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Abstract

Dimension reduction of multivariate data was developed by Y. Guan for point processes
with Gaussian random fields as covariates. The generalization to fibre and surface
processes is straightforward. In inverse regression methods, we suggest slicing based
on geometrical marks. An investigation of the properties of this method is presented in
simulation studies of random marked sets. In a refined model for dimension reduction,
the second-order central subspace is analyzed in detail. A real data pattern is tested for
independence of a covariate.
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1. Introduction

In this paper we deal with spatial point, fibre, and surface processes (see Stoyan et al. (1995),
Beneš and Rataj (2004), and Schneider and Weil (2008)) and multivariate Gaussian random
fields (GRFs) as covariates. The aim is to study the dimension reduction problem and the
dependencies between these objects. Dimension reduction means finding a matrix B such that,
for a random vectorX of covariates B�X is of lower dimension and it involves all information
about the spatial process Y hidden in X.

A generalization of the sufficient dimension reduction paradigm for inhomogeneous spatial
point processes developed in Guan and Wang (2010) is considered. Among inverse regression
techniques, e.g. SAVE (see Cook and Weisberg (1991)) and the directional regression (see Li
and Wang (2007)), we concentrate on the basic method called the sliced inverse regression (SIR;
see Li (1991)). Guan (2008) claimed SIR to be hardly applicable in point processes because
of nonexistence of natural slicing. We show that slicing can be realized in spatial processes,
based on suitable geometrical marks. Thus, the concept of a random marked set from Ballani et
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al. (2012) (an early reference is Molchanov (1983)) is used for spatial processes. Basic theorems
on the structure of dimension reduction subspaces are derived for SIR. Guan and Wang (2010)
refined the analysis defining the kth-order central intensity subspace and they studied the case
k = 1. In the present paper, attention is paid to the case k = 2. A general result on the
estimation of the second-order central intensity subspace is derived. Two special models of
point processes are investigated to show the applicability of the method. An approach to slicing
in this situation is suggested.

Furthermore, a model of a fibre process in a bounded planar domain is defined as a curve being
a numerical solution of a stochastic differential equation (SDE), with coefficients conditioned
by a GRF.

The statistical part of the paper involves the estimation of the directions in the central
subspace, testing the hypotheses about its dimension and about the independence between the
random set and covariates (cf. Schlather et al. (2004) and Illian et al. (2008) for point processes).
The quality of estimators is quantified, and the power of the tests can be evaluated in repeated
simulations.

Simulation studies demonstrate the methods for different models from stochastic geometry.
In the Poisson–Voronoi tessellation, the fibre or surface process of its edges or faces, respec-
tively, is considered, marked by the length of the edges or surface area of the faces. Finally,
a test of independence based on the weighted L-function is applied to real data with a single
covariate.

2. Theoretical background

2.1. Stochastic geometry

Let (�,F ,P) be a probability space. Let Md be the set of all locally finite measures
on (Rd ,Bd) equipped with the smallest σ -algebra Md which makes the maps µ �→ µ(A),

µ ∈ Md , measurable for all A ∈ Bd . Then� : (�,F ,P) → (Md ,Md) is a random measure
on R

d and �(·) = E�(·) is the intensity measure of �.
Let Hk be the Hausdorff measure of order k in R

d . Zähle (1982) introduced the concept
of random Hk-sets in R

d as random closed sets which are Hk-rectifiable. A random Hk-set
Y such that �Y (·) = Hk(Y ∩ ·) is a locally finite measure in R

d will be called a point, fibre,
or surface process for k = 0, 1, d − 1, respectively. By C ↑ R

d we mean that there exists a
nondecreasing sequence of convex and compact sets Cn such that their union is R

d . Ergodic
theorems for �Y follow from the results in Nguyen and Zessin (1979); central limit theorems
in the stationary case were considered in Pawlas (2003).

The lth moment measure of the random measure �Y is

µ(l)(A1, . . . , Al) = E[�Y (A1) · · ·�Y (Al)]
for bounded Borel sets A1, . . . , Al ⊂ R

d . The lth-order intensity function λl is defined by

µ(l)(ds1 × · · · × dsl) = λl(s1, . . . , sl) ds1 · · · dsl (1)

if it exists. In the case k = 0 (point processes), on the left-hand side of (1) there is the lth
factorial moment measure µ(l)! (see Stoyan et al. (1995, p. 111)) instead of µ(l), which does
not have a density with respect to the Lebesgue measure. The notation λ = λ1 will be used.

Ballani et al. (2012) defined a random marked closed set as a pair (Y, �), which is a random
element in a measurable space of hypographs of random upper-semicontinuous functions � (a
mark) defined on a random closed set Y ∈ R

d . Thus, for a random marked Hk-set (Y, �), we
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have the notion of a marked point, fibre, or surface process. Let the range of the real-valued
mark � be divided into m disjoint intervals J1, . . . , Jm called slices. This induces a partition
of Y into m disjoint subsets (Y 1, . . . , Ym). Alternatively, we may consider closures Ȳ i as
processes with first-order intensities λ(i),∫

A

λ(i)(s) ds = E�Ȳ i (A), A ∈ Bd , i = 1, . . . , m,

respectively, corresponding to each slice, so that λ = ∑m
i=1 λ

(i).

2.2. Dimension reduction

The dimension reduction problem in statistics concerns the situation where we have a
response Y (random variable) dependent on a p-dimensional random column vector of
covariates X and the aim is to reduce the number of covariates in order to use only the most
significant ones. For vector data, Li (1991) suggested using the SIR method. The idea to regress
X on Y inversely instead of the direct regression of Y on X stems from the fact that in such
a way we obtain p univariate regressions instead of a multivariate one. Further methods of
dimension reduction are described in Cook (1998), Li and Wang (2007), etc.

