations of the two most energetic inflow second-mode instabilities. The position X1 is
post-synchronization of mode (110, 0) and pre-synchronization of mode (100, 0), whereas
X2 is located post-synchronization of both second modes. The streamwise extent of these
roughness elements, Xy — Xo = 250, is much longer than the streamwise wavelength of
the three dominant inlet instability waves (see table 1). The designations ‘pl’ and ‘p3’
reference roughness elements with positive values of n = 1 and n = 3, respectively, while
‘m1’ and ‘m3’ refer to negative values of n. Figure 5 shows the dependence of the surface
geometry on the four values of n at the upstream location. As this figure shows, the main
feature of the surfaces defined by n =1 and n = —3 is their protrusion above the flat
wall, whereas roughness elements with n = —1 and n = 3 are primarily indentations, or
cratering of the surface.

3. Results and discussion

In this section, we examine of the effects of roughness parameters on the location
where the flow transitions to a turbulent state. Specifically, we examine the influence
of the roughness location, streamwise integer wavenumber, maximum height, width and

968 A24-11


https://doi.org/10.1017/jfm.2023.523

https://doi.org/10.1017/jfm.2023.523 Published online by Cambridge University Press

R. Jahanbakhshi and T.A. Zaki

(@ ‘ ‘ (B
37— n=1 3
1 1
hoo \
—1 S 4 —1
\\\ /
-3 e’ -3
2150 2300 2450 2600 2150 2300 2450 2600
X X

Figure 5. Shape of the roughness elements positioned between Xy = 2250 and Xy = 2500: (a) n = %1 and
(b) n = £3. The remaining roughness parameters are reported in table 2.

abruptness, {X,, n, H,, W,, L} in (2.9). The first two geometrical parameters are examined
in § 3.1, while the remaining three are optimized in § 3.2 to achieve maximum transition
delay in our computational domain.

3.1. Effects of location and shape of the roughness on transition

While a general surface topography that delays transition can be sought by optimization,
we consider localized roughness since the associated impact on the flow is less ambiguous
to analyse and due to practical considerations. The optimization can be performed for all
the roughness parameters. However, we will first demonstrate the impact of the roughness
location and general shape, {X,, n}, on transition. This initial set of simulations will
serve two roles. First, the simulations will be analysed to determine the key impact of
roughness on transition dynamics. Second, based on these simulations, we will select the
initial location and shape of the roughness whose parameters {H,, W, L.} we will further
optimize.

For each of the roughness configurations listed in table 2, simulations of transition
were performed when the inflow disturbance is the superposition of instability waves
summarized in §2.1. The skin-friction curves from these simulations are reported in
figure 6. Figure 6(a) highlights the cases in which the roughness can mainly be considered
as a protrusion, whereas figure 6(b) shows the indentation cases. It is evident that
both the location and shape of the roughness appreciably affect the evolution of the
incoming boundary-layer disturbances as manifested by the observed shift in the location
of transition to turbulence. Figure 6(a) shows that the examined protrusions can more
effectively delay transition when they are placed at X2, i.e. post-synchronization of the
second modes. The present simulations are therefore consistent with previous studies
that noted the importance of the position of roughness relative to the synchronization
point of the oncoming disturbance waves (Fong et al. 2015; Zhao et al. 2018; Dong &
Zhao 2021). The increase in the streamwise wavenumber from one to three further delays
transition, at either locations of the roughness. Compared to n = 1, the roughness with
n = —3 is a more slender protrusion into the flow that has a relatively larger impact on
the boundary-layer thickness due to the cratering that precedes the peak. The results in
figure 6(a) are specific to roughness elements whose primary feature is a protrusion. When
the primary feature is an indentation, or cratering, transition is similarly delayed relative to
the flat plate. However, some of the trends are reversed, as shown in figure 6(b): the most
appreciable delay in transition takes place when the roughness location is upstream, at X1,
and the streamwise wavenumber n = —1 is more effective compared to n = 3.
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Figure 6. Skin-friction coefficients for cases where the primary feature of the roughness is (@) protrusion and
(b) indentation. The geometric parameters of each roughness are provided in table 2. The results for transition
on a flat plate are included for reference.

The shift in transition location reported in figure 6 should be viewed in the context
of the effect of each roughness element on the near-wall flow. In hypersonic boundary
layers, an important modulator of the amplification of second-mode instabilities is the
thickness of the near-wall region where the instability phase speed is supersonic relative
to the flow. In this region, the pressure waves reflect at the wall and at the relative sonic
line (¢ — u = a) where the waves change from compression to expansion and vice versa
(Morkovin 1987). These waves are typically phase-tuned with the harmonic vorticity
and temperature waves that are travelling along the relative sonic line. If the thickness
of the relative supersonic region changes due to surface modifications, e.g. roughness
elements or localized cooling/heating, the growth rate of the second-mode instabilities
is altered. In the case of roughness elements, parameters such as location relative to the
synchronization point, streamwise wavenumber, height compared to the relative sonic line
and abruptness/width relative to wavelength of instabilities all affect the outcome.

