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1. Introduction 

The aim of this paper is to summarise the dynamical constraints on the contribution of low lumi
nosity stars. Important restrictions come from disk stability and the Oort Limit. These are reviewed 
elsewhere in these Proceedings in the contributions from Sellwood and Binney. Here, our attention 
is concentrated on two further pieces of evidence - constraints from (1) the stochastic heating of 
wide binaries and from (2) microlensing. 

2. Wide Binaries 

The physical principles underlying the constraint from the stochastic heating of wide binaries are 
easy to understand. Consider two stars in circular orbit with a combined mass of 1 MQ. Suppose 
they have a relative velocity of ~ 0.1 k m s - 1 . Perturbers encounter the binary at a speed some two 
orders of magnitude greater than this. As the binary gains energy, it expands and eventually it 
disrupts. The more perturbers, the fewer wide binaries. Therefore, the goal is to constrain the mass 
and the density of the unknown perturbers using the observed distribution of binaries and models 
of their evolution. This is a subject that starts with observational work by Bahcall & Soneira (1981) 
that appeared to detect a cut-off in the separation of wide binaries at about 0.1 pc. Retterer & King 
(1982) calculated that a binary with a semi-major axis of 0.1 pc will disrupt in roughly a Galactic 
age (10 Myrs). Bahcall, Hut & Tremaine (1985) then extended these arguments to include a pop
ulation of dark matter perturbers of unknown mass. By fixing the density of the perturbers (at 
the value suggested by the kinematics of vertical tracer populations), they found the characteristic 
mass of the perturbers must be less than two solar masses. This work stimulated a major effort by 
Martin Weinberg and co-workers (1987, 1990), who provided a substantial theoretical framework 
with which to analyse the problem. They argued, first, that the observed break in the semi-major 
axes is consistent with being a sampling or selection effect, and, second, that no sharp cut-off is 
expected anyhow. As this spoilt the original claim, Weinberg (1987) then looked to see if a dynam
ical constraint on low mass objects could be restored somehow. Encounters are catastrophic if a 
single event disrupts the wide binary. Encounters are diffusive if many events are needed to disrupt 
the binary. Encounters with stars and low mass objects predominate and are typically diffusive, 
whereas encounters with Giant Molecular Clouds are catastrophic. Given that the dominant physi
cal processes are diffusive, it is natural to treat the problem with a Fokkcr-Planck equation. Explicit 
forms for the diffusion coefficients are available, as are the Greens functions (Weinberg 1990). Given 
any assumed form for the binary birth-rate, the endpoint of the population can be determined. Of 
course, the binary birth-rate is not well-understood observationally, so it is not clear exactly what 
should be assumed for this unknown. However, a reasonable assumption is that the dependence is 
separable in energy and time, with a power-law dependence on energy (or equivalently semi-major 
axis). Weinberg actually examined models in which the binaries are created continuously and are 
created in bursts. The original idea of Bahcall, Hut & Tremaine (1985) was to use the shape of 
the distribution in semi-major axes - a sharp cut-off. However, Weinberg's analysis make it clear 
that this is untenable. Diffusion smoothes things out, so sharp cut-offs are not expected. The other 
possibility is a limit based on overall normalisation. For a particular model, the fraction of total 
number of binary pairs ever created may be computed from the binary birth rate. If we observe «,„ 
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wide binaries in a given volume of space containing nc of stars in total, then we have the obvious 
limit that nc > 2nw/f. However, even here, it is sad to report that the best fit model does not 
give an interesting limit on the mass function of the dark objects. Weinberg (1990) found he could 
constrain the masses of perturbers in excess of twenty solar masses in some model forms for the 
binary birth rate, but not the low mass end of the mass function. 

Given the recent resurgence of interest in careful astrometry, it is clearly worthwhile trying to 
build better catalogues of wide binaries. Whether the stochastic heating of wide binaries will ever 
give definite dynamical constraints on the mass function is less clear - the limitations seem partly 
to do with the scaling of the diffusion coefficients with the masses of the deflectors. Low mass 
deflectors are simply much less effective at heating than high mass ones. 

