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Summary

Knowledge of quantitative trait locus (QTL) mapping in polyploids is almost void, albeit many

exquisite strategies of QTL mapping have been proposed and extensive investigations have been

carried out in diploid animals and plants. In this paper we develop a simple algorithm which uses

an iteratively reweighted least square method to map QTLs in tetraploid populations. The method

uses information from all markers in a linkage group to infer the probability distribution of QTL

genotype under the assumption of random chromosome segregation. Unlike QTL mapping in

diploid species, here we estimate and test the compound ‘gametic effect ’, which consists of the

composite ‘genic effect ’ of alleles and higher-order gene interactions. The validity and efficiency of

the proposed method are investigated through simulation studies. Results show that the method

can successfully locate QTLs and separates different sources (e.g. additive and dominance) of

variance components contributed by the QTLs.

1. Introduction

Polyploids are very common in plants, especially in

angiosperms. Many new species have been produced

in connection with tetraploids and higher polyploids.

The frequent occurrence of polyploidization in nature

and the widespread distribution of polyploids itself

suggest that polyploids play an important role in

evolution of the vegetative kingdom. Perhaps 50% of

all angiosperms and 44–95% of ferns and fern allies

are of polyploid origin (Soltis & Soltis, 1995). Among

these, some are of economic importance, such as

cultivated potato, sugarcane and alfalfa. In addition,

polyploid forms of plants can adapt to more extreme

conditions than their diploid relatives and are thus of

great practical value. Evidence from molecular data

has recently revealed that the amount of genetic
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diversity present in polyploids is remarkably higher

than that in diploids (Soltis & Soltis, 1995; Song et

al., ). Thus, it is useful to develop linkage maps directly

at the polyploid level. This will in turn provide insight

into the studies of the parentage formation and

genome constitution of polyploid species.

Construction of linkage maps in polyploids is more

challenging than that in diploids due to the complex

nature of multiple alleles in polyploids. Therefore,

many studies on constructing linkage maps have

focused on diploid relatives of polyploids, such as in

potato and alfalfa. However, there are several reasons

why mapping at high ploidy levels is necessary. First,

polyploidization and subsequent evolution of poly-

ploid genomes is an extremely dynamic process (Soltis

& Soltis, 1995). Song et al. (1995) detected extensive

changes in the nuclear genome of synthetic polyploids

in each of the first five generations. Hence, the linkage

maps constructed in diploid relatives are expected to

differ from those for polyploids. Secondly, not all

polyploids have a diploid relative available in nature

and genetic analyses of these polyploids must be

carried out in the polyploid form. Thirdly, many
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cultivated crops are polyploid species and the man-

agement of breeding programmes in these species is

actually carried out at the polyploid level, not at the

diploid level. Finally, directly mapping quantitative

trait loci (QTLs) at the polyploid level allows the

detection of higher-order interaction between alleles.

Recently, significant efforts have been made to

develop linkage maps for some polyploid species, such

as alfalfa, cultivated potato and sugarcane (Yu &

Pauls, 1993; Al Janabi et al., 1993; Da Silva et al.,

1993; Grivet et al., 1996). The mapping strategies

used in these studies are based on the idea of single-

dose restriction fragments as proposed by Ritter et al.

(1990) in diploid parents and extended by Wu et al.

(1992) to tetraploid species. Single-dose restriction

fragments occur only in individuals with genotype

Mmmm, where M and m stand for the dominant and

recessive alleles, respectively. A parent with such a

single dose of the dominant allele is called the simplex

parent. A simplex parent can produce two kinds of

gametes (Mm and mm) with a 1 :1 ratio. Crossing

between two simplex parents will generate progeny

with a band presence to absence ratio of 3:1,

equivalent to the well-known Mendelian ratio

observed in the progeny of F2 derived from crossing

of two inbred diploid grandparents. Therefore, map-

ping QTLs in tetraploids can follow existing pro-

cedures practised in diploid organisms. Yu & Pauls

(1993) and Da Silva et al. (1993) extended this method

to linkage analysis in crosses of duplex¬duplex or

simplex¬duplex, where a duplex parent is defined as

a parent with genotype MMmm. Hackett et al. (1998)

found that accuracy of linkage estimates depends on

the type of markers involved. The simplex–simplex

coupling pairs are most reliable, whereas the simplex–

simplex repulsion pairs and duplex–duplex pairs in

any configuration but coupling are least reliable. The

single-dose restriction fragment technique is par-

ticularly appropriate for polymerase chain reaction

(PCR)-based dominant markers. However, because

multiplex provide no information on segregation,

these types ofmarkers maskmost of the polymorphism

occurring between parents. In view of this, Milbourne

et al. (1997) and Meyer et al. (1998) suggested

combining high polymorphic markers, such as simple

sequence repeats (SSRs) or microsatellites, with

dominant markers for the construction of linkage

maps in tetraploid potato.

