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Abstract

This paper studies the concept of strongly omnipresent operators that was recently introduced by the first
two authors. An operator T on the space H(G) of holomorphic functions on a complex domain G is
called strongly omnipresent whenever the set of T-monsters is residual in H(G), and a T-monster is a
function / such that Tf exhibits an extremely 'wild' behaviour near the boundary. We obtain sufficient
conditions under which an operator is strongly omnipresent, in particular, we show that every onto linear
operator is strongly omnipresent. Using these criteria we completely characterize strongly omnipresent
composition and multiplication operators.
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1. Introduction

Inspired by the notion of holomorphic monsters as introduced and developed by Luh
[8] and the third author [7, Kapitel 3] (see also [9, 10, 14]), the first two authors
have recently introduced the concept of r-monsters [3], which is associated to a (not
necessarily linear) operator T on the space H(G) of holomorphic functions on a
domain G in C. Roughly speaking, a T-monster is a holomorphic function whose
image under T has an extremely 'wild' behaviour near the boundary.

The work of the first two authors has been partially supported by DGES grant PB96-1348 and the Junta
de Andalucfa.
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In [3] the concept was defined for G ^ C in order that the finite boundary be
non-empty, but the interested reader can easily check, using chordal distances, that
all proofs can be adapted to the case where the boundary point under consideration
is the point of infinity. Consequently, we redefine the concept of T-monsters and its
associated notion of strongly omnipresent operators [3, Section 2] (see also [2] for the
weaker concept of omnipresent operators) in the following way.

Throughout this paper, G will be a domain in C and 3 G will denote its boundary
taken in the extended complex plane C^ = C U {oo}. By 0 we denote the open unit
disk. An operator always refers to a continuous (not necessarily linear) mapping.

DEFINITION 1.1 ([3]). (a) A function / e H(G) is a holomorphic monster if it
satisfies the following universality property:

([/) foreachg e //(D>) and each r € 3 G there exists a sequence (rn) of affine linear
transformations with rn(z) -> t (n ->• oo) uniformly on O and rn(O) C G
(n € N) such that/ (rn(z)) —> g(z) as n -> oo locally uniformly in D.

(b) Let T : H(G) -> H(G) be an operator. Then a function / e H{G) is a T-
monster if Tf is a holomorphic monster. The set of T-monsters is denoted

It is not difficult to see that in the case when the point of infinity is an isolated point
in 3G this notion, in general, is strictly stronger than the one given in [3]; this is so,
for example, if T is the identity operator.

See below for a comparison with Luh's holomorphic monsters [8].
For the closely related notion of strongly omnipresent operators we need some

more notation. We denote by 0(3 G) = ( V c C M : V is open and V n 3G ^ 0} the
set of all open subsets of C^ that meet the boundary of G. If A C C then A represents
the closure of A, \\f \\A :— supz€A \f (z)|, where / is a complex function defined on
A, and LT(A) is the set of all affine linear transformations r, T(Z) = az + b, such
thatr(D) c A.

DEFINITION 1.2 ([3]). An operator T : H(G) -> H(G) is strongly omnipresent if
for all g € H(D), s > 0, r e (0, 1) and V € O(3G) the set U(T, g, s, r, V) := {/ 6
H{G) : there exists some x 6 LT(V n G) such that \\{Tf) o r — g||rB < £) is dense
in H{G).

Again, in contrast to [3] we have here allowed the point of infinity as a boundary
point. As in [3, Theorem 2.2] it is easy to prove that T is strongly omnipresent if and
only if the set ^K(T) of T-monsters is residual, that is, its complement in H{G) is of
first category.

As a consequence, every new strongly omnipresent operator T yields a wealth of
new universal functions: there is then a residual set of holomorphic functions/ so that
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each function Tf is a holomorphic monster, that is, each Tf satisfies the universality
property (U) stated in Definition 1.1.