The dimension reduction problem for point processes was formulated in Guan (2008) and
Guan and Wang (2010), from where Definitions 1 and 2 below were taken. In our setting, Y is
a random point, fibre, or surface process in R

d and X is a p-dimensional stationary Gaussian
random field in R

d , d = 2, 3. Without loss of generality, assume that X is standardized,
i.e. EX(s) = 0 and covX(s) = Ip for each s, where Ip is the unit matrix of order p. Let A�
be the transponse of a real-valued matrix A, and let S(A) be the linear subspace spanned by
columns of A. All vectors are column vectors.

Definition 1. Let Y be conditionally independent ofX givenB�X for a p×cmatrixB, c ≤ p.
Then S(B) is called a sufficient dimension reduction subspace. Let SY |X be the intersection of
all such subspaces. Assume that it is also a sufficient dimension reduction subspace. Then it is
called the central subspace.

The definition says that B�X = {B�X(s), s ∈ R
d} contains all information of X about Y .

Let c be the dimension of the central subspace.
A refined analysis of the dimension reduction is based on the following definition. Assume

that the lth-order intensity functions λl , cf. (1), exist for all l ≥ 1 (being dependent on X, they
are random functions here).

Definition 2. Consider l ∈ N, and assume that the relation

λl(s1, . . . , sl) = fl(B
�X(s1), . . . , B�X(sl)) (2)

holds for some measurable function fl and a p × c matrix B, c ≤ p. Then Sl (B) is called
the lth-order sufficient intensity dimension reduction subspace and the intersection of all such
subspaces Sl = ∩Sl (B) is called the lth-order central intensity subspace (if it is also an lth-order
sufficient intensity dimension reduction subspace).

The central subspace defined above can be expressed as

SY |X =
⋃
l≥1

Sl;

cf. Guan and Wang (2010). The aim is to investigate the structure of the kth-order sufficient
intensity dimension reduction subspaces.
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We concentrate mostly on the SIR method, which can be described in the following steps:
(i) slicing the random set Y according to a suitable mark, (ii) finding the slice means of the
random field X, (iii) applying the principal components analysis of slice means.

The first c directions from (iii) generate the central subspace of the corresponding order.
Note that Y plays a role in step (i) only.

3. Results

We start with a lemma needed for the refined analysis of the dimension reduction.

Lemma 1. Let C ∈ R
d be a compact convex set.

(a) Assume that (2) holds for l = 1. Then∫
C

E[X(s)λ(s)] ds = E

[∫
s∈Y∩C

X(s)Hk(ds)

]
.

(b) Assume that (2) holds for l = 2. Then∫
C

∫
C

E[X(s)X(t)�λ2(s, t)] ds dt = E

[∫
s,t∈Y∩C

X(s)X(t)�Hk(ds)Hk(dt)

]
.

Proof. Assertions (a) and (b) follow from the first- and second-order Campbell theorem,
respectively, e.g. for (a),

E

[∫
s∈Y∩C

X(s)Hk(ds)

]
=

∫∫
s∈Y∩C

x(s)Hk(ds)P (dψ)

=
∫∫∫

s∈Y∩C
x(s)Hk(ds)P�(dψ)Q(d�)

=
∫∫

C

∫
x(s)�(d(x, s))Q(d�)

=
∫
C

∫∫
x(s)λ(s)Ms(dx)Q(d�) ds

=
∫
C

E[X(s)λ(s)] ds,

where P is the distribution of the marked process (Y,X(s)) with random intensity measure

�(d(x, s)) = λ(s)Ms(dx) ds = f (B�x(s))Ms(dx) ds,

Ms is the distribution of the mark X(s) at a point s, Q is the distribution of �, and P� is the
conditional distribution of the marked process given �.

For k = 0 and a point process Y , we have

E

∑
s∈Y∩C

X(s) and E

�=∑
s,t∈Y∩C

X(s)X(t)�

on the right-hand sides of the formulae of Lemma 1(a) and (b), respectively. In the second sum
s and t are always different.
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3.1. Investigation of the first-order central intensity subspace

In this subsection we assume that, for each s ∈ R
d , it holds that

λ(s) = f (B�X(s)) (3)

for a matrix B of size p × c, c ≤ p.

Lemma 2. Let the mark �(s) = g(B�X(s)) for a measurable function g. Then

λ(j)(s) = f j (B�X(s))

for some nonnegative measurable functions f j , j = 1, . . . , m.

Proof. For |ds| ↓ 0, we have

λ(j)(s)|ds| = E[Y j (ds) | X(s)]
= E[Hk({y ∈ Y ∩ ds;�(y) ∈ Jj }) | X(s)]
= E[Hk({y ∈ Y ∩ ds;�(y) ∈ Jj }) | B�X(s)]
= f j (B�X(s))|ds|.

This completes the proof.

Consider a convex compact window C ⊂ R
d and a statistic

V̂1 = 1

�Y (C)

m∑
j=1

1

�Yj (C)

∫
Y j∩C

X(s)Hk(ds)

[∫
Y j∩C

X(s)Hk(ds)

]�
. (4)

Assume that Y and {X(s), s ∈ Y } are ergodic. Then, from Lemma 1 for each j , it holds that

1

�Yj (C)

∫
Y j∩C

X(s)Hk(ds) →
∫

Rd
E[λ(j)(s)X(s)] ds∫
Rd

E[λ(j)(s)] ds
(5)

in probability when C ↑ R
d . This limit is defined as a ratio of limits:

lim
C↑Rd

1

|C|
∫
C

E[λ(j)(s)X(s)] ds, lim
C↑Rd

1

|C|
∫
C

E[λ(j)(s)] ds.