When the primary feature of the roughness is a protrusion, modification of the relative
supersonic region pre-synchronization can have an appreciable net destabilizing effect.
This trend is reversed when the modification to the relative supersonic region takes place
post-synchronization; the net effect on the instability waves becomes stabilizing. This
trend is captured in the growth rate of mode (100, 0) for which the locations X1 and X2
are pre and post its synchronization location (v/Re, = 1988). Figure 7(a,b) quantify this
behaviour, where the growth rate of mode (100, 0) is reported for protrusions at X1pl
and at X2pl (the figures also show the growth rate of mode (110, 0)). The contours
are iso-levels of the instantaneous streamwise velocity. Upstream of the roughness,
there is a zone where the iso-lines diverge away from the wall, specifically where
the relative supersonic region thickens. Atop the roughness, the iso-lines converge and
thus the relative-supersonic region thins. Finally, within a third zone downstream of
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Figure 7. Contours of instantaneous streamwise velocity for (@) X1pl, (b) X2pl, (¢) X1ml and (d) X2ml.
Right axis is the energy of modes (110, 0) and (100, 0) for each case (dotted blue and red lines) compared to
the reference flat-plate case (dash—dotted black lines). The relative sonic lines of modes (100, 0) and (110, 0)
are marked by dark and light green dashed lines, and are mostly overlapping.

the roughness, the iso-lines recover their natural boundary-layer spreading. The wave is
initially destabilized before it reaches the roughness, followed by a stabilization region
on top of the roughness and finally a re-adjustment zone across which the instability
essentially recovers its amplification rate for an undisturbed boundary layer. When the
protrusion is positioned upstream of the synchronization point of mode (100, 0), the net
effect was a higher modal energy of this wave. Placement of the protruding roughness
downstream of the synchronization point is shown in figure 7(b). The final energy attained
by mode (100, 0) in this case is lower than the upstream placement of this roughness
element. The above dependence of the amplitude of mode (100, 0) on the roughness
location may seem at odds with transition being delayed relative to the flat plate for
both roughness locations (figure 6). For the explanation, it is important to recall that
both roughness configurations are downstream of synchronization of the other dominant
second-mode wave, namely (110,0). As a result, while this mode also exhibits the
three-stage stabilization/destabilization/readjustment behaviour across the roughness, it is
ultimately stabilized in both cases (figures 7a and 7b). Comparison of the DNS results
with computations of modal evolution using linearized Navier—Stokes equations (not
shown here) confirmed that the destabilization zones of modes (100, 0) and (110, 0) are
primarily caused by the roughness-induced base-flow distortion, while the stabilization
and re-adjustment zones are strongly influenced by the interaction of the instability waves
with the finite slope of the roughness geometry.

When the main roughness feature is an indentation (figure 7c¢,d), the relative
supersonic region initially thins, then thickens and finally thins again, with an associated
stabilization/destabilization/stabilization and re-adjustment of the second-mode waves.
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Roughness location at either X1 or X2 leads to a net stabilization for both second-mode
waves. For mode (100, 0), this outcome is noteworthy because the synchronization
location of this mode is downstream of X1 and upstream of X2. According to Dong & Zhao
(2021) (see their figures 16 and 18), indentations have a similar albeit weaker scattering
effect as protrusions, and hence one expects that the instability wave is destabilized when
an indentation is introduced pre-synchronization and stabilized when the indentation is
downstream of synchronization. In contrast to that work, in our nonlinear simulations
where the roughness is relatively short in the streamwise direction, mode (100, 0) is
stabilized in both configurations.

Similar to earlier works, the herein considered roughness parameters were guided by
knowledge of (a) the importance of the synchronization point, (b) the sensitivity of
the modal amplification to distortions in the base flow and (c) the non-parallel effects
induced by the roughness. The roughness parameters were not, however, optimized to
guarantee a particular outcome. We next consider such optimization; specifically, we seek
an optimal roughness geometry that can lead to sustained laminar flow throughout the
entire computational domain in our simulations.

3.2. Optimal protruding roughness for transition delay

In this section, we present the nonlinear optimization of the roughness height, width and
abruptness, and examine the flow field associated with the optimal roughness.

3.2.1. Ensemble-variational optimization of the roughness
The base design that is adopted as a starting point of the optimization has streamwise
wavenumber n = 1, which corresponds to a simple protrusion. This choice is primarily
motivated by its simplicity to aid the interpretation of the impact on the flow and ease of
manufacturing relative to cratering of the surface. Figure 6(a) showed that protrusions at
X2 are more effective in delaying transition. Therefore, Xy = 2250 and Xy = 2500 are
selected as the start and end positions of the roughness element.