Examples of strongly omnipresent operators are provided in [3, Sections 3-4].
Specifically, if <J> (z) = YITLo aiz' 1S a non-zero entire function of subexponential
type then the associated linear differential operator <£(£>) = YlT=oajDJ o n H(G)
is strongly omnipresent. For G = C this result even holds for all entire functions
<J> of exponential type. Here D is the differentiation operator Df = f', D° = / is
the identity operator and Di+X = D o Dj. Furthermore, if G is a simply connected
domain, a G G, A. e C and h is a non-zero entire function of exponential type then
the integral operator T on H(G) defined by

fTf (z) = A/ (z) + / h(z - t)f (t) dt (z € G)
Ja

is strongly omnipresent. In particular, if ^(z) = Y^T=oaiz' *s a n v n o n~z e r o func-
tion that is holomorphic at 0 then the corresponding linear antidifferential operator
^(D;1) = Y,7=oaiDa' o n H(°) i s strongly omnipresent. Here D° = I and, for
each j € N, D~Jf (/ G H(G)) denotes the unique antiderivative F of / of order j
such that F(k)(a) = 0 (jfc e {0, 1, . . . J - 1}).

We note that the holomorphic monsters in the sense of Luh [8] are holomorphic
functions that are simultaneously Dj - and D~' -monsters for all j € No. Since the
intersection of countably many residual sets is again residual, the existence of Luh-
monsters is thus a direct consequence of the strong omnipresence of each of the
operators DJ and D~' ,j € No.

Our aim in this paper is twofold. In Section 2 we derive conditions that guarantee
that an operator is strongly omnipresent. This will be done in various ways. First we
show how to construct new strongly omnipresent operators from known ones. As an
application we will see that every onto linear operator is strongly omnipresent. Next
we study the problem under which conditions the existence of a single T-monster
suffices to make T strongly omnipresent. Finally we derive some workable conditions
under which a general operator is strongly omnipresent.

In Section 3 we apply these results to furnish new examples of strongly omnipresent
operators that are substantially different from differential and antidifferential opera-
tors; specifically, we characterize the strongly omnipresent (left- and right-) composi-
tion operators and the strongly omnipresent multiplication operators.

2. Looking for monsters

We begin our investigation into the existence of monsters by constructing new
strongly omnipresent operators from known ones. Before we do this we note the
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following two facts. Let T be an operator on H(G), e > 0, g € H(B), r e (0,1) and
V e O(dG). Then we have:

(1) U(T, g, e,r,V) = [f€ H(G) : there exists some non-constant r e LT(VDG)
such that \\(Tf)oz—g\\rQ < e] = {f e H(G) : there exists some non-constant
r e LT(VDG) such that || Tf -gor-l\\T(rB) < e). The first equality is accomplished
by a simple continuity argument.
(2) M(T} = 0 erV U(T, g, e, r, V), where, in fact, it suffices to only consider

countable dense subsets of g, e, r and a suitable collection of countably many sets V
that cover 3G; in addition, each set U(T, g, e, r, V) is open. Hence <4?(T) is always
a Gs -subset. Consequently it is residual if and only if it is dense, and if and only if T
is strongly omnipresent. For details see the proof of Theorem 2.2 in [3].

To start with, we state without proof the following result, which follows trivially from
the definition of T-monster.

PROPOSITION 2.1. Let T,S : H(G) -*• H(G) be operators. Then we have
S-\Jt(T)) = Jt(TS). In particular,

(a) if JOT) ^ BandS is onto then Jt(TS) £ 0;
(b) ifJK(TS) £ 0 then JUJ) £ 0.

THEOREM 2.2. Let T,S : H(G) -> H{G) be operators such that T is strongly
omnipresent and S is linear and onto. Then TS is strongly omnipresent.

PROOF. We have to prove that ^/Jf(TS) is residual, hence, by the preceding propo-
sition, that S~\JK(T)) is residual. But Jt(T) is always a G{-subset, so S~l(^(T))
is also a Gj-subset because 5 is continuous. It remains to see that S~l(^(T)) is
dense. Since Ji(T) is dense, given a non-empty open subset A in H(G), we obtain
that J((T)C\SA ^ 0 because SA is open due to the Open Mapping Theorem (recall
that 5 is linear and onto and that H(G) is an F-space). Hence S~l(^f(T)) n A ^ 0.
Thus, S~\J?{T)) is dense, as required. •

COROLLARY 2.3. Every onto linear operator on H(G) is strongly omnipresent.