Although co-dominant markers are expensive to

genotype, they provide more information about the

allelic inheritance of a gene than dominant markers.

While many exquisite theories of QTL mapping have

been developed and extensive investigations have been

done in diploid organisms, methods of QTL mapping

using co-dominant markers have been lacking in

polyploids. In this study, we take a tetraploid full-sib

family as an example to show that QTL mapping in

polyploids is as convenient as that in diploids. Under

random chromosomal segregation, we use a multi-

point mapping method to infer the distribution QTL

genotype and then integrate it with Kempthorne’s

(1955) theory for the decomposition of genetic

variance. Instead of determining the ‘genic effect ’ of

allelic inheritance, we treat each gamete (the com-

bination of two alleles within the same locus) as a

segregation unit and then determine its ‘gametic

effect ’. In other words, the genotypic value of an

individual is determined entirely by the gametes that

make up the genotype of the individual. Under this

model, we develop an iteratively reweighted least

square method of QTL mapping in an outbred full-sib

family.

2. Statistical methods

(i) Genetic model

The mapping population consists of a single family of

full-sibs derived from the cross of two outbred parents.

An existing linkage map is assumed to be available for

many polymorphic co-dominant markers. The marker

linkage phases in the parents are assumed to be

known or can be deduced from grandparents or

through their progeny. Genotypic information of

these markers is then used to infer the distribution of

the genotype of a putative QTL linked with these

markers.

Because parents are assumed to be outbred, each

parent carries four different alleles at the QTL in

question. These four alleles are not identical-by-

descent and thus each one can be uniquely assigned a

label. Let Qm

"
Qm

#
Qm

$
Qm

%
and Qf

"
Qf

#
Qf

$
Qf

%
be the

genotypes of the male and female parents, respectively.

Each parent can produce six possible gametes (C#

%
¯6).

The configurations of the six gametes produced by the

male parent are

²Qm

"
Qm

#
Qm

"
Qm

$
Qm

"
Qm

%
Qm

#
Qm

$
Qm

#
Qm

%
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and those produced by the female parents are

²Qf

"
Qf

#
Qf

"
Qf

$
Qf

"
Qf

%
Qf

#
Qf

$
Qf

#
Qf

%
Qf

$
Qf

%
´.

With random union between the male and female

gametes, there are 36 possible genotypes in the

progeny. Denote G
ik

for i,k¯1,…, 6 as the genotypic

value of an individual with a genotype composed of

the ith gamete from the male parent and the kth

gamete from the female parent. For example, G
$&

is

the genotypic value of the genotype composed of the

3rd gamete from the male parent and the 5th gamete

from the female parent, i.e. Qm

"
Qm

%
Qf

#
Qf

%
. Let y

j
be the
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phenotypic value of the jth progeny, for j¯1,…, n.

The usual linear model for y
j
appears :

y
j
¯µ­3

'

i="

3
'

k="

X
ik(j)

G
ik
­ε

j
, (1)

where µ is the mean of the population ε
j

is the

environmental error distributed as N(0,σ#
ε ), and X

ik(j)

is an indicator variable defined as

X
ik(j)

¯
1

2
3

4

1 if j is of genotype G
ik

0 if j is not of genotype G
ik
.

The model is not of full rank because

3
'

i="

3
'

k="

X
ik(j)

¯1

for all j. Therefore, the population mean µ is usually

suppressed from the model, in which case the

genotypic values are expressed as deviations from the

mean. The genotypic value, however, is a composite

term, consisting of a gametic effect from each parent

and an interaction effect between the two gametes.

Specifically, G
ik

is expressed as

G
ik

¯αm

i
­αf

k
­δ

ik
for i,k¯1,…, 6, (2)

where αm

i
and αf

k
are the effects of gamete i from the

male parent and gamete k from the female parent, and

δ
ik

is the interaction effect between the two gametes.

Because each gamete is made up of two alleles, the

gametic effects, as αm

i
and αf

k
, are also composite terms

consisting of two allelic effects and the interaction

(dominance) effect between the two alleles. The

interaction effect δ
ik

also consists of higher-order gene

interactions, such as trigenic and quadrigenic effects.

The genotype of QTL is not observable, and thus

X
ik(j)

is missing. However, the distribution of X
ik(j)

can

be inferred from linked markers. Let p
ik(j)

¯Pr(X
ik(j)

¯1 r I
M(j)

) be the probability that X
ik(j)

¯1 con-

ditional on marker information I
M(j)

. We have

E(X
ik(j)

r I
M(j)

)¯ p
ik(j)

,

Var(X
ik(j)

r I
M(j)

)¯ p
ik(j)

(1®p
ik(j)

)

and

Cov(X
ik(j)

,X
ik(j)

r I
M(j)

)¯ p
ik(j)

p
ik(j)

.

method of computing p
ik(j)

will be described later.