Their finiteness can be verified easily, e.g. in our case when X(·) is a stationary random field,
since then limit (5) is equal to

E[λ(j)(·)X(·)]
E[λ(j)(·)] . (6)

Let the theoretical counterpart of (4) be

V1 = 1∫
Rd

E[λ(s)] ds

m∑
j=1

∫
Rd

E[λ(j)(s)X(s)] ds
∫

Rd
E[λ(j)(s)X(s)]� ds∫

Rd
E[λ(j)(s)] ds

.

Theorem 1. Under the above assumptions, it holds that S(V1) ⊂ S1.

Proof. Let B be a matrix with S(B) = S1 and j ∈ {1, . . . , m}. From Lemma 2 we have
λ(j)(s) = f j (B�X(s)) for a measurable function f j . It is enough to show that

S

(∫
E[f j (B�X(s))X(s)] ds

∫
E[f j (B�X(s))X(s)]� ds

)
⊂ S1.
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Using the argument in Guan and Wang (2010, Equation (A.1), p. 385), for the projection matrix
PB = B(B�B)−1B�, we obtain∫

E[f j (B�X(s))X(s)] ds
∫

E[f j (B�X(s))X(s)]� ds

= PB

∫
E[f j (B�X(s))X(s)] ds

∫
E[f j (B�X(s))X(s)]� dsPB.

Since this holds for each j = 1, . . . , m, we have S(V1) ⊂ S(B) = S1. This completes the
proof.

From the proof, it can be seen that, for each j th slice, j = 1, . . . , m, vector (6) belongs
to S1. Principal component analysis is applied to find just c vectors among them. Define the
slice means as the conditional expectations

mj = E[X(s) | s ∈ Y j ],
and let pj = P(x ∈ Y j | x ∈ Y ), j = 1, . . . , m. The weighted covariance matrix

V =
m∑
j=1

pjmjm
�
j (7)

of size p × p has eigenvalues ξ1 ≥ · · · ≥ ξp. Then the eigenvectors ηl of V corresponding to
the c largest eigenvalues form columns of the matrix B; cf. Li (1991). When dealing with data
observed in a compact window C, the matrix V can be estimated as

V̂1 =
m∑
j=1

�Yj (C)

�Y (C)

∫
Y j∩C X(s)H

k(ds)

�Yj (C)

[∫
Y j∩C X(s)H

k(ds)]�
�Yj (C)

;

cf. (4) and (7). For more information on estimation, see Section 4.

3.2. Investigation of the second-order central intensity subspace

Let l = 2 in Definition 2. Assume that

λ2(s, t) = f2(B
�X(s), B�X(t)) (8)

for a matrix B of size p × c, c ≤ p. The aim is to estimate the subspace S2 = S(B). Assume
that Y and {X(s)X(t)�, s, t ∈ Y } are ergodic, and that C ⊂ R

d is a convex compact window.
Then, from Lemma 1,

M̂2 =
∫
s,t∈Y∩C X(s)X(t)

�Hk(ds)Hk(dt)

�Y (C)2
→

∫∫
E[λ2(s, t)X(s)X(t)

�] ds dt∫∫
E[λ2(s, t)] ds dt

= M2 (9)

in probability when C ↑ R
d , where limit (9) is defined as a ratio of two limits:

lim
C↑Rd

1

|C|2
∫
C

∫
C

E[λ2(s, t)X(s)X(t)
�] ds dt, lim

C↑Rd

1

|C|2
∫
C

∫
C

E[λ2(s, t)] ds dt.

Their finiteness can be verified, e.g. in the case when X(·) is a stationary or stationary and
isotropic random field, when the integrands depend only on the difference of variables or the
modulus of the difference of variables, respectively.
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For a point process (k = 0), we consider

M̂2 =
∑�=
s,t∈Y∩C X(s)X(t)�

�Y (C)(�Y (C)− 1)
.

Theorem 2. Let QB = Ip − PB . It holds that

M2 = MP
2 +M

Q
2

= PB
∫∫

E[f2(B
�X(s), B�X(t))X(s)X(t)�] ds dtPB∫∫

E[f2(B�X(s), B�X(t))] ds dt

+
∫∫

E[f2(B
�X(s), B�X(t))]E[QBX(s)X(t)

�QB ] ds dt∫∫
E[f2(B�X(s), B�X(t))] ds dt

. (10)

Proof. Write X(s) = PBX(s)+QBX(s). Then

E[λ2(s, t)X(s)X(t)
�]

= E[E[f2(B
�X(s), B�X(t))

× [PBX(s)X(t)�PB + PBX(s)X(t)
�QB +QBX(s)X(t)

�PB
+QBX(s)X(t)

�QB ] | PBX(s), PBX(t)]]
= PBE[f2(B

�X(s), B�X(t))X(s)X(t)�]PB
+ E[f2(B

�X(s), B�X(t))PBX(s)E[X(t)�QB | PBX(s), PBX(t)]]
+ E[f2(B

�X(s), B�X(t))E[QBX(s) | PBX(s), PBX(t)]X(t)�PB ]
+ E[f2(B

�X(s), B�X(t))E[QBX(s)X(t)
�QB | PBX(s), PBX(t)]].

The inner expectations in the second and third terms are equal to 0 from the assumptions, and

E[QBX(s)X(t)
�QB | PBX(s), PBX(t)] = E[QBX(s)X(t)

�QB ];
thus, the assertion follows.

If the second term M
Q
2 on the right-hand side of the formula for M2 were 0 then

S(M2M
�
2 ) ⊂ S(M2) ⊂ S2.

We are interested in situations where MQ
2 is negligible with respect to MP

2 , i.e.