The optimization is performed using an ensemble-variational (EnVar) approach.
Starting from the initial design, here a roughness with {H,, W, L,} = {0.228y,, 5.376,,
0.818;)]} where &y, = 13.5 is the boundary-layer thickness at the inlet plane, EnVar

updates the estimate of the control vector, ¢ = [H, W, L7, at the end of each iteration
using the gradient of the cost function; the gradient is evaluated from the outcomes of an
ensemble of possible solutions. The cost function is the integrated skin-friction coefficient
along the plate which, once minimized, ensures the farthest possible downstream location
of transition to turbulence. The iterative optimization is halted once the identified
roughness can maintain a laminar state throughout the entire computational domain. It
should be noted that the solution to the above nonlinear optimization is not unique and,
similar to other gradient-based methods, the reported results are only guaranteed to be a
local optimum for a given choice of the initial guess. However, as long as the discovered
roughness design accomplishes the objective of the optimization, it is deemed successful.

The choice of the EnVar technique is justified because of the low-dimensional nature of
the control vector. In addition, unlike adjoint methods which may place limits on the time
horizon of the flow solution (Zaki & Wang 2021), EnVar is perfectly suited for long-time
integration and evaluation of statistical cost functions (Mons, Wang & Zaki 2019; Mons,
Du & Zaki 2021). EnVar has successfully been adopted in high-speed boundary layers
for assimilation of measurements into flow simulations (Buchta & Zaki 2021; Buchta,
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Laurence & Zaki 2022) and optimization (Jahanbakhshi & Zaki 2021). The reader is
referred to those studies for the details of the algorithm.

The optimization procedure seeks the roughness parameters that minimize the cost
function:

T =3lle— 912+ Lg@l3 3.1)
*71’ jo

The first term 7, is a regularization which ensures that the optimal ¢ at the end of

each iteration does not deviate appreciably from the previous estimate ¢, The second
term, J,, is the objective function that is formulated by defining G(q) = Cf(dx/Lx)l/ 2,
where the skin-friction coefficient is Cr = Tyq1/ (% poougo). In (3.1), B and R are the
co-variance matrices of the prior term and the observed skin friction, respectively. To
ensure that the maximum slope of the predicted roughness at the end of each iteration
of the EnVar algorithm is appropriately resolved by the grid, a constraint is introduced
in the optimization procedure. Specifically, we require that |dh,/dx| < s, where s is a
pre-determined limit on the slope of the roughness which is chosen based on the grid
resolution, s ~ O(AYnearwail/ AX).

The skin friction and normalized cost function, Cy and 7,/ J,,0, associated with the
mean control vector ¢ at the end of each EnVar iteration are reported in figure 8(a,b). These
plots demonstrate that the location, where the boundary layer transitions to a turbulent
state, shifts downstream after consecutive iteration. In other words, the optimization
procedure is effective at updating the roughness parameters in a manner to reduce the
cost function (3.1) and delay breakdown to turbulence. At the end of iteration # 4, the
boundary layer is laminar throughout the computational domain.

The height and slope of the optimal roughness after the fourth EnVar iteration
are depicted in figure 8(c). The associated geometric parameters are {H,, W,, L.} =
{0.316y,, 4.846,,, 0.898;)1}. Therefore, compared to the initial guess, the optimal
roughness is taller, more slender and more abrupt. Despite the larger height, the
optimal roughness is still below the relative sonic line inside the boundary layer. As
for the width 2W,, it is approximately 4.1 times the streamwise wavelength of mode
(100, 0) and 4.5 times the wavelength of mode (110, 0) (see table 1). To provide
an appreciation for the physical size of the roughness elements, we can convert the
current roughness parameters to dimensional quantities. For this purpose, we adopt the
reference scales from the experiments by Kendall (1975) which examined the stability
of a flat-plate boundary layer at the same free stream Mach number and temperature.
The optimal dimensional parameters of our roughness then become {H,, W,,L,} =
{1.1 mm, 16.3 mm, 0.264 mm™'}, which are physically and practically relevant. For
example, in the experiment by Fong et al. (2015) for a Mach 6 boundary layer, the height
and width of the roughness were set to H, = 0.665 mm and W, = 2.66 mm, respectively;
Bountin et al. (2013) set the roughness height and width in their experiment for a Mach
6 boundary layer to H, = 1.8 mm and W, = 12 mm; Fujii (2006) Mach 7 experiments
included roughness height in the range 0.5 mm to 0.9 mm and roughness width in the
range 0.5 mm to 4 mm.