3. Microlensing 

Let me now pass to microlensing where the prospects are more upbeat! But first let me issue some 
cautionary words. Any inference concerning the mass function of deflectors depends on assumptions 
as regards the unknown distribution of deflectors along the line-of-sight and the unknown velocity 
distributions of the deflectors and sources. One way of gaining a better understanding of the un
certainties is to set up thought experiments. Suppose an observer and a source are separated by a 
single species of deflectors of known mass and of a known triaxial Gaussian velocity distribution 
with known dispersion. Suppose that all the microlensing observables - the optical depth, the rate 
and the histogram of events with respect to timescales - are known to arbitrary precision. Can 
the density of the deflectors be inferred uniquely? Another way to phrase this problem is, given 
a configuration that reproduces the observables, is it possible to change the density distribution 
along the line-of-sight without changing the observables? It is straightforward to show that densities 
which have no effect on all three of the microlensing observables - known as microlensing konus 
densities - do exist by expanding the quadratures as Fourier series. A microlensing konus density 
contains both positive and negative densities. It is useless in itself, but can be added to any model 
that reproduces the observables to generate further models that do so. In other words, it is a neat 
way to parametrise the degeneracy of the problem. So, the result of the first thought experiment 
is the first microlensing theorem of ignorance. Even given perfect accuracy, it is not possible to 
restrict the density of deflectors along the line-of-sight from microlensing data alone. Let us now 
pass to a second thought experiment. A microlensing group monitors the optical depth, rate and 
timescale histogram of a single species of deflectors of known density possessing a triaxial Gaussian 
distribution of velocities. The semi-axes of the velocity dispersion tensor are unknown. Can the 
microlensing group even in principle infer the mass of the species? This problem is also straight
forward to solve - the rate and the timescale histogram depend on the unknowns not separately 
but only through the combination M/a\, where M is the characteristic mass and a\ is the square 
of the tangential velocity dispersion. Only this combination is knowable from the microlensing ob
servables. To find the mass of the species is not possible, unless the tangential velocity dispersion 
is accurately known. So, any determination of the mass function of the deflectors must necessarily 
depend on uncertain assumptions as to the density distribution and the velocity distribution of 
the deflectors. The result of the second thought experiment is the second microlensing theorem of 
ignorance. It is not possible to infer the characteristic mass of deflectors from microlensing data 
alone. These theorems of ignorance tell us that only by combining the microlensing data-set with 
assumptions regarding the structure of the Milky Way can useful constraints on the density and 
mass of low luminosity stars be obtained. 

There are two data-sets available thanks to the tenacity of the observers (e.g., Alcock et al. 
1997a,b) . Let me first consider microlensing towards the Large Magellanic Cloud. This is less 
useful for the purposes of investigations into low luminosity stars, so I wish to deal with it very 
quickly. There is genuine uncertainty as to where the lenses lie along the line-of-sight. If we assume 
that the lenses are in the halo and have a roughly isotropic velocity dispersion, then we arrive at 
the conclusion that roughly a third or half of the halo is built of objects of around half a solar mass 
or so. But it is not clear that these assumptions are correct. In particular, the lenses may lie in 
the warped and flaring Milky Way disk (Evans et al. 1997) or in an intervening stellar population 
(Zaritsky & Lin 1997). Until the location of the lenses is known, it is not possible to come to any 
reliable conclusion regarding the masses of the lenses. The data-set towards the Galactic Centre 
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is simpler to analyse, at least given a working model of the Galactic Bulge. There were two early 
analyses of the data-set of the nine OGLE events - one by Evans (1995) using an axisymmetric 
bulge and spheroid, and a second by Zhao, Spergel & Rich (1995) using a triaxial bar. Both came to 
the conclusion that mass functions dominated by brown dwarfs - such as Salpeter laws extrapolated 
down 0.01 M© - generate too many short timescale events to be consistent with the data-set. Han 
& Gould (1996) combined the OGLE data-set with the 45 events in the first year Macho data-set 
and produced an interesting discussion of the mass function of the deflectors. They used a double 
exponential disk, together with an analytic bulge model that is a reasonable approximation to the 
COBE infra-red light. The velocity distribution of disk objects is assumed to be Gaussian about 
the rotation velocity. The bulge is assumed to be non-rotating. The distribution of velocities is 
a triaxial Gaussian with components deduced from the flattening via tensor virial theorem. Han 
& Gould considered two possible mass functions for the deflectors The first is a Gaussian in the 
logarithm of the mass, with some unknown mean and unknown dispersion in logarithmic mass. 
The second is a power-law mass function of unknown index which is assumed to be valid down to 
some unknown lower cut-off. For each model, Han & Gould found the best fits to the unknowns by 
performing a maximum likelihood test. In the best fitting power-law, the mass function goes like 
mass - 2 ' 1 down to a lower mass limit of 0.04 M Q . This is of course very close to a Salpeter mass 
function. The best-fitting Gaussian mass function is centered around 0.1 M Q and has a broadish 
width, extending well into the brown dwarf regime. It seems that the lenses must have a mass 
function that is different to that of the local disk stars found by Kroupa, Tout h Gilmore (1993). 
It also seems from Han & Gould's analysis that a significant fraction of the events are caused by 
sub-stellar masses. This is rather surprising given the earlier analysis by Evans (1995) and by Zhao 
(1995) on the admittedly much smaller OGLE data set. One possible explanation is the neglect 
of over-all bulge rotation by Han & Gould. This causes the transverse velocity of the lenses to be 
reduced, and hence given events are produced by lower masses. Han & Gould make one further 
interesting point - there is a tail of long timescale events that are poorly fit by all the models. This 
led Han & Gould to speculate that they might be caused by a kinematically cold population with 
a low scale height. These would be observed near the Sun for sources near Baade's Window. Such 
a population would have a low transverse speed and so cause very long timescale events. 

4. Conclusions 

Microlensing is a more powerful method than stochastic heating of wide binaries for constraining 
the contribution of low luminosity stars. Han & Gould's (1996) nice analysis points the way forward. 
It would be very interesting to repeat it with the larger data-set soon to become available and with 
state-of-the-art models of the Galactic Bulge. The conclusion reached on the mass function clearly 
depend on the model adopted - and, in particular, on the velocities in the model. As readers of the 
Proceedings of Joint Discussion 15 will find out, such Bulge models will soon be available thanks 

-to the work of my Oxford colleagues. 
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