‖MQ
2 ‖ � ‖MP

2 ‖, (11)

e.g. for the Euclidean matrix norm. This means that S2 can be approximately estimated by the
SIR method applied toM2M

�
2 . Typically, E[QBX(s)X(t)

�QB ] is negligible for ‖s−t‖ → ∞,
while in some models (e.g. repulsive point processes) λ2(s, t) is around 0 for small ‖s − t‖.
Moreover, when there is a positive correlation between PBX(s)X(t)�PB and λ2(s, t) then,
intuitively, (11) may hold.

We make this reasoning precise in the following two examples, where we consider the
centered Gaussian random field X = (X1, X2) in R

2 with independent components of
correlation functions

ζ(s, t) = exp(−‖s − t‖2),
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B = (1, 0)�, so that λ2(s, t) = f2(X1(s),X1(t)). The 2 × 2 matrix functions

PBE[λ2(s, t)X(s)X(t)
�]PB (12)

and
E[λ2(s, t)]E[QBX(s)X(t)

�QB ] (13)

are the integrands in the numerators of (10). Nonzero elements of these matrices are in the
upper-left and lower-right corners, respectively. These elements are evaluated as functions of
the variable z = ‖s − t‖. The expectations are evaluated with respect to the bivariate Gaussian
probability density

g(x, y) = 1

2π
√

1 − ζ(s, t)
exp

(
− 1

2(1 − ζ(s, t))
(x2 + y2 − 2xy

√
ζ(s, t))

)
, x, y ∈ R.

Example 1. Consider a stationary Poisson point process�with intensity ρ. Let Y be a simple
inhibition point process such that each pair of points s, t ∈ � satisfying

max(Z(s), Z(t)) ≥ ‖s − t‖
is removed, where Z(s) = g(X1(s)) is a nonnegative function of X1. The process Y has
second-order intensity (cf. Diggle (2003, p. 73))

λ2(s, t) =
{
ρ2 exp(−ρU(Z(s), Z(t))) if max(Z(s), Z(t)) ≤ ‖s − t‖,
0 otherwise,

(14)

where U(Z(s), Z(t)) is the area of the union of balls centered in s, t with radii Z(s), Z(t),
respectively. In this case assumption (8) holds with B = (1, 0)�. Put

Z(s) = a + b 1[X1(s)<0], a, b > 0. (15)

It holds that λ2(s, t) = 0 if either [X1(s) < 0 ∨ X1(t) < 0] ∧ ‖s − t‖ < a + b or [X1(s) ≥
0 ∧X1(t) ≥ 0] ∧ ‖s − t‖ < a. In the opposite case there are variants

X1(s) ≥ 0, X1(t) ≥ 0, ‖s − t‖ ≥ a, λ2(s, t) = ρ2e−ρU2(s,t,a,a),

X1(s) ≥ 0, X1(t) < 0, ‖s − t‖ ≥ a + b, λ2(s, t) = ρ2e−ρU2(s,t,a,a+b),
X1(s) < 0, X1(t) ≥ 0, ‖s − t‖ ≥ a + b, λ2(s, t) = ρ2e−ρU2(s,t,a+b,a),
X1(s) < 0, X1(t) < 0, ‖s − t‖ ≥ a + b, λ2(s, t) = ρ2e−ρU2(s,t,a+b,a+b).

The results are given in Figure 1(a).

Example 2. The stationary determinantal point process Y has second-order intensity equal to
the determinant

λ2(s, t) =
∣∣∣∣ C0(0) C0(s − t)

C0(t − s) C0(0)

∣∣∣∣ ,
where C0 is a covariance function. For parameters α, ρ > 0, we use the covariance function
with finite range α:

C0(x) = 2ρ

π

(
arccos

‖x‖
α

− ‖x‖
α

√
1 −

(‖x‖
α

)2)
1[‖x‖<α] .
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Figure 1: Comparison of functions of the variable z = ‖s− t‖ and the nonzero elements of matrices (12)
(dashed lines) and (13) (solid lines). (a) Example 1 (simple inhibition) for a = b = ρ = 1. (b) Example 2
(determinantal process) for α = 1. The dashed graph values are much larger than the solid graph values

in both cases.

The parameter ρ is randomized, and it depends on the first component of X:

ρ = 4

π2α2

(
arctan(X1(s)X1(t))+ π

2

)
.

Under this scaling, givenX, the determinantal process always exists; cf. Lavancier et al. (2012).
The results are given in Figure 1(b).

Theorem 2 also enables us to understand the availability of a slicing procedure in the analysis
of S2. In this case, the cartesian product Y × Y should be marked. Let

Y = Y × Y, �Y(C) = �Y (C)
2, k > 0,

Y = {(s, t); s ∈ Y, t ∈ Y, s �= t}, �Y(C) = �Y (C)(�Y (C)− 1), k = 0.
(16)

Consider a mark � : Y → R which is a measurable symmetric function, �(s, t) = �(t, s) for
each (s, t) ∈ Y. Let the range of � be divided into m disjoint intervals called slices. This
induces a (random) partition of Y into m disjoint subsets (Y1, . . . ,Ym). Let

�Yj (C) =
∫∫

Yj∩C2
Hk(ds)Hk(dt).

Define conditional expectation matrices (slice means)

oj = E[X(s)X(t)� | (s, t) ∈ Yj ]
and qj = P((s, t) ∈ Yj | (s, t) ∈ Y), j = 1, . . . , m. The matrix U2 = ∑m

j=1 qjojo
�
j is then

subject to the principal component analysis. The empirical version of the matrix U2 calculated
from data is

Û2 = 1

�Y(C)

m∑
j=1

�Yj (C)M̂
j
2 [M̂j

2 ]�

= 1

�Y(C)

m∑
j=1

1

�Yj (C)

∫∫
Yj∩C2

X(s)X(t)�Hk(ds)Hk(dt)

×
[∫∫

Yj∩C2
X(s)X(t)�Hk(ds)Hk(dt)

]�
. (17)
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In the special case k = 0 we can express M̂j
2 as

M̂
j
2 = 1

�Yj (W)

∑
Yj∩C2

X(s)X(t)�.