PROOF. Apply Theorem 2.2 to T = / , the identity operator, which is strongly
omnipresent: take <$(z) = z in the example given in the introduction. •

For example, we know that for each N e N the antidifferentiation operator D~N

of order N is strongly omnipresent on H(G) (take ^>{z) = ZN in the example given
in the Introduction), where G is a simply connected domain and a is a fixed point
in G. Since the differentiation operator D (and so DN) is onto on H{G) due to simple
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connectedness we can conclude that the operator RNa on H(G) given by

N-l

RN,af(z):=f(z)-J2
j=0 J l

that is, the value at z of Taylor's remainder of order N of/ at a, is strongly omnipresent.
Indeed, take T = D~N and S = DN in Theorem 2.2. Note that neither D~N nor RNa

is onto; they do not even have dense range.
In particular we obtain the following application in the case G = €.

COROLLARY 2.4. There is an entire function f (z) = YlT=o aiz' sucn tnat eacn °f*ts

Taylor series remainders RNf (z) •= ^Jlw aiz' W e ^o) is a holomorphic monster.

It is evident that the sum T + S of two strongly omnipresent operators need not
be strongly omnipresent: take, for instance, T = I, S = —I. On the other hand,
a non-zero multiple XT, X ^ 0, of a strongly omnipresent operator T is trivially
strongly omnipresent. The next result shows that if T is strongly omnipresent and 5
is an operator that behaves well near the boundary then their sum T + S generates a
strongly omnipresent operator, and a similar result is true for the product T • S given
by (T • S)f = Tf -Sf.

THEOREM 2.5. Let T, S be two operators on H(G). Assume that there exists a
dense subset V indG such that, for every ( e F and for every f € H(G), there exists
limz_»,(5/)(z) € C (respectively C \ {0}). Then Jt(T) C J((T + S) (respectively
^(T • S)). In particular, T + S (respectively T • S) is strongly omnipresent if T is.

PROOF. Using [3, Lemma 2.1], the fact that JZ(T) c J((T + S) (respectively
Jt(T) c Ji(T • S)) is straightforward from the definition of monster. The details
are left to the reader. •

As an example of an application of Theorem 2.5 we may consider again the Taylor
remainder operator RNa (given after Corollary 2.3) acting on H(G), where G is any
domain such that the point of infinity is not an isolated point of 3G. Indeed, we can
write RNa = T + S with T = I, the identity operator, and

; = o J •

It is evident that 5 is 'well-behaved' on T := (3G) \ {oo}.
The next result provides us with a condition that guarantees the existence of a

residual set of monsters by assuming the existence of at least one monster. For future
reference, we isolate this condition and introduce the notion of (local) stability of an
operator.
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DEFINITION 2.1. Let T : H(G) ->• H(G) be an operator.

(a) Let AT be a compact subset of G and S a closed ball contained in G. Then 7 is
K-stable in B if for each / e / / (G) and e > 0 there exist a closed ball B' c G\K
and 6 > 0 such that for all g e H(G)

11/ -g\\B-<& implies that || Tf - Tg\\B < e.

(b) We say that T is locally stable near 3 G if for each compact subset K of G there
exists a compact subset Af of G such that for each closed ball B c G\ M, T is
AT-stableinB.
(c) We say that 7 is somewhere locally stable near 3 G if for each compact subset

K of G and each V e 0(3 G) there exists a closed ball B C V D G such that T is
A"-stable in B.

For the sake of brevity we will usually take the qualification 'near 3G' for granted.
It is clear that every locally stable operator is somewhere locally stable. In fact, every
locally stable operator T has the property that for each compact subset K of G and
each t e 3G there is an open neighbourhood V of t such that for each closed ball
B c V fl G, T is /iT-stable in B.

By using Cauchy's integral formula for derivatives, it is straightforward to verify
that each differential operator <t>(D), where <P is an entire function of subexponential
type, is locally stable; in fact we can always take concentric closed balls B, B' with
radius(B) < radius(B')- Another example of a locally stable operator is the rotation
operator Ra (a e [0, 2n)) on //(D) defined by Raf (z) = / (zeia). Further examples
will be given in Section 3.

THEOREM 2.6. Let T be an operator on H(G) that is locally stable near dG. If
0 then T is strongly omnipresent.