3.2.2. Effect of optimal roughness on transition mechanism

Two instantaneous flow fields are contrasted in figure 9: the structures are iso-surfaces
of the second invariant of the velocity-gradient tensor and are coloured by the spanwise
velocity perturbations. Figure 9(a) is the reference simulation over a flat plate, while
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Figure 8. The outcomes of EnVar iterations. (a) Skin friction of the reference flow over a flat plate and
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initial guess. (c) The geometry of the optimal roughness, after the fourth EnVar iteration, versus streamwise
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Figure 9. Isosurfaces of Q-criteria for (a) flow over a flat plate and () the optimal roughness.

figure 9(b) shows the outcome of the optimization procedure. The visual difference
highlights the efficacy of the optimized roughness in suppressing the transition precursors
and delaying the onset of turbulence.

The impact of the optimized roughness element on the downstream development
of key instability waves and nonlinear energy exchanges is examined in figure 10.
In figure 10(a,b), we reproduce the shape of the optimized roughness and mark the
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synchronization locations of the slow and fast modes for waves (110, 0) in figure 10(a)
and (100, 0) in figure 10(b); the roughness location is downstream of both synchronization
points. Figure 10(c—h) compare the downstream development of the spectral energy,
E(F k), over a flat plate (grey lines) and in the presence of the optimal roughness
(black lines). Figure 10(i-l) report the nonlinear energy transfer among wave triads
{(F, k), (F1, k1), (F2, k;2)}, which is evaluated using

Ly Ax A Ak A
Trry = Y /0 | A F gy BiFa ko) + A gy i Bi—Fr—k, ] 4y, (3.2)
+F,+k,

where F'=F, — F and k; = k;» — k;1 (Cheung & Zaki 2010; Jahanbakhshi & Zaki

2019). The symbols A and B are the Fourier coefficients of A = Lou"u” pu'v" pu"w'1T
and B = [u"v” w"]", where the double prime denotes fluctuations with respect to the
Favre (density-weighted) average. The mathematical definition of Zr .y does not depend
on the ordering of the modes within the triad, and hence this expression only measures
the energy exchange and not the direction of the transfer. In other words, the designation
(F1,k;1) + (F2, kz2) = (F, k;) in figure 10(i—/) merely identifies the triad and bears
no directional significance, although the outcome of the exchange can be gleaned, with
caution, by simultaneously considering the spectra of the individual waves (figure 10c—f).

To establish the background against which the influence of roughness is examined, we
summarize the transition mechanism in the flat-plate case with the aid of the spectra
in figure 10(c—h). The three most energetic inflow modes, {(110, 0), (100, 0), (40, 3)},
initially amplify and then spur other waves via nonlinear interactions. The pair of
second modes participate in Z(! (figure 10i) and generate (10, 0). Another triad, Z®
in figure 10( ), activates mode (70, 3) which is visible as oblique structures in figure 9(a)
near /Re, ~ 2300. The last two interactions, Z® and Z® in figure 10(k—I), involve both
the inflow and newly formed waves, and spur the formation of mode (30, 3). This mode
amplifies faster than any other wave, forms the A-shaped structures in figure 9(a) in the
range 2400 < «/Re, < 2550 and is the ultimate cause of breakdown to turbulence.

Comparing the reference case with the optimal roughness in figure 10(c—/), both modes
(110, 0) and (100, 0) are attenuated in the latter configuration as the roughness element
is approached (see figure 10c,d). The effect is more pronounced for mode (100, 0)
whose synchronization point is much closer to the roughness. The subsequent nonlinear
interactions that involve these two instabilities, especially interactions Z(!) and Z©
involving mode (100, 0), are also mitigated. The outcome is an appreciable weakening
of the nonlinearly generated modes that cause breakdown to turbulence.

Another observation from figure 10 is that the first-mode wave (40, 3) is negligibly
destabilized as a result of the introduced roughness. This trend is different from previous
efforts (see e.g. Bountin et al. 2013; Fong et al. 2015) and is due to the smaller height
of the roughness in our simulation. For comparison, the height of the roughness in the
experiments by Fong ef al. (2015) and by Bountin ef al. (2013) was approximately equal
to 0.58x,, while in our analysis, the height is H, = 0.235x,. Mode (40, 3) is appreciable
between the relative sonic line and the boundary-layer edge, and this region is minimally
affected by the presence of the roughness which is positioned below the sonic line.