Model (1) can be approximated by substituting

E(X
ik(j)

r I
M(j)

) in place of X
ik(j)

:

y
j
¯ 3

'

i="

3
'

k="

E(X
ik(j)

r I
M(j)

)G
ik
­e

j
. (3)

Note that the residual e
j
is not the same as ε

j
in (1) ;

instead, it is now distributed as a mixture of normal

distributions with a heterogeneous variance. Let us

define X
j
as a 36¬1 vector consisting of all the 36

X
ik(j)

values which are arranged in the appropriate

order, and β is a 36¬1 vector corresponding to the 36

G
ik

values. Further, denote U
j
¯E(X

j
r I

M(j)
) as a

vector of conditional expectations and Σ
j
¯Var(X

j
r

I
M(j)

) as a 36¬36 conditional variance–covariance

matrix. We have an alternative expression for (3) :

y
j
¯U

j
β­e

j
.

Comparing this equation with (1), we can see that

e
j
¯ (X

j
®U

j
)β­ε

j
. (4)

Therefore, e
j
has an expectation of zero and a variance

of

Var(e
j
)¯βT Σ

j
β­σ#

ε ,

where the first term βT Σ
j
β reflects the inflation of the

residual error variance due to uncertainty of the QTL

genotype (Xu, 1995, 1998a, b). An estimate of β can

be obtained from the heterogeneous residual variance

model using the iteratively reweighted least squares

method described by Xu (1998a, b).

(ii) Parameter estimation

Under the above formulation, we first estimate the 36

genotypic values β, which have been expressed as

deviations from the mean, and then convert them into

the required genetic effects – a total of 48 genetic

parameters. Therefore, the model is overpara-

meterized and, as a result, we are forced to make the

following constraints to the parameters :

3
i

αm

i
¯3

k

αf

k
¯3

i

δ
ik

¯3
k

δ
ik

¯ 0.

When tracing the gametic effects of parents, the linear

model and the above constraints are identical to a

two-way ANOVA. After the constraints, there are 5

df left for the six gametic effects for each parent and

25 df for the interaction between the two parents.

Hence, there are only 35 estimable genetic effects

which are obtained using the linear contrasts of the 36

genotypic values. The 35 linear contrasts are

1

2
3

4

αm

i
¯Ga

i.
®Ga

..
for i¯1,…, 5

αf

k
¯Ga

.k
®Ga

..
for k¯1,…, 5

δ
ik

¯G
ik
®Ga

i.
®Ga

.k
­Ga

..
for i,k¯1,…, 5, (5)

where

Ga
i.
¯

1

6
3
'

j="

G
ij
, Ga

.k
¯

1

6
3
'

j="

G
jk

and

Ga
...

¯
1

36
3
ik

G
ij
¯ 0.
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Note that we have used the same symbols for both the

linear contrasts and the original allelic effects,

although they have different meanings. Treating the

linear contrasts as genetic parameters and denoting

the vector of these genetic parameters by

θ¯²αm

"
…αm

&
,αf

"
…αf

&
, δ

""
… δ

&&
´

we can express the genetic parameters by

θ¯Hβ¯ [H
"
}}H

#
}}H

$
]β,

where H is a 35¬36 matrix containing the coefficients

of the contrasts, H
"
is a submatrix (the first five rows)

of H, H
#

is a submatrix (rows 6–10) of H, H
$

is a

submatrix (rows 11–35) of H, and the symbol ‘}} ’

represents vertical matrix concatenation borrowed

from the SAS}IML language (SAS Institute, 1990).

The pattern of the arrangement of elements in matrix

H can be found by examining (5).

The variance of the total gametic effects, analogous

to the ‘additive effects ’ in diploids, is defined as

follows:

σ#
A
¯σ#

m
­σ#

f
¯

1

5¬36#

βT(HT

"
H

"
­HT

#
H

#
)β (6)

where σ#
m

and σ#
f

are the paternal and maternal

components of the gametic variance. The variance of

interaction, analogous to the ‘dominance variance’ in

diploid organisms, is given by

σ#
D
¯

1

25¬36#

βTHT

$
H

$
β. (7)

Alternatively, σ#
D

can be obtained by

σ#
D
¯

1

36
3
i,j

G#
ij
®σ#

A
.

Asymptotically unbiased estimates of the above

variance components are (Seber, 1977)

σW #
A
¯

1

5¬36#

¬²β#T(HT

"
H

"
­HT

#
H

#
)β#®Tr[HT

"
H

"
­HT

#
H

#
)Vβ#]´, (8)

Pr(Q¯Q
i
rM¯M

j
,N¯N

k
)¯

Pr(Q¯Q
i
) Pr(M¯M

j
rQ¯Q

i
) Pr(N¯N

k
rQ¯Q

i
)

3
$'

i="

Pr(Q¯Q
i
) Pr(M¯M

j
rQ¯Q

i
) Pr(N¯N

k
rQ¯Q

i
)

, (12)

where Vβ# ¯Var(β# ), the variance–covariance matrix of

the estimated genotypic values. Similarly, an asympto-

tically unbiased estimate of σ#
D

is

σW #
D
¯

1

25¬36#

²β#THT

$
H

$
β#®Tr(HT

$
H

$
Vβ#)´. (9)

(iii) Tests of hypotheses

The overall hypothesis to be tested is

H
!
:Hβ¯ 0.