PROOF. Fix g e //(D), e > 0, r e (0,1) and V e O(dG). We are going to show
that U(T, g, £, r, V) is dense in H(G). To see this, fix a basic open subset

D(h, K, e,) = If e H(G) : ||/ - /i||* < e,}

of H(G), where /f is a compact subset of G such that each connected component
of Coo \ K contains at least one connected component of €<*, \ G, h e H(G) and
£i > 0. Now let / be a fixed 7-monster. Then there exists a non-constant affine linear
transformation x e LT(Gn V) such that

(1)
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where B :— r(rD). We can assume that B c G \ M, where M is the compact
subset of G given by the definition of local stability. Hence there exist a closed ball
B' C G \ K and S > 0 such that, for all <p e H(G),

(2) \\<p-fh-<8 implies that || T<p-Tf\\B< e/2.

Consider the compact set L := K U B'. Then each connected component of the
complement of L contains at least one component of the complement of G because K
has this property and K n B' = 0. Pick open subsets G,, G2 C G with G, D G2 = 0
and K c Gu B' c G2. Denote Go — Gi U G2. Hence Go is open and L c Go C G.
Define the function F : Go - • C by

{
(/(z), if z € G 2 .

Then F e H(G0) and an application of Runge's theorem [13, Chapter 13] yields the
existence of a rational function f\ with poles outside G such that

Thus,/, e H(G) with

(3) ll/i

and ||/i — / IIa- < S. From (2) we obtain

(4) ||r/,-r/||J,<e/2.

Then (1) and (4) lead us to

(5) ||77, - ^ o r - 1 | | B < e .

Summarizing, (3) and (5) tell us that f{ e U(T, g, e, r, V) D D(h, K, £,). Conse-
quently, U(T, g, e, r, V) is dense, as required. •

We state another condition under which the existence of a single monster guarantees
the existence of a large supply of monsters: We assume that, on a dense set of functions,
T is well-behaved near the boundary. This time linearity of T is needed.

THEOREM 2.7. Let T be a linear operator on H(G) with J((T) ^ 0. If there
exists a dense subset @ in H(G) with the property that for each h € S> there is a
dense subset FA in 3G such that, for all t e Fh, there exists limz_>, (Th)(z) € C, then
T is strongly omnipresent.

PROOF. Pick a T-monster / . Then / + 9 is dense in H(G). Fix h e 2 and
consider its corresponding set Fh c 3G. Given t e Vh and g € H(B), define the
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function g,(z) := g(z) - L{t), where L{t) := limz_>,(770(z) e C. Then gi e #(B)
and there exist two sequences of complex numbers (an), (bn) with anz + bn -» /
(n —• oo) uniformly on D> and anz + bn e G for all n e N and all z € 0 such that

(Tf)(anZ + bn)^8l(z) (n-»oo)

locally uniformly in D. But we also have that (Th)(anz + bn) -> L(f) (n - • oo)
locally uniformly in D> (in fact, uniformly on the whole D). Therefore, by linearity,
(T(f +h))(anz+bn) —> g(z)(n -» oo) in the same manner. In view of [3, Lemma 2.1]
this implies that / + ® C ^ ( T ) , so that Jf{T) is dense. D

For instance, the condition in the above theorem is satisfied by a differential operator
<!>(£>) and by a finite order antidifferential operator *(D"') whenever G is a simply
connected domain with G ̂  C: just let ^ be the set of all polynomials and let Vh be
the finite boundary of G for all h € @.

Although the last two theorems give mild conditions under which ytf(T) ^ 0 im-
plies that T is strongly omnipresent the following example shows that this implication
does not hold in general. Recall that / denotes the identity operator.

EXAMPLE 2.8. Consider the operator T : H(B) ->• H(D) given by

where \fr is a fixed holomorphic monster in D. Then / is a T-monster if and only if
/ (0) = 0. Hence T-monsters exist, but they only form a set of first category.

This example gives a partial solution to a problem posed in [3]. Unfortunately the
problem remains open for linear operators:

If ^K(T) ,£ 0, is T always strongly omnipresent?

Next, we want to derive practicable conditions on an operator that guarantee its
strong omnipresence. Here the range, or rather the local ranges, of T will play an
important role. This leads us to the following definition.

DEFINITION 2.2. Let T : H(G) -> H(G) be an operator,

(a) Let U C G be an open ball. Then T has dense range in U if the operator

Tv : H(G) -*H(U), ft-* Tvf = (Tf)iu

has dense range.
(b) We say that T has locally dense range near 3 G if there exists a compact subset

M of G such that for each open ball U c G\M, T has dense range in U.
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(c) We say that T has somewhere locally dense range near dG if for each V €
0(3 G) there exists an open ball U C V n G such that T has dense range in U.