The results presented in figure 10 highlight that roughness can have a direct, local
effect on the instability waves. For example, in figure 10(c,d), the growth rates of modes
(100, 0) and (110, 0) are significantly altered in the region 2000 < +/Re, < 2100, as these
instabilities approach and travel over the roughness. As noted in § 3.1, the dominant local
roughness effects in our configuration are the roughness-induced mean-flow distortion
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Figure 10. (a,b) The optimal protruding roughness at the end of iteration # 4, with ‘x’ marking the
synchronization Reynolds numbers of modes (110, 0) and (100, 0), respectively. (c—h) Spectral energy, £ .),
for selected instability modes versus streamwise coordinate. (i—/) Modal nonlinear energy-transfer coefficient,
computed for key triad interactions. Grey lines are reference curves for the flat-plate case; black lines are the
results of the boundary layer over the optimal roughness.
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Figure 11. Contours of D defined by (3.3). Dark colours are expanded regions (D > 0, V - u > 0) and light
colours mark compressed zones (D < 0, V - u < 0). Red dash—dotted line is the boundary-layer edge, 99;
yellow lines are the local Mach lines; and white dotted and blue dashed lines mark the relative sonic line,
where ¢ — u = a, for modes (100, 0) and (110, 0), respectively.

and non-parallel effects in regions where dh,/dx is large. In particular, the non-parallel
effects of the optimal roughness (which is taller, more slender and more abrupt) is more
pronounced compared to roughness X2p1. In addition to these local effects, the influence
of roughness on transition precursors can persist downstream. For example, figure 10(e)
shows that the growth rate of mode (40, 3) in the roughed-wall case reduces dramatically
for v/Re, > 2200. This change can be traced back to the local effects on the amplitude
of modes (100, 0) and (110, 0): stabilization of these waves by the roughness mitigates
the subsequent nonlinear interactions (figure 10i-/). Specifically, over a flat plate, mode
(40, 3) is activated near /Re, ~ 2200 in a triad interaction Z* which involves (10, 0) and
(30, 3) (figure 10/). In the rough-wall case, this triad interaction is delayed and muted, due
to a delay in the generation of modes (10, 0) and (30, 3) from the preceding interactions.
In light of these observations, we turn our attention to the local effect of the optimal
roughness on the second-mode instabilities (100, 0) and (110, 0).

3.2.3. Local effect of optimal roughness on second-mode instabilities

Figures 11 and 12 provide flow visualizations to aid the physical interpretation of how the
roughness modifies the near-wall region and alters the stability behaviour of the second
modes. These figures correspond to the simulation of the boundary layer over the optimal
roughness after the final iteration of the EnVar procedure. Figure 11 shows contours of

D = tanh (§yV - u), 3.3)

where &) is a constant that adjusts the background colour. A few additional lines
are marked on the figure: the boundary-layer edge is identified as the location where
u = 0.99u.; the relative sonic lines are defined as the heights at which ¢ — u = a, where
c is the phase speed of either mode (100, 0) or (110, 0). Below the relative sonic line, the
alternating compressing and expanding acoustic waves travel supersonically relative to the
mean flow. Inviscid, linear perturbation theory predicts that the effect of the wall roughness
propagates to infinity with constant strength along the lines x — [MCZ>o — 11"2y = const.,
which represent the local Mach lines (Liepmann & Roshko 2001). In figure 11, several
Mach lines are plotted with slope [M§:35 — 1172, where My—_35 is the Mach number
at y = 35. These lines agree with the prediction from the theory and qualitatively
capture the free stream compression zone upstream the roughness element. On top of the
roughness, the slope of the compression zone progressively deviates from the theory and
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Figure 12. Snapshots of D and pressure fluctuations, p’, at (a) t = 0, (b) t = 418.6 and (c) t = 575.4. Red and
yellow lines are p’ > 0 and p’ < 0, respectively. Pressure fluctuations iso-lines are {0.5, 1,2} x 10~* (from
outer to inner lines).

is followed by an expansion zone. The deviation from theory is expected in light of its

restrictive assumptions, for example, it assumes that 6,,,,+/ Mgo — 1 K« 1, where 0,4, 1S
the maximum inclination angle of the roughness (Liepmann & Roshko 2001), while the

geometrical features of the optimal roughness in our simulation yield 6pqx/M3, — 1 =
0.5H,L,/M2, — 1 ~ 0.6. Figure 11 also shows that in the zone upstream of the roughness,

the near-wall relative supersonic region becomes thicker whereas above the protrusion,
this region becomes thinner. The trapped acoustic waves reflect back and forth at the wall
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and the relative sonic line. At the latter location, the waves change from compression
to expansion and vice versa. As the height of the relative supersonic zone changes, the
periods between consecutive reflections at the relative sonic line change, which disrupts
the amplification of the instability mode.