We use an F-test statistic,

F¯β#THT[H(UTV−"
β# U)−"HT]Hβ# , (10)

where U¯ [U
"
}}U

#
}}… }}U

n
] and U

j
has been

defined in an earlier section.

The overall test statistic can be partitioned into

three subtests, each testing a particular variance

component. The test statistic for the kth component is

F
k
¯β#THT

k
[H

k
(UTV−"

β# U)−"HT

k
]H

k
β# , (11)

where F
"

tests for the paternal component, F
#

for the

maternal component and F
$

for the interaction.

(iv) Inferring QTL genotype from linked markers

We now go back to the conditional expectations and

variance–covariance matrix of the QTL genotype

indicator X
j
given marker information. At a marker

locus, a randomly selected parent does not necessarily

segregate for four distinguished alleles. Two or more

alleles may be identical-by-state, resulting in a partially

informative or non-informative marker. Therefore, a

multipoint method that simultaneously uses all

markers in the same linkage group is used to infer the

distribution of X
j
. To simplify the derivation, we first

present the interval mapping procedure that uses only

two flanking markers. We can then easily extend the

interval mapping to multipoint mapping. Define

Mm

"
Mm

#
Mm

$
Mm

%
and Mf

"
Mf

#
Mf

$
Mf

%
as the marker geno-

types of the male and female parents, respectively, at

the left-hand side of the QTL, and Nm

"
Nm

#
Nm

$
Nm

%
and

Nf

"
Nf

#
Nf

$
Nf

%
as those at the right-hand side. Under

random chromosomal segregation, each parent will

produce six possible gametes at each marker, resulting

in a total of 36 possible genotypes in the progeny.

Define M ` ²M
"
,M

#
,…,M

$'
´ as the set of 36 possible

genotypes where M
"
¯ Mm

"
Mm

#
Mf

"
Mf

#
etc. are properly

ordered in the set, and also define N ` ²N
"
,N

#
,…,N

$'
´

and Q ` ²Q
"
,Q

#
,…,Q

$'
´ in the same manner. Interval

mapping requires computing Pr(Q¯Q
i
rM¯M

j
,

N¯N
k
) for i, j,k¯1,…, 36. This is achieved by using

the Bayes theorem:

where Pr(Q¯Q
i
)¯1}36 for i¯1,…, 36 is the prior

probability, and Pr(M¯M
j
rQ¯Q

i
) or Pr(N¯N

k
rQ

¯Q
i
) is the transition probability from a QTL

genotype to a marker genotype. The transition matrix

between M and Q is given by

T
MQ

¯TCT,
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where C denotes the Kronecker product of two

matrices and

T¯

A

B

(a­b)}d (b­c)}d (b­c)}d (b­c)}d (b­c)}d 2c}d

(b­c)}d (a­b)}d (b­c)}d (b­c)}d 2c}d (b­c)}d

(b­c)}d (b­c)}d (a­b)}d 2c}d (b­c)}d (b­c)}d

(b­c)}d (b­c)}d 2c}d (a­b)}d (b­c)}d (b­c)}d

(b­c)}d 2c}d (b­c)}d (b­c)}d (a­b)}d (b­c)}d

2c}d (b­c)}d (b­c)}d (b­c)}d (b­c)}d (a­b)}d

C

D

.

Table 1. Obser�ed 95th and 99th empirical threshold �alues obtained from 1000 replicated simulations under the

hypothesis of no QTL segregation. The length of the linkage map is 100 cM

Linkage map
α¯ 0±05 α¯ 0±01

interval Allele T T
m

T
f

T
m×f

T T
m

T
f

T
m×f

10 cM 4 62±70 13±72 14±15 48±38 72±00 18±51 18±62 54±77
6 63±21 14±10 14±49 49±82 72±43 18±18 19±33 56±18
8 63±19 13±49 14±46 49±12 73±86 18±74 18±75 58±40

5 cMa 6 61±59 13±41 13±55 47±43 68±07 19±14 18±66 53±16
20 cM 6 60±28 12±52 12±98 47±17 67±23 16±83 17±13 52±42

a When the marker interval is 5 cM, the length of the map is only 50 cM so that the total number of markers remains the
same as in other settings.