As before, we will usually take the qualification 'near 3 G' for granted.
It is clear that every operator with dense range has locally dense range and that

every operator with locally dense range has somewhere locally dense range.
Up to now, all the known examples of strongly omnipresent operators satisfy one of

the previous properties. For instance, recall that every non-zero differential operator
<I>(Z)) has dense range whenever G is simply connected: indeed, 4>(D) is onto on
the space of entire functions H(€) (see [6, 11]) and H(<C) is dense in H(G). In fact,
in any domain G, <&(£>) always has locally dense range. Also the antidifferential
operator D~N has locally dense range near the boundary.

One could believe that there exists some characterization of strongly omnipresent
operators in terms of the size of the range. That is not true, however, as we are going
to see in the next example. We can construct strongly omnipresent operators with
'very small' range.

EXAMPLE 2.9. Let G c C be a domain with 0 e G and consider the operator
T : H(G) -+ H(G) defined by Tf = f(O)f, where ^ is a fixed holomorphic
monster in G. Then / is a T-monster if and only if/ (0) ^ 0. Hence T is strongly
omnipresent, but T has 1-dimensional range.

On the other hand, having 'large' range need not imply strong omnipresence. As
the following example shows, there exist operators with dense range but without any
monster.

EXAMPLE 2.10. Let G = 0, r e (0,1) fixed and T : H(D) -*• H(D) the operator
given by Tf (z) = / (rz) (z e O). It is obvious that all the polynomials lie in the
range of T, so T has dense range. But ^(T) = 0 because Tf is continuous up to
the boundary for all / € H(B).

In spite of the fact that these examples preclude any direct relationship between the
range of an operator and its behaviour near the boundary our next result furnishes a
sufficient condition for an operator with locally dense range to have many monsters:
we will meet the notion of local stability again.

In the following, let A0 denote the interior of the set A.

THEOREM 2.11. LetT : H(G) -> H(G) be an operator such thatfor each compact
subset K C G and each set V € 0(3 G) there is some closed ball B c VDGwith

(a) T has dense range in B°,
(b) T is K-stable in B.

Then T is strongly omnipresent.

https://doi.org/10.1017/S1446788700036764 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036764


344 L. Bernal-Gonzalez, M. C. Calderon-Moreno and K.-G. Grosse-Erdmann [10]

PROOF. AS in the beginning of the proof of Theorem 2.6 and with the same meaning,
fixg,e,r, V,h,Kandei. Letfi c VUG be the closed ball given by the hypothesis and
consider an affine linear transformation r such that r(B) = B°. Then r e LT{VC\ G)
and got'1 e H(B°). Therefore, by (a), there exists a function/ € H(G) such that

(6) \\Tf -gOT-l\\Hrf>}<e/2.

By (b), there exist a closed ball B' c G \ K and S > 0 such that for all <p e H{G)

(7) \W - f IIB> < 8 implies that || T<p-Tf\\B< e/2.

Now, an application of Runge's theorem (as in the proof of Theorem 2.6) leads us to
the existence of a function / ] € H(G) with

(8) I I / I - A | | J T < 6 I

and | | / , - / I I B . <S. So, by (7),

(9)

Now, (6), (9) and the fact that r(rD>) C B give us

(10) ||77, -gox-%^

Hence, by (8) and (10) we have / , e U(T, g, e, r, V) D D(h, K, e,), and the proof is
finished. •

From the above theorem we obtain immediately the following.

COROLLARY 2.12. Let T be an operator on H(G) that has, neardG, either

• somewhere locally dense range and local stability; or
• locally dense range and somewhere local stability.

Then T is strongly omnipresent.

Note that, in particular, if T is an onto somewhere locally stable operator (not
necessarily linear) then it is strongly omnipresent, compare with Corollary 2.3.

In turn, we obtain again, independently, that the identity operator is strongly om-
nipresent.

3. Composition and multiplication operators

So far, the only concrete examples of strongly omnipresent operators are differ-
ential, antidifferential and integral operators, see [3]. In this section we will apply
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the results of the previous section to enlarge this supply by characterizing completely
when a left- or right-composition operator or a multiplication operator is strongly
omnipresent.