3.3. Fibre process based on diffusion

As a model of an H1-set in R
2, we will consider a numerical solution of an SDE for

Yt = (Y
(1)
t , Y

(2)
t ) ∈ R

2, t ≥ 0:

dY (1)t = −a
2
Y
(1)
t dt + b(Y

(1)
t , Y

(2)
t )h(Y

(1)
t , Y

(2)
t ) dW(1)

t ,

dY (2)t = −a
2
Y
(2)
t dt + b(Y

(1)
t , Y

(2)
t )h(Y

(1)
t , Y

(2)
t ) dW(2)

t .
(18)

Here

b(y) = b1 exp{b2g(y)}, b1, b2 ∈ R, g : R
2 → R, (19)

h(y) = (1 − ‖y‖k), y ∈ R
2,

andWt = (W
(1)
t ,W

(2)
t ) is a Brownian motion. In this subsection, let C be the unit circle in R

2.

Theorem 3. Let a Borel function g(y) be bounded onC. Then, for an arbitrary initial condition
y0 ∈ C, there exists a solution {Yt , t ≥ 0} of (18) such that Y0 = y0 and {Yt , t ≥ 0} ⊂ C

almost surely.
Moreover, if g(y) is Lipschitz continuous on Cε := {y : ‖y‖ < 1 + ε} for some ε > 0

then {Yt , t ≥ 0} ⊂ C almost surely for an arbitrary solution of (18) with initial condition
Y0 = y0 ∈ C.

Proof. Let

β(y) = β(y1, y2) =
(

−ay1

2
,−ay2

2

)�

and

σ(y) =
(
b(y)h(y) 0

0 b(y)h(y)

)
.

Then (18) with initial condition Y0 = y0 ∈ C can be rewritten as

dYt = β(Yt ) dt + σ(Yt ) dWt, Y0 = y0. (20)

Define σ̂ (y) = σ(y), y ∈ C, and σ̂ (y) = 0, y /∈ C, and consider the equation

dŶt = β(Ŷt ) dt + σ̂ (Ŷt ) dWt, Ŷ0 = y0. (21)

According to Lemma 1 of Staněk and Štěpán (2010), Ŷ ∈ C almost surely for an arbitrary
solution Ŷ to (21). The existence of a solution Ŷ to (21) follows from local boundedness of the
coefficients β and σ̂ . Since any solution Ŷ to (21) is also a solution to (20), the first part of the
theorem is proved.

Ifp is Lipschitz continuous onCε, then Ŷ andY have a strong uniqueness property (according
to Theorem 12.1 of Rogers and Williams (1994, p. 132)) in the time interval (0, τCε ), where
τCε := inf{t > 0 : Yt /∈ C} is the time of the first exit of the process Y from the set Cε. Since
the solution Ŷ coincides with Y in C, Ŷ is a unique solution to (20) as well.
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In the followingg(s), s ∈ C, will be a linear combination, LX, of realizations of components
of a vector GRF {X(s), s ∈ C}. In order to simulate a realization of the random set Y ⊂ C, we
first simulate g(s) and then a trajectory Y = {Yt , 0 ≤ t ≤ T } of the SDE solution by means of
the Euler method (conditionally on g = LX). From Theorem 3, the theoretical solution of the
SDE remains in the circular region. The numerical solution may cross the boundary; therefore,
a condition is added that in this case the trajectory is projected on the boundary.

4. Statistical methods

4.1. Estimation

When we deal with simulated or real data, the theoretical quantities from Section 3 are
estimated by their sampling analogues. Generally, for a stationary Gaussian p-dimensional
random field X̃ observed in a bounded window C ⊂ R

d with Lebesgue measure |C|, put

X̄ = 1

|C|
∫
C

X̃(s) ds, � = 1

|C|
∫
C

[X̃(s)− X̄][X̃(s)− X̄]� ds.

Then the standardized p-dimensional random field is X(s) = �−1/2[X̃(s) − X̄]. Based on
observation of the random field on a set of grid points G, the sampling analogues of X̄ and �
are

ˆ̄X = 1

card G

∑
s∈G

X̃(s) ds, �̂ = 1

card G

∑
s∈G

[X̃(s)− ˆ̄X][X̃(s)− ˆ̄X]� ds,

and the empirical standardized random field at the arbitrary point s ∈ C is given by

X̂(s) = �̂−1/2[X̃(sG)− ˆ̄X],
where sG ∈ G is the nearest grid point to s.

Characteristics of Hk-sets can be estimated by choosing a finite set

T = {ti}ni=1 ⊂ Y ∩ C (22)

of random test points. Generally, probes Tp of complementary dimension d − k are used to get
test points as intersections T = Tp ∩ Y ∩ C; cf. Stoyan et al. (1995, p. 293). Let

Tj = T ∩ Y j , j = 1, . . . , m, nj = card Tj ,

and (cf. (16))
T = {(s, t) ∈ T × T , s �= t}, Tj = T ∩ Yj ,

lj = card Tj ,
∑m
j=1 lj = n(n− 1). We have the estimators

p̂j = nj

n
, q̂j = lj

n(n− 1)
,

m̂j = 1

nj

∑
t∈Tj

X(t), ôj = 1

lj

∑
(s,t)∈Tj

X(s)X(t)�.

Using these estimates, we put

V̂ =
m∑
j=1

p̂j m̂j m̂
�
j , Û =

m∑
j=1

q̂j ôj ô
�
j . (23)
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The eigenvectors η̂l of V̂ and Û corresponding to the c largest eigenvalues are evaluated and
transformed to

β̂l = �̂−1/2η̂l , l = 1, . . . , c. (24)

Vectors β̂l form columns of an estimator B̂ of matrix B for the dimension reduction problem
of (X̃, Y ) under assumptions (3) and (8), respectively.