Table 2. Mean test statistics for o�erall (T) paternal (T
m
) maternal (T

f
) and interaction (T

m×f
) effects from 100

replicated simulations, with standard errors gi�en in parentheses

h# T T
m

T
f

T
m×f

No. of alleles per marker
0±10 4 71±31 (13±50) 18±88 (7±74) 17±63 (9±18) 32±09 (9±54)

6 73±53 (15±54) 19±21 (8±94) 18±63 (7±84) 31±84 (9±33)
8 72±01 (13±48) 18±17 (8±61) 18±56 (8±36) 32±22 (8±75)

0±20 4 102±35 (21±30) 33±77 (11±26) 34±14 (11±16) 26±83 (7±59)
6 104±57 (19±95) 35±92 (11±94) 33±97 (12±52) 27±80 (8±77)
8 105±88 (21±32) 34±61 (10±75) 35±30 (14±59) 28±00 (6±94)

0±40 4 207±98 (34±75) 80±56 (19±39) 80±19 (17±76) 26±25 (6±98)
6 210±08 (37±82) 80±06 (20±22) 81±30 (22±73) 27±29 (8±44)
8 207±18 (31±36) 81±84 (20±59) 80±74 (19±62) 25±75 (6±70)

Length of marker interval (cM)a

0±10 5 73±08 (14±29) 19±63 (8±57) 20±96 (8±65) 29±29 (7±42)
20 68±94 (14±33) 17±64 (8±19) 16±72 (7±53) 30±94 (8±83)

0±20 5 109±95 (22±30) 36±80 (12±82) 37±42 (11±22) 27±07 (7±16)
20 98±31 (20±66) 30±45 (10±97) 33±62 (11±33) 26±53 (7±17)

0±40 5 227±16 (38±22) 88±34 (18±50) 91±80 (23±28) 26±12 (8±03)
20 181±00 (32±48) 68±38 (20±63) 66±88 (18±04) 26±04 (7±82)

Interaction effectb

0±10 σ#
δ ¯ 0±056 69±44 (12±40) 12±16 (6±46) 11±74 (6±11) 43±87 (9±31)

0±20 σ#
δ ¯ 0±125 103±63 (22±56) 18±80 (7±89) 20±26 (99±12) 60±46 (15±54)

0±40 σ#
δ ¯ 0±334 191±35 (33±28) 42±08 (12±87) 41±28 (14±80) 99±10 (21±87)

Sample size (n)
0±20 200 82±14 (18±35) 21±83 10±87) 23±08 (12±28) 31±00 (9±99)

300 104±57 (19±95) 35±92 (11±94) 33±97 (12±52) 27±80 (8±77)
500 145±30 (27±20) 56±80 (17±32) 53±49 (15±83) 26±89 (8±62)

a The length of the chromosome segment is 50 cM when the marker interval is set at 5 cM.
b Interaction variance is set at σ#

δ ¯ 2σ#
m

¯ 2σ#
f
¯ 0±056, 0±125 and 0±334 for h#¯ 0±10, 0±20 and 0±40, respectively.
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Table 3. Statistical power (%) of QTL detection at type I error rates of α¯ 0±05 and α¯ 0±01 for testing the

o�erall (T), paternal (T
m
), maternal (T

f
) and interaction (T

m×f
) effects (obtained from 100 replicated

simulations)

T T
m

T
f

T
m×f

h# α¯ 0±05 α¯ 0±01 α¯ 0±05 α¯ 0±01 α¯ 0±05 α¯ 0±01 α¯ 0±05 α¯ 0±01

No. of marker alleles
0±10 4 72±0 42±0 70±0 45±0 57±0 42±0 5±0 1±0

6 73±0 47±0 67±0 47±0 66±0 41±0 5±0 1±0
8 77±0 41±0 71±0 44±0 69±0 44±0 6±0 1±0

0±20 4 98±0 95±0 97±0 92±0 99±0 94±0 0±0 0±0
6 100±0 97±0 99±0 96±0 99±0 91±0 2±0 1±0
8 100±0 97±0 100±0 97±0 97±0 89±0 1±0 0±0

0±40 4 100±0 100±0 100±0 100±0 100±0 100±0 0±0 0±0
6 100±0 100±0 100±0 100±0 100±0 99±0 2±0 0±0
8 100±0 100±0 100±0 100±0 100±0 100±0 1±0 0±0

Length of marker interval (cM)a

0±10 5 78±0 57±0 75±0 48±0 73±0 57±0 2±0 0±0
20 69±0 52±0 68±0 52±0 64±0 48±0 3±0 0±0

0±20 5 100±0 100±0 100±0 97±0 100±0 96±0 0±0 0±0
20 98±0 95±0 97±0 94±0 98±0 94±0 0±0 0±0

0±40 5 100±0 100±0 100±0 100±0 100±0 100±0 1±0 0±0
20 100±0 100±0 100±0 100±0 100±0 100±0 0±0 0±0

Dominance effectb

0±10 σ#
δ ¯ 0±050 71±0 42±0 32±0 19±0 32±0 12±0 24±0 14±0

0±20 σ#
δ ¯ 0±125 100±0 99±0 73±0 57±0 65±0 40±0 65±0 43±0

0±40 σ#
δ ¯ 0±334 100±0 100±0 100±0 99±0 99±0 97±0 100±0 99±0

Sample size (n)
0±20 200 81±0 71±0 74±0 59±0 72±0 55±0 5±0 0±0

300 100±0 97±0 99±0 96±0 99±0 91±0 2±0 1±0
500 100±0 100±0 100±0 100±0 100±0 100±0 2±0 2±0

a,b See the annotation of Table 2.