Figure 12 shows three instantaneous fields, which highlight the pressure fluctuations,
p' =p —p inside the boundary layer. While the visualized p’ is the outcome of a
superposition of different instability waves, rather than a single one, the figure is helpful
in explaining the behaviour of the instabilities in response to the roughness element.
Two separate regions in the wall-normal profile of p’ can be identified in this figure: (i)
near-wall (below the relative sonic line) p’ contours are caused by the acoustic component
of the instability waves and (ii) p’ above the relative sonic line where the vortical and
thermal components of the instability wave are prominent. Figure 12(a—c) track a series
of compression—expansion—compression in p’, and the three figures correspond to three
time instances, {t1, t2, t3}. As we discuss the wall-normal profile of p’, our focus will be
on the phase relation below (region denoted L) and above (region denoted U) the relative
sonic line. At tl (figure 12a), the wall-normal profiles of p’ as we traverse from t1L to
t1U have a fixed phase relation that is initially preserved with downstream distance. In this
configuration, they are phase tuned. At time t2 (figure 12b), the p’ packet has travelled to
the marked location and the change in phase along the wall-normal profile of p’ across the
sonic line has changed appreciably, by approximately 180°. We will refer to this process as
phase detuning. At time t3 (figure 12¢), the wall-normal profile of p/, crossing from t3L to
t3U, recovers the original phase relation. Another interesting observation from figure 12(a
and b) is the propagation of pressure fluctuations, p’, along the Mach lines emanating
above the roughness into the free stream. This process is absent at t3 (figure 12¢), and
has a low normalized frequency of the order of F' = 10. The most energetic mode at this
frequency is (10, 0), which is generated by nonlinear interaction of modes (110, 0) and
(100, 0), and whose wavelength is A10,0)/2W, = 2.5 relative to the roughness streamwise
extent.

We now return to the change of phase observed in the near-wall pressure fields in
figure 12. While the interpretation in terms of detuning of the individual instability waves
is plausible, the same visual pattern can be caused by other effects, for example, dispersion
of the waves that comprise the plotted fluctuating pressure field. To provide a more precise
assessment of the influence of the roughness on the key instabilities, we perform a Fourier
transform of the pressure signal in time and the span,

A . Reon anz
PO 1) =Y piriy (. y) exp [—1( T L z)} (3.4)

F.k,

where p(x, y) is the complex Fourier coefficient whose phase we will denote as ¢;. Inspired
by stability theory, we introduce the ansatz

X
D(F k) = D(F.k;) €XP (/ O(F k) dX> : (3.5)
X

0

where «(x) = «, + ia; is a complex streamwise wavenumber, which is evaluated from

05 [b i Ol T p*9p  T*oT
UF k) = / p {u*—u} SR dy. (3.6)
T &Eky Jo oxf  (y—DyMi | p?ox  T2ox|]

The mode shape is therefore p(x, y) and its phase will be denoted ¢j.
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Figure 13. (a—d) Contours of the phase of the Fourier representation of pressure, ¢;: (a,b) reference flat-plate
configuration; (c,d) optimized-roughness case. (e, f) Phase of mode-shape of pressure signal, ¢, at the wall;
grey lines are reference curves for the flat-plate case, while the black lines are the results of the boundary layer
over the optimal roughness. Panels (a,c,e) show mode (110, 0) and (b.d, f) show mode (100, 0).

The phases of instability modes (110,0) and (100, 0) are reported in figure 13.
The contour plots contrast the behaviour of ¢; in the reference flat-plate configuration
(figure 13a,b) and as the instability waves approach the optimal roughness (figure 13c¢,d).
The results highlight the distinction between the modal pressure fluctuations that are below
and above the relative sonic line, the former travelling supersonically relative to the mean
flow. In figure 13(a,b), the phase change across the relative sonic line is maintained at a
nearly constant value along the flat plate in the shown region in the figures. In contrast,
figure 13(c,d) clearly show that the relative phase across the sonic line is disrupted as each
instability wave approaches the roughness. Most importantly, the phases of the pressure
modes in the trapped supersonic regions, below the relative-sonic lines, are rapidly altered.
For mode (110, 0) in figure 13(c), this change occurs at 1/Re, &~ 2000 which, according
to figure 10(c), is the location where the amplification of this instability wave is abruptly
halted and it starts to decay. Similarly, for mode (100, 0) in figure 13(d), detuning of the
pressure fluctuations takes place at 4/Re, ~ 2020, which also corresponds to the location
where this instability wave reaches a local maximum amplitude after which it decays in
figure 10(d). Figure 13(e,f) provide a more quantitative picture. We report the phases of
the pressure in the modal representation (3.5), or ¢, along the wall. The influence of the
roughness relative to the flat-plate case is evident, as well as the correlation between the
changes in the phases and in the modal spectra from figure 10(c,d).
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The results presented in § 3.2 support our original physical argument regarding the effect
of roughness on the stability behaviour of second-mode instabilities. As the thickness of
the near-wall, relative supersonic region changes abruptly, the instability waves are altered:
their growth rate is modulated, the phase of their acoustic component is ‘scrambled’ and
their net amplification is reduced relative to the flow over a flat plate. As a result, the
nonlinear interactions among key instability waves, downstream of the optimal roughness,
are effectively weakened and transition to turbulence is nearly suppressed.