Guan and Wang (2010) suggested the estimation error

�(B, B̂) = ‖B(B�B)−1B� − B̂(B̂�B̂)−1B̂�‖max (25)

to compare the estimated and true matrix of the central subspace. Here ‖A‖max denotes the
maximum of the absolute singular value of a matrix A.

Having n data sets and getting β̂il , i = 1, . . . , n, from (24) we want to obtain an estimator of
βl, l = 1, . . . , c, from this information. In fact, the directions of the vectors are crucial. In R

d

consider an arbitrary unit vector w, let β̂1, . . . , β̂n be independent and identically distributed
(i.i.d.) unit random vectors, and let 〈·, ·〉 be the inner product. Then

β̂ = arg max
{v : ‖v‖=1, 〈w,v〉≥0}

n∑
i=1

|〈β̂i , v〉|. (26)

Obviously, different choices of the vector w do not effect the direction of the estimator β̂, but
can affect its orientation, i.e. if β̂1 and β̂2 are estimators with choices w = w1 and w = w2,
respectively, where w1 and w2 are arbitrary units vectors in R

d , then β̂1 = β̂2 or β̂1 = −β̂2.
This estimator is unbiased in the following sense.

Proposition 1. Let the distribution of β̂i be symmetric with respect to the axis given by β̃, i.e. β̂i

has the same distribution as −β̂i + 2β̃〈β̃, β̂i〉 and choose w = β̃. Then there exists a ∈ [0, 1]
such that

Eβ̂ = aβ̃.

Proof. Without loss of generality, consider β̃ = (1, 0, . . . , 0). Furthermore, let sv =
(v1,−v2, . . . ,−vd), s β̂ = (β̂1,−β̂2, . . . ,−β̂d ), and s β̂i = (β̂i1,−β̂i2, . . . ,−β̂id ) for all i =
1, . . . , n. Then β̂i and s β̂i have the same distribution. Obviously, |sv| = |v| = 1, 〈sv, β̃〉 =
〈v, β̃〉, and 〈sv,s β̂i〉 = 〈v, β̂i〉. Therefore, β̂ and s β̂ have the same distribution, and, hence,
Eβ̂ = aβ̃ for some a ∈ [0, 1].
4.2. Statistical testing

Generally, the dimension c of the central subspace is not known. A starting point would be
the test of the null hypothesis

H0 : c = 0 against HA : c > 0, (27)

where by c = 0 we mean the independence ofX and Y . Consider the coefficient (see Li (1991))

R2 = R2(β̂1) = max
β∈SY |X

(β̂�
1 β)

2

β̂�
1 β̂1β�β

,

where β̂1 is from (24). From the independence of X and Y , it follows that R2 = 0. Therefore,
if we reject the null hypothesis of orthogonality

H0 : R2 = 0 against HA : R2 > 0, (28)
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then (27) also has to be rejected. The test of orthogonality for the known distribution of X can
proceed via the following steps.

• Calculate R2 from the observed data Y and X.

• Calculate R2 from observed Y and each of the n independently simulated realizations of
X; thus, we have R2

j , j = 1, . . . , n.

• The p-value of the test is (card {R2
j ≥ R2} + 1)/(n+ 1).

In practice, we cannot simulate independent realizations of X since its distribution is
unknown. On a planar rectangular or circular region W we can use this testing algorithm
with the assumption that, under H0, the joint distribution of Y and X is invariant with respect
to translation or rotation of Y , respectively. Then instead of independent realizations of X
we use n systematic translations or rotations, respectively, of X with respect to fixed Y . For
translations, the window is wrapped on a cylinder.

An alternative test of independence ofX and Y , whenX is one dimensional (not necessarily
Gaussian), can be based on the work of Schlather et al. (2004). They developed tests for
stationary marked point processes using the mark-weighted K-function or L-function. Under
the second-order intensity reweighted stationarity, cf. Illian et al. (2008), this test can be
generalized to the use for an Hk-set Y, 0 ≤ k < d.

Assume that we observe X and Y in a window C ⊂ R
d . Consider a partition of Y ∩ C into

disjoint subsets Bj , points zj ∈ Bj , j = 1, 2, . . . , e, and let Hk(Bj ) = �k
zj

. The algorithm
of the test is as follows.

(a) Choose random test points {t1, . . . , tn} as in (22), typically e � n.

(b) Estimate the intensity function λ at points ti , i = 1, . . . , n, and zj , j = 1, . . . , e.

(c) Put

K̂X(r) = 1

n

∑
ti

f (X(ti))
∑
j

�k
zj

1[‖ti−zj ‖<r]
λ(ti)λ(zj )

, (29)

where f is a suitable nonnegative increasing function.

(d) Random reallocation. In (c) perform q permutations of {X(ti), i = 1, . . . , n}, evaluate
K̂X for each permutation, and evaluate bounds K̂max and K̂min.

(e) Transform the K-function to the L-function

L̂(r) =
(
K̂(r)

ωd

)1/d

,

where ωd is the volume of unit d-balls, and draw envelopes

L̂max(r)− L̂X(r), L̂min(r)− L̂X(r). (30)

When the horizontal axis lies between the envelopes, the null hypothesis of independence
is not rejected on the significance level 2/(q + 1).