Let H(G, G) = [<p € H(G) : <p(G) C G}. Recall that for <p e H(G, G) the
associated (right-)composition operator is the mapping Q, : H(G) —*• H(G) defined
by Cv(f) = f o (p, which is in fact a linear operator on H(G). Assume first that
(p e Aut(G) is an automorphism on G, that is, a one-to-one and onto function in
H(G,G). Then it is evident that Cv is an isomorphism from H(G) onto itself and
therefore strongly omnipresent by Corollary 2.3. But there are also plenty of self-
mappings <p £ Aut(G) that generate strongly omnipresent composition operators. It
turns out that the corresponding characterization is purely topological. The key is that
<p must not 'forget' the boundary of G. Before establishing the result we isolate the
appropriate topological condition.

(C) For every V € 0(3 G) the set <p{ V n G) is not relatively compact in G.

We state a number of equivalent versions of (C).

(Ci) For every V e 0(3G) the set 3G n d<p( V D G) is non-empty.
(C2) For every V e 0(3 G) and every compact set K c G there is an open ball
U C V n G with (p(U) n K = 0.
(C3) For every t € 3G we have that S(<p, t)DdG ^0, where S(cp, t) is the cluster
set of <p at the boundary point t (for definition and properties of cluster sets, see for
instance [5] and [12]).

THEOREM 3.1. Let Cv be the composition operator on H(G) defined by <p e
H(G, G). Then the following assertions are equivalent:

(a) Cv is strongly omnipresent;
(b) ^{Cf) is non-empty;
(c) (p satisfies (C).

PROOF. It is trivial that (a) implies (b). Now assume that <p does not satisfy (C).
Then there is a compact set K C G and an open set V € O(3 G) with <p( V n G) C K.
Hence, for every function/ e //(G) we have that/ £ U(Cv,g,e,r, V) if we choose
r e (0,1) arbitrary, e = 1 and g(z) := 1 + 11/11* (z € D>). It follows from Note 2
before Proposition 2.1 that/ cannot be a C,,-monster. This shows that ^(Cp) = 0
and hence that (b) implies (c).

For the proof that (c) implies (a) we apply Theorem 2.11. Let K c Gbea compact
subset and V 6 0(3G). Then by property (C2) there is an open ball U c V f) G
with (p(U) D K = 0. Since <p is clearly non-constant we see that <p' is not identically
zero on U so that we can assume that <p is one-to-one on U. We now choose closed
balls B' C <p(U) and B c U with <p(B) c B'. Since Cvf = / o <p we see that

https://doi.org/10.1017/S1446788700036764 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036764


346 L. Bernal-Gonzalez, M. C. Calderon-Moreno and K.-G. Grosse-Erdmann [12]

Cv is tf-stable in B. Also, Cv has dense range in B° because cp : B° ->• <p(B°) is a
holomorphic bijection and H(G) is dense in H(cp(B0)) by Runge's theorem; note that
<p(B°) is a simply connected domain contained in G. Theorem 2.11 now implies the
result. D

COROLLARY 3.2. Let <p be an entire function and Cv the associated composition
operator on H(€). Then the following assertions are equivalent:

(a) Cv is strongly omnipresent;
(b) ^ (C, , ) is non-empty;
(c) <p is non-constant.

PROOF. Here our domain is G = C. Property (C) reads in this case as follows: For
every R > 0 the set <p(\z\ > R) is not bounded. This holds if and only if <p is not
bounded, hence, by Liouville's theorem, if and only if cp is non-constant. It remains
to apply Theorem 3.1. •

EXAMPLE 3.3. By Corollary 3.2 there is an entire function / so that the entire
function/ o exp is a holomorphic monster. More generally, given any sequence (<pn)
of non-constant entire functions there is an entire function / such that each of the
functions/ o <pn (n e N) is a holomorphic monster.

We now consider left-composition operators. For this we need to assume that <p
is an entire function. Then the left-composition operator L^ : H(G) -> H(G) is
defined by Lv(f) = <p of, which is only a linear operator if <p is linear.

In this case the characterizing condition for strong omnipresence turns out to be in
terms of the size of the range of Lv.

(L) The operator Lv : H(D) -*• H(D) has dense range.

The following are useful equivalent variants of (L). We leave the proof of the equiv-
alence to the reader; suffice it to say that Runge's theorem is crucial, by which H(C)
is dense in H(O) for every simply connected domain O.