4. Summary

The capacity of isolated roughness to delay laminar-to-turbulent transition in a Mach 4.5
boundary layer is examined. The study is conducted using DNS of boundary layers over
a flat plate, with isolated roughness elements that have various geometrical parameters
mounted on the surface. The oncoming disturbance that interacts with the boundary layer
in the simulations corresponds to the nonlinearly most dangerous disturbance for the
prescribed energy level (Jahanbakhshi & Zaki 2019), and is comprised primarily of two
planar second-mode instabilities and an oblique first-mode instability.

The roughness shape was parametrized to provide control over the location,
streamwise wavenumber, height, width and abruptness of the roughness. The influence
of these parameters was examined, in particular, their impact on the location of
laminar-to-turbulence transition relative to the reference smooth-wall configuration. The
effects of location and streamwise wavenumber were explored first, and provided the
initial estimate of a roughness design that was adopted in subsequent optimization
where the height, width and abruptness of the roughness were optimized to achieve
maximum transition delay in our computational domain. The constrained optimization was
performed using an ensemble-variational approach, in which a cost function is defined
in terms of the skin-friction coefficient and is minimized to ensure the latest possible
transition to turbulence. The optimal roughness that was identified was able to maintain a
laminar state throughout the computational domain.

The roughness elements minimally affected the first-mode instability that was part of the
inflow disturbance, while the second-mode waves and their nonlinear interactions were
appreciably attenuated. Whether the second-mode waves were stabilized or destabilized
depended on the location and geometrical features of the roughness. Specifically, stability
is affected by (i) the relative position of the roughness and the synchronization of the
slow and fast modes and (ii) the height of the near-wall region where the second-mode
instability waves travel supersonically relative to the mean flow. Pre-synchronization,
altering the supersonic region by a protruding roughness destabilizes the second-mode
waves, while post-synchronization, the net effect is stabilizing. The change in stability is
due to the shift in the phase of the trapped acoustic waves relative to the harmonic vortical
and thermal waves that are beyond the relative sonic line. The net outcome is an effective
delay of the instability growth, mitigation of nonlinear interaction and ultimately transition
delay. The optimized roughness was more slender, slightly taller and more abrupt than the
initial design. This roughness was more effective, entirely eliminating transition from the
computational domain.

Depending on their shape and locations, roughness elements can have stabilizing,
destabilizing or neutral net effect on the amplification of instability waves. As a result,
the impact on the nonlinear stages of transition and the onset of turbulence are difficult
to anticipate. Our EnVar framework provides objective guarantees that the optimized
roughness delays transition to turbulence at design conditions, and we did not observe any
undesirable or unexpected destabilization of originally benign disturbances. The optimized
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roughness does not, however, guarantee transition delay for other disturbances, away
from the design conditions, e.g. since new transition mechanisms may be active. For
the purpose of this work, we tested a broadband inflow spectrum of instability waves at
sufficiently high amplitude to trigger transition within the computational domain over the
flat plate (see Appendix B), and still observed transition delay when the optimal roughness
from § 3.2 was introduced. Despite this additional test, there remains no guarantee that
transition would be delayed for different inflow disturbance spectra. Essentially, the
optimized roughness should not be interpreted as optimal for all inflow disturbances,
but rather for the inflow condition that was adopted in the optimization procedure. By
considering the nonlinearly most dangerous disturbance, our goal was to demonstrate
that the optimization of the roughness can be effective, even in the most aggressive
scenario.
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Appendix A. Flow over complex geometries

This appendix provides a brief description of the cut-stencil method implemented in
the code Hybrid (Johnsen et al. 2010) and a validation test. As shown in the schematic
of figure 14, the cut-stencil is a sharp interface method where the discretization of the
governing equations is modified near the solid body to explicitly enforce the no-slip
boundary conditions at the fluid—solid interface. The precise location for the solid/fluid
interface is adopted to ensure local, and therefore also global, conservation. The present
implementation is similar to that by Greene et al. (2016). Therefore, herein, we introduce
the cut-stencil method very briefly and refer the readers to Greene et al. (2016) for a
more detailed discussion of the method. We then provide a sample validation study by
comparing the results from our code with the published data for a flow simulation that is
relevant to the topic of current work.

A.l. A brief description of the cut-stencil

A 2-D schematic of the implementation is shown in figure 14. All grid points inside the
solid body are discarded, and the cut-cell discretization generates four classes of fluid
points that are treated separately.

(1) For interior fluid grid points that are far from the body, the Navier—Stokes equations
are discretized using the interior schemes.

(i1) For the first three fluid grid points near the solid body, sixth-, fourth- and
second-order schemes are used to discretize the Navier—Stokes equations on these
points.
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Figure 14. (a) Schematic of the grid near the immersed body. (b) Point classification for the cut-stencil
implementation in code Hybrid.

(iii) Points that are denoted as irregular fluid points in the figure are excluded from the
computations along the directions where they reside too close to the solid (within
25 % of the local grid spacing). However, in the other directions, the points may
be included in the computations of other neighbouring fluid points. Therefore, flow
variables are required at these points and are computed via an interpolation scheme
from their neighbours including the boundary points.