The value of each element is a function of the

recombination fraction (r) between the QTL and the

marker in question. Under the Haldane mapping

function, a¯ (1®r)#, b¯ r(1®r)}3, c¯ r#}9 and d¯
1®2r}3­4r#}9. The numerator in (12) can be

expressed in matrix notation:

Pr(M¯M
j
rQ¯Q

i
) Pr(N¯N

k
rQ¯Q

i
)

¯1T D
M

T
MQ

D
(i)

T
QN

D
N

1, (13)

where 1 is a 36¬1 vector with unity elements, D
M

is

a diagonal matrix with the jjth diagonal element equal

to 1 and all other elements equal to 0, D
N

is similarly

defined but with the kkth diagonal element equal to 1

and all others equal to 0, and D
(i)

is a diagonal matrix

with the iith diagonal element equal to 1 and all others

equal to 0. Note that D
M

represents the data from

marker M. Because the jth genotype of marker M is

observed, the jjth element of D
M

is filled by 1. The

kkth diagonal element of D
N

is filled by 1 because the

kth genotype of marker N has been observed. We

choose D
(i)

because it is the probability of the ith

genotype of the QTL that is of interest.

One advantage of the matrix notation comes from

its ease of handling missing and partially informative

markers. If a marker is not fully informative, more

than one possible genotype among the 36 are

compatible with the data. In this case, we can easily

take all the compatible genotypes into consideration

by replacing D
M

by a D matrix with all diagonal

elements corresponding to the positions of the

compatible genotypes filled by one and all other

elements filled by 0. If both parents are homozygotes

at a marker locus, or the genotype is missing at a

particular marker for an individual, all genotypes are

compatible, and thus D
M

is simply an identity matrix,

i.e. all diagonal elements are one. With the matrix

notation, dominant markers present no problem.

The most important advantage of the above

treatment is the ability to perform multipoint map-

ping. If markers are not fully informative, non-

flanking markers also provide information for the

genotype distribution of QTL. Multipoint mapping

using all markers simultaneously will significantly

increase the power of QTL detection. Assuming that

there are m markers in the linkage group and QTL is

located between markers k and k­1, the general

formula for the multipoint method is
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Table 4. Mean estimates of QTL parameters (QTL position, heritability, paternal, maternal and interaction

�ariances, as well as the residual �ariance) obtained from 100 replicated simulations when interaction effects is

absent. The standard errors are gi�en in the parentheses

h#

Marker
allele

QTL position
(cM) hW # σW #

m
σW #

f
σW #δ σW #ε

Parameter : 25±00 0±100 0±056 0±056 0±000 1±000
0±10 4 26±54 (16±35) 0±082 (0±045) 0±046 (0±035) 0±039 (0±036) 0±034 (0±056) 0±935 (0±090)

6 28±84 (12±00) 0±102 (0±038) 0±054 (0±033) 0±055 (0±028) 0±033 (0±058) 0±958 (0±096)
8 25±12 (11±55) 0±098 (0±049) 0±055 (0±041) 0±053 (0±038) 0±035 (0±053) 0±974 (0±084)

Parameter : 25±00 0±200 0±125 0±125 0±000 1±000
0±20 4 24±84 (6±57) 0±202 (0±056) 0±124 (0±057) 0±128 (0±051) 0±011 (0±048) 0±980 (0±102)

6 25±60 (5±61) 0±196 (0±053) 0±126 (0±052) 0±118 (0±051) 0±013 (0±045) 0±980 (0±088)
8 25±44 (5±97) 0±194 (0±059) 0±124 (0±054) 0±117 (0±059) 0±015 (0±041) 0±985 (0±088)

Parameter : 25±00 0±400 0±334 0±334 0±000 1±000
0±40 4 24±83 (5±00) 0±374 (0±055) 0±296 (0±086) 0±303 (0±089) 0±008 (0±047) 0±990 (0±077)

6 24±40 (4±29) 0±392 (0±062) 0±328 (0±090) 0±324 (0±095) 0±009 (0±184) 0±993 (0±092)
8 25±52 (3±51) 0±393 (0±059) 0±331 (0±094) 0±325 (0±096) 0±004 ((0±040) 0±996 (0±091)

Pr(Q¯Q
i
r I

M
)¯
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i
) Pr(I

M
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i
)

3
$'

i="
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i
) Pr(I

M
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i
)

, (14)

where I
M

is a generic symbol for marker information

(all markers) and

Pr(I
M

rQ¯Q
i
)¯1TD

"
T
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D
#
…D

k
D

kQ
D

(i)
T

Q(k+")

¬D
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…D
m−"

T
(m−")m

D
m

1, (15)

where D
k

is the data matrix for marker k. Partially

important markers are more common than fully

informative markers in outbred parents. This is

particularly true in tetraploid mapping presented

here. Therefore, multipoint mapping is essential in

tetraploids. Equation (15) is essentially derived using

the hidden Markov model (HMM). Further references

for multipoint mapping using HMM are Lander &

Green (1987), Kruglyak & Lander (1995), Jiang &

Zeng (1997), Xu & Gessler (1998) and Xie & Xu

(1999).