(Li) There exists a simply connected domain O in C such that Lv : H(O) -> H(O)
has dense range.
(L2) For any domain G and any simply connected domain O C G, Lv : H(G) —>
H(O) has dense range.
(L3) The function ip has an approximate right inverse in H(Q, that is, there is a
sequence (/„) of entire functions such that <p(fn(z)) -*• z locally uniformly in C.

THEOREM 3.4. Let Lv be the left-composition operator on H(G) defined by q> €
H(C). Then the following assertions are equivalent:

(a) Lp is strongly omnipresent;

https://doi.org/10.1017/S1446788700036764 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036764


[13] Strongly omnipresent operators 347

(b) ~rf(Lv) is non-empty;
(c) <p satisfies (L).

PROOF. It is trivial that (a) implies (b). If/ isanL^-monsterthenforanyg € H(B)
there is a sequence (rn) in LT(G) such that <p o (f o zn)(z) = (Lvf) o rn(z) -* g(z)
locally uniformly in D. This shows that (L) holds, hence that (b) implies (c).

Now assume that (c) holds. Then Lv has locally dense range because, by (L2), for
any open ball U in G the operator L^ : H(G) -*• H(U) has dense range. Moreover,
L9 is locally stable since the operator Lv : H(U) -» H(U) is always continuous. By
Corollary 2.12, L9 is strongly omnipresent, so that (a) holds. •

It follows from this theorem that many left-composition operators L9 are strongly
omnipresent. For example, whenever tp is universal in the sense of Birkhoff [4], that is,
if the set {<p{• + a) : a e C) is dense in H(Q, then cp clearly satisfies (L3), and the set
of these functions is known to be residual in //(C). The same is true, more generally,
for any holomorphic monster in C. As a consequence of this and Corollary 3.2 we
have the following.

EXAMPLE 3.5. Let <p € H(Q be a holomorphic monster. Then there is a residual
set of entire functions / such that both / o (p and (p o / are holomorphic monsters.
Clearly, f (z) = z is one such function.

On the other hand, it follows from Hurwitz's theorem [1, page 178] that only
surjective functions <p can satisfy (L3), hence (L). Moreover, surjectivity alone is not
sufficient; for instance, the function (p(z) '•= z2 does not satisfy (L3). This follows
from Rouche's theorem [1, page 153], because if /n

2(z) —> z locally uniformly in C
then, for large n, /n

2 would have exactly one zero in the unit disk, counting multiplicity,
which is clearly absurd.

In contrast to these observations it should be noted that the operator Lv is always
omnipresent when tp is a non-constant entire function, see Theorem l(c) of [2]. As
a consequence there are omnipresent operators that are not strongly omnipresent.
We show by an example that there are even linear operators with this property, thus
answering a question posed in [3].

EXAMPLE 3.6. Let G be a domain containing the origin and let T : H(G) -*• H(G)
be the linear operator defined by Tf = f <S))e*, where r/r is a fixed holomorphic
monster. Then T is omnipresent but not strongly omnipresent. For if/ (0) ^ 0 then
Tf has maximal cluster sets at every boundary point of G because \jr has this property
and because the exponential function has dense range. Thus T is omnipresent by [2,
Theorem 1 (a)]. On the other hand, no function/ can be a 7-monster. This follows
from Hurwitz's theorem because e* omits the value 0 and hence cannot be used to
approximate functions that have a zero but are not identically zero.
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We finally study multiplication operators. For \jr e H(G) the operator M^ :
H(G) -» H(G) is defined by M+f(z) = f(z)f(z) (z € G). By Theorem 2.5,
taking T = I, the identity operator, and S the constant operator with value \j/, we
know that M^ is strongly omnipresent if \}r extends to a continuous function on the
boundary without zeros there. In fact, we can drop this extra condition.

THEOREM 3.7. If xjr is non-zero then the multiplication operator M^ is strongly
omnipresent.

PROOF. For any V, M^ is obviously locally stable. Now let V e O(d G). If f ^ 0
there is an open ball U C V f) G such that rfr has no zeros in U. Then it is clear that
My has dense range in U by Runge's theorem. Hence M^ also has somewhere locally
dense range, which implies the result by Corollary 2.12. •
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