For complete estimation of the dimension c, the statistics

�̂c = n

p∑
i=c+1

ξi (31)
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might be of use, where ξ1 ≥ ξ2 ≥ · · · ≥ ξp are eigenvalues of the weighted covariance matrix
V̂ or Û given by (23). The number of slicesmmust be chosen greater than c+1. To estimate c,
we start with c0 = 0. If hypothesis (27) is rejected, we increase c0 = c0 + 1 and repeat the
same procedure sequentially until

H0 : c = c0 against HA : c > c0

is not rejected or c0 = p. Under the validity of H0, Li (1991) and Cook (1998) proved that �̂c
has an asymptotically chi-square distribution with (p − c0)(m − c0 − 1) degrees of freedom
when X(ti), i = 1, . . . , n, are i.i.d. This is not the case in the GRF, so the test is approximate
here and can be tried only when the ti are rather sparse. An analogous reasoning is necessary
when thinking of other sampling properties of SIR (consistency, etc.) as summarized in Li
(2000) for i.i.d. observations of random vectors X.

5. Simulation studies

5.1. Description of the simulation

In simulations X = (X1, X2, X3) is a three-dimensional Gaussian random field in R
d with

independent components which have zero mean and covariance function

ζ(s, t) = exp(−γ ‖s − t‖α), s, t ∈ R
d , 1 ≤ α ≤ 2, γ > 0. (32)

The method GaussRF from the RandomFields library in software R was used for generating
realizations X = {X(s), s ∈ Jd = [0, 1]d} for either d = 2 or d = 3. A random set Y
is simulated so that it depends on a linear combination, LX, of components of the GRF X.
Obviously, we have, for LX = ∑3

i=1 eiXi, ei ∈ R,

λ(s) = f (B�X(s)), B = (e1, e2, e3)
�,

and the dimension of the central subspace c = 1. Slicing of Y is based on its geometrical
properties.

In simulation study I, given the GRF X, consider an inhomogeneous Poisson point process
Yp with intensity

λ(s) = a exp(LX(s)), s ∈ Jd, a > 0, d = 2 or 3.

In fact, Yp is the log-Gaussian Cox process (see Møller and Waagepetersen (2004)), the slicing
is based on the nearest neighbour distance as the mark �p. Furthermore, a Poisson–Voronoi
tessellation is simulated in Jd with germs corresponding to events of Yp; see Figure 2(a) for
d = 2. In R

2, the system of edges forms a random fibre process Y . A piecewise constant
mark � at a point of Y is the length of the corresponding edge (H1-almost surely unique). In
R

3, the system of faces forms a random surface process Y . A piecewise constant mark � at a
point of Y is the area of the corresponding face (H2-almost surely unique). For the estimation,
test points T are centroids of edges or faces randomly chosen with probability proportional to
the length of the edge or surface area of the face, respectively. Besides the basic dependent
case as in Figure 2(a) we consider n − 1 independent cases where the same realization of Y
is independent of each component of X. The whole procedure is repeated in order to get a
number q of simulated sets of data.

In simulation study II, given the GRF X, we evaluate a fibre process Y based on diffusion
from Subsection 3.3. The linear combination g(s) = LX(s) enters in (19). In the numerical
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Figure 2: (a) A Poisson–Voronoi tessellation generated by a log-Gaussian Cox process with intensity
λ(s) = a exp(X1(s)), where X1 is a Gaussian random field with its surface plotted in a grey scale (white
is the largest value), γ = 1 and α = 1. High values ofX1 (white) imply a higher intensity of cells, which
implies shorter lengths. (b) Simulated fibre process Y from (18) and a Gaussian random field X1 with
parameters γ = 5

3 and α = 1. The high values of X1 (white) imply a higher speed of the motion and
longer segments in the numerical solution.

solution of (18) using the Euler method with a fixed temporal step the curve Y (a fibre process)
is formed by segments whose length is proportional to the speed of motion; see Figure 2(b).
In any point of Y the length of the corresponding segment is the mark � (H1-almost surely
unique). In each of the q simulations of X and Y a number of n systematic rotations of X are
taken in angular steps 2πj/n, j = 0, 1, . . . , n − 1. The number of test points along Y is s
(taken equidistantly sytematically in time).

Simulation study III corresponds to the theoretical Example 1 in Subsection 3.2. Given
the GRF X, a simple inhibition point process Y with second-order intensity λ2 as in (14)
was simulated on J2. We consider two choices of Z. Let (Z1) denote the process Z(s) =
a(arctan g(X1(s)) + π/2), a > 0, and let (Z2) denote the process given in (15). Slicing is
performed in the same way as explained in (16), where the criterion for slicing (the mark) is
the theoretical second-order intensity λ2(s, t). Its value is calculated for each pair of points
and the range is divided into several slices with approximately equal cardinality. Finally, the
matrix Û2 described in (17) is a subject for the principal components method.

5.2. Numerical results

In Figure 3, the histograms of p-values for the test of orthogonality (28) are presented for
both simulations I and II. Each row represents one type of random marked set, namely a point,
fibre (twice), or surface process. We observe how the power of the test increases with the
number of slices (from left to right). This is more apparent in the upper two rows.

A question of an optimal number of slices arises. It was investigated by means of the
estimation errors criterion (25). In Table 1 we summarize the results for five models of random
marked sets. We denote by (B1) and (B2) the choices B = (1, 0, 0)� and B = (1, 1, 0)�,
respectively. Both alternatives, (Z1) with a = 0.02 and (Z2) with a = b = 0.04, ρ = 100, are
considered for simulation III. In each case, q = 100 simulations were realized and the sample
means of �(B, B̂) with different numbers of slices were computed. The results vary: while
in simulation I optimal numbers are below 10, in simulation III the opposite is true, as can be
seen in Table 1.
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Figure 3: Histograms of p-values for the orthogonality test for m = 1 (first column), m = 2 (second
column), and m = 4 (third column) slices obtained using the SIR method, based on q = 100, n = 20,
p = 3, and B = (1, 0, 0). From simulation I we present a marked point process of tessellation generators
in R

2 (first row), a fibre process of tessellation edges in R
2 (second row), and a surface process of

tessellation faces in R
3 (third row), and from simulation II we present a fibre process based on diffusion

(fourth row). The mean number of generators is 1000 in R
2 and 10 000 in R

3.