3. Simulation studies

To explore the properties of QTL mapping in

tetraploids, we conducted a series of simulation

experiments. Each gamete consists of two alleles, and

the two alleles act together as a unit. The six possible

gametes in each parent are considered as six ‘alleles ’

each of which is assigned a value. In the simulation

experiments, the six ‘allelic effects ’ of each parent are

fixed (not randomly sampled), and their values are

determined so that their variance equals a preassigned

genetic variance. We then applied Kempthorne’s

(1954) method for multiple alleles in diploids (cf. Li,

1957) to the tetraploid genetic analysis.

In most cases, we simulated one chromosome of

length 100 mM with 11 markers evenly spaced along

the chromosome (equivalent to 10 cM marker
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Fig. 1. Comparison of the F-test statistics of QTL
mapping in a full-sib family of size 300. Eleven markers
each having six alleles are evenly spaced along a 100 cM
long chromosome. A single additive QTL is at position
25 cM and explains 20% of the total variation. T is the
overall test for the presence of QTL; T

m
is the test for

QTL segregation in the male parent ; T
f
is the test for

QTL segregation in the female parent ; and T
m×f

is the test
for the interaction.

intervals). One QTL was simulated at position 25 cM

in a full-sib family of size 300. To determine the

marker linkage phases in the parents, we first randomly

chose four grandparents from a reference hypothetical

population that is in Hardy–Weinberg equilibrium,

and then generated two parents for mating. This is

similar to a four-way cross, but with four heterozygous

lines, i.e. grandparents. Marker alleles at each locus in

each of the four grandparents were sampled at random

from the base population with an equal frequency.

The variance of the environmental effect was set to

σ#
ε ¯1±0.
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To evaluate the performance of QTL mapping, we

varied the following factors successively: (1) the size

of theQTL,measured byQTLadditive and dominance

variances, (2) the amount of marker information,

indicated by the number of marker alleles and the

marker density, (3) sample size of the family, and (4)

one versus two QTLs. In the two-QTL analysis we

generated the phenotypic data with one QTL segre-

gating in the male parent and the other in the female

parent. When sampling the marker alleles to make a

marker genotype, we sampled the alleles from three

different hypothetical base populations: (1) popu-

lation one consists of four alleles each equal frequency

(1}4), (2) population two consists of six alleles with

equal frequency (1}6), and (3) population three

consists of eight alleles with equal frequency (1}8).

Note that even under the most informative situation

of eight alleles, within each repeat of the simulations,

the two parents at any markers are hardly fully

informative (with probability 8!("
)
))¯ 0±0024192 for

the two parents to carry eight different alleles).

Therefore, multipoint method plays an important role

in the simulation studies. Under each condition the

simulation was repeated 100 times. The standard

error of an estimate is calculated from the standard

deviation of the estimates among 100 replicates.

Statistical power is determined by counting the

number of runs out of 100 replicates which have a test

statistic greater than an empirical threshold value. To

estimate the threshold values, we ran an additional

1000 simulations under the null model (with no QTL

segregation). The empirical threshold values under

each condition were then obtained by determining the

95th and the 99th percentiles of the highest test

statistics from the list of 1000 runs under the null

model and are presented in Table 1. These threshold

values are slightly larger than those of the χ#

distribution for the overall test T¯F (with 35 df), for

test of the paternal segregation T
m

¯F
"
(with 5 df), for

test of the maternal segregation T
f
¯F

#
(with 5 df) and

for test of the interaction T
m×f

¯F
$

(with 25 df).

(i) QTL detection

The test statistics and the powers of QTL detection

over 100 replicated simulations are summarized in

Tables 2 and 3, respectively. As expected, the test

statistic and power are increased with the increase in

the size of QTL, marker information content and the

family size.