(iv) Boundary points are locations where the body surface intersects the grid and where
the flow variables are also needed. In current implementation, the velocity of the
immersed object is computed using the no-slip wall condition and the temperature
is computed from the thermal boundary condition. The remaining parameters are
the velocity gradients and the pressure (or density). Velocity gradients are computed
using a fourth-order one-side finite-difference scheme in the direction normal the
solid body. The pressure is extrapolated from the neighbouring fluid points and the
equation of state for an ideal gas is used to compute the density.

The solver requires interpolation/extrapolation of flow quantities onto the irregular and
boundary points, and points within the fluid domain that are not on the grid. For example,
for computing 0F/dn at the boundary points, the value of F is required at four points
equally spaced from the surface in the direction of n. Similar to Greene et al. (2016), the
interpolation/extrapolation function is a second-degree polynomial in x, y and z, while the
coefficients of the polynomial are computed using least-squares fitting of the neighbouring
points.

A.2. A sample validation study

The current implementation of the cut-stencil algorithm has been validated extensively
against published data. The comparisons included multiple configurations for 2-D and 3-D
solid bodies, and a range of Mach numbers from 0.2 to 4.8. Here, we provide the results
from the validation case most relevant to the present effort, namely a high-Mach-number
boundary layer over a 2-D isolated roughness.

We compare results from our cut-stencil implementation with the published data by
Greene et al. (2016) from their body-fitted curvilinear solver. The computational domain
starts at \/Rey, = 762 and the free stream Mach number is Mas, = 4.8. The Blasius
length scale at xo and free stream quantities are adopted as the reference scales. The
geometry of the roughness is a smooth protrusion which is given by two hyperbolic tangent
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Figure 15. Contours of (a) wall-normal velocity, (b) density and (c) pressure. The contour colours and thin
grey lines correspond to the current simulation and red dashed lines are the published results by Greene et al.
(2016).

functions as
hy
h(x) = E[tanh(Lr[x — x, + W;]) — tanh(L,[x — x, — W, ])], (A1)

where h, = 13.115, x, = 1961.30, L, = 0.152497592 and W, = 26.23 are respectively
the non-dimensionalized height, centre location, abruptness and width. More information
about the simulation parameters can be found in table 4 of Greene et al. (2016).

Comparisons of our simulation results with those of Greene et al. (2016) are provided in
figures 15 and 16. In these figures, § ~ 24 is the undisturbed boundary-layer thickness
at x,. As demonstrated by figure 15, the velocity, density and pressure contours
from the cut-stencil implementation and from the reference body-fitted simulation are
indistinguishable. For a more detailed view, profiles of the streamwise velocity and
pressure were extracted at three locations and are reported in figure 16. Agreement,
in particular in the near-wall region, is evident, which verifies the accuracy of the
implementation.
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Figure 16. (a,c,e) Streamwise velocity and (b,d, f) pressure profiles at three streamwise positions. Blue lines
correspond to current simulation and red dashed lines are the published results by Greene et al. (2016).
Horizontal black lines mark the height of roughness.

Appendix B. Effect of optimized roughness on transition due to broadband spectrum

Additional simulations were carried out, where we tested the performance of the
optimized roughness obtained in § 3.2 for an off-design condition. Specifically, rather than
considering the nonlinearly most dangerous inflow disturbance, we adopted a broadband
inflow spectrum where the total disturbance energy was distributed equally among the
400 instability waves that span the frequency and wavenumber range in figure 3(a), with
randomly assigned phases.

When the total energy of the inflow instability waves was the same as in the main
body of this paper, i.e. ) _ Fr E(Fk) =2 % 107, transition did not take place within the
computational domain. We therefore increased the inflow total disturbance energy by two
orders of magnitude, » r;, EFk,) = 1073 Under these conditions, transition takes place
within the computational domain. Results that compare flow over a flat plate and the
optimized roughness from § 3.2 are shown in figure 17, where we report the skin-friction
coefficient and the downstream evolution of the total disturbance energy. The results
demonstrate that the roughness remains stabilizing for this configuration, shifting the
onset of turbulence downstream. We stress, however, that the influence of the roughness
could have been destabilizing since there is no performance guarantee when the inflow
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Figure 17. Influence of optimal roughness on transition due to high-energy, broadband inflow disturbance
spectrum: (a) skin-friction coefficient and (b) total disturbance energy versus downstream Reynolds number.
Grey lines are reference curves for flat-plate case; black lines are the results of the boundary layer over the
optimal roughness.

disturbance is far from the design condition. For example, the roughness may still promote
transition at different (higher or lower) energy levels in the case of broadband inflow
spectrum, or in the case of an entirely different inflow spectrum that interacts with the
roughness in a destabilizing fashion that is not featured at design conditions.
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