Table 1.

Simulation I, tessellations Simulation III

Slices Points in R
2 Edges in R

2 Faces in R
3 Z1 Z2

B1 B2 B1 B2 B1 B2 B1 B1

1 0.296 0.243 0.418 0.329 0.640 0.538 0.582 0.463
2 0.236 0.216 0.214 0.220 0.341 0.346 0.343 0.407
4 0.231 0.212 0.211 0.207 0.309 0.315 0.195 0.405
8 0.227 0.212 0.212 0.208 0.309 0.307 0.167 0.385

16 0.230 0.214 0.220 0.210 0.318 0.309 0.159 0.378
32 0.244 0.220 0.231 0.215 0.340 0.318 0.160 0.361

https://doi.org/10.1239/aap/1377868532 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1377868532


642 • SGSA O. ŠEDIVÝ ET AL.

0.5

0.5−

1.5

1.5−
0.50.5− 1.51.5−

(a) (c)
0.50.5− 1.51.5−

0.5

0.5−

1.5

1.5−

(b)
0.50.5− 1.51.5−

0.5

0.5−

1.5

1.5−

Figure 4: Estimators β̂1 from (26) based on simulation II. Panels (a) and (b) show estimators of B =
(1, 0, 0), where we have weaker (b2 = 0.3 in (a)) and stronger (b2 = 0.9 in (b)) dependence between
X1 and Y . Panel (c) presents b2 = 0.9 and estimators of B = ( 1

2 ,−1, 1
2 ). Points correspond to 50

simulations (estimators given by (24)), and the triangles represent the final estimator (26).

Table 2.

c
γ = 1.666 γ = 10

s = 50 s = 100 s = 50 s = 100

1 39 31 41 37
2 11 19 9 13

Estimators β̂1 from (26) based on simulation II are presented graphically in Figure 4.
The centre of the circle represents the true vector B and each vector β̂i1 is represented by a
point x, whose distance from the centre corresponds to the angle between β̂i1 and B. We
observe that the spread of the xs is smaller when the dependence between X1 and Y is bigger;
cf. Figure 4(a) and (b). The method also works for the general vector B in Figure 4(c). The
triangle represents β̂1, which, in each case, lies close to the true vector.

In order to demonstrate the estimation of the dimension c of the central subspace using
statistic �̂c in (31), in simulation II we made q = 50 simulations of X with α = 1 and Y as
above (without rotations). The number of slicesm = 3 was chosen. Since p = 3, the maximal
value of c0 we can use for testing H0 : c = c0 against HA : c > c0 is c0 = 2, true c = 1. The
numbers of accepted hypotheses for different cases are given in Table 2.

It arises that, for a larger number, s, of the test points as well as for a smaller coefficient
γ in the covariance function (32), the test points involve more dependence and the conclusion
is false. In the opposite case, their dependence decreases and the approximative test yields
better results.

6. Real data example

A real data specimen from Frcalová et al. (2010) which involves a planar fibre system is
analyzed. A spatiotemporal point pattern of action potentials (called spikes) of a place cell of
hippocampus of a rat looking for food in a circular arena C ⊂ R

2 is shown in Figure 5(a).
The experiment lasted T = 614 seconds and the location of the rat was recorded each 1

60 of a
second, so that we observe a track, which is modeled as a random H1-set.

The aim is to find out whether there is a significant dependence between the spiking activity
of the neuron and the movement of the rat. The method based on the weighted K-function
(29) is presented. Even if there is a temporal element in the experiment, we consider a purely
spatial problem within our context. Thus, the spiking activity is modeled as a planar intensity
{X1(s), s ∈ C} of the point process of spikes and Y is a planar fibre process (the track).
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Figure 5: (a) The line describes the track Y of a rat moving in a circular arena and the points are the
locations where the neuron fired. Altogether 1096 spikes were recorded. (b) Estimate of the spiking
intensity in a grey scale (white is the largest value). The black area indicates the region where we were

not able to estimate the intensity because of a lack of data.
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Figure 6: Test of independence of real data from neurophysiological experiment. It is based on the
estimated X-weighted K-function (29) transformed to the L-function, L(r) = √

K(r)/π . After k =
39 permutations the horizontal axis lies inside the envelopes (30); we do not reject the hypothesis of

independence of the spiking activity on the track (on significance level 0.05).

Let Y (t) be the location of the rat at time t . Since we observe the spikes along the track
(point process on a curve; see Frcalová and Beneš (2009)), we use a kernel estimator of the
intensity X1 of the form

X̂1(s) =
∑
si∈C k(‖s − si‖)∑

ti∈H k(‖s − Y (ti)‖)�t

,

where si is the location of a spike, H is a set of equidistant times, �t = ti+1 − ti , and k is a
kernel function, here given by

k(r) =
⎧⎨
⎩(b

2 − r2)
2

πb4 , r ≤ b,

0, r > b.

Figure 5(b) shows the corresponding intensity estimate X̂1, where we chose the bandwidth
b = 10. The result of the test is given in Figure 6. Independence hypothesis of the spiking
activity and the random track cannot be rejected.
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7. Conclusions

The dimension reduction problem for random Hk-sets brings interesting mathematical
problems on the frontier of stochastic geometry and linear algebra; see Subsection 3.2. Further
development in this area is desirable. Our improvement of the sliced inverse regression method
was demonstrated in simulations in Section 5, based on both standard and new statistical
methods from Section 4. The simulation of an H1-set (a fibre process) based on the diffusion
in Section 5 was motivated by the presented data of a track of an experimental rat (Section 6);
cf. Brillinger (2010) for further discussion on track modeling.
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