Fig. 1 gives the plots of the mean test statistics

against the map position over 100 replicates for a

QTL explaining 20% trait variation. The true position

of the simulated QTL is at position 25 cM. The

profiles of the test statistics behave exactly as we

expected. The overall test (T ) for the presence of a
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Table 6. Mean estimates of QTL parameters obtained from 100 replicated simulations (comparing different

marker inter�als). The standard errors are gi�en in the parentheses

h#

Marker
allele

QTL position
(cM) hW # σW #

m
σW #

f
σW #δ σW #ε

Parameter : 25±00 0±100 0±056 0±056 0±000 1±000
0±10 5 cM 25±99 (8±97) 0±102 (0±044) 0±054 (0±040) 0±059 (0±036) 0±014 (0±050) 0±978 (0±085)

20 cM 29±84 (19±75) 0±091 (0±059) 0±049 (0±038) 0±044 (0±044) 0±016 (0±086) 0±921 (0±120)

Parameter : 25±00 0±200 0±125 0±125 0±000 1±000
0±20 5 cM 25±26 (3±79) 0±199 (0±053) 0±122 (0±051) 0±129 (0±049) 0±004 (0±034) 0±992 (0±094)

20 cM 26±04 (7±47) 0±212 (0±061) 0±128 (0±070) 0±139 (0±053) 0±019 (0±055) 0±937 (0±116)

Parameter : 25±00 0±400 0±334 0±334 0±000 1±000
0±40 5 cM 24±66 (1±83) 0±394 (0±056) 0±329 (0±089) 0±331 (0±092) 0±003 (0±042) 1±000 (0±093)

20 cM 25±52 (5±84) 0±406 (0±077) 0±331 (0±113) 0±323 (0±110) 0±005 (0±107) 0±940 (0±128)

Table 7. Mean estimates of QTL parameters obtained from 100 replicated simulations (comparing different

sample sizes). The standard errors are gi�en in the parentheses

Family size
QTL position
(cM) hW # σW #

m
σW #

f
σW #δ σW #ε

Parameter : 25±00 0±200 0±125 0±125 0±000 1±000
200 25±74 (11±36) 0±195 (0±092) 0±114 (0±078) 0±118 (0±089) 0±050 (0±106) 0±920 (0±114)
300 25±60 (5±61) 0±196 (0±053) 0±126 (0±052) 0±118 (0±051) 0±013 (0±045) 0±980 (0±088)
500 25±74 (4±66) 0±188 (0±042) 0±122 (0±044) 0±112 (0±044) 0±006 (0±028) 0±998 (0±070)
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Fig. 2. Profiles of the F-test statistics for QTL mapping in
a full-sib family of size 300. Eleven markers each having
six alleles are evenly spaced along a 100 cM chromosome.
Two QTLs are simulated, one is at position 15 cM and
segregates in the male parent only, and the other is at
75 cM and segregates in the female parent only. See the
legend of Fig. 1 for T, T

m
, T

f
and T

m×f
.

QTL has the highest test statistic, whereas the curves

for T
m

and T
f
have similar heights due to σ#

m
¯σ#

f
¯

0±125, and the shape of T
m×f

is flat because σ#
δ ¯ 0±0. It

can be seen that T
m×f

gives a rather high signal

although the interaction effect is zero. However, the

T
m×f

test is not significant because it has a high critical

value due to the large number of degrees of freedom

(df¯ 25).

(ii) QTL parameter estimation

Under σ#
δ ¯ 0±0, the QTL additive variance was

examined at three levels : σ#
A
¯ 0±111, 0±250 and 0±667,

corresponding to a QTL heritability of h#¯
σ#

A
}(σ#

A
­σ#

E
)¯ 0±10, 0±20 and 0±40, respectively. The

average values of estimated QTL parameters and

standard errors of the estimates are given in Table 4.

The size of the QTL notably affects the precision of

the estimated QTL position. In the case of low QTL

heritability (h#¯ 0±10), the estimated QTL position is

biased towards the centre. When the interaction effect

exists, the QTL position and various variance com-

ponents are also successfully estimated, implying a fair

partitioning of the additive and interaction variances

(Table 5).

The number of alleles at each marker locus has a

small effect on the estimates of various variance

components and the heritability. However, it has a

relatively large impact on the precision of the estimated

position of the QTL. A large number of alleles

indicates high information content and thus can

reduce the standard error of the estimated position

(see Table 4). The length of the marker interval also
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reflects marker information content. We simulated

three levels of marker interval length: 5, 10 and 20 cM

per interval. The map lengths simulated are 100 cM

for the 10 cM and 20 cM intervals, and 50 cM for the

5 cM interval case. Each marker locus has 6 alleles in

the base population. As expected, high marker density

can reduce the standard errors of the estimated QTL

position and genetic variance components (Table 6).

The mean estimates of the QTL position and

variance components under three levels of family sizes

(200, 300 and 500) are given in Table 7. As expected,

sample size has a profound effect on the performance

of the method.

(iii) Analysis of two QTLs

Here we simulated a 100 cM long chromosome

segment with 11 evenly spaced markers each having

six alleles. The first QTL was put at position 15 cM

and segregates only in the male parent, and the second

QTL was put at 75 cM and segregates only in the

female parent. The two QTLs jointly explain 40% of

the total phenotypic variance. We used the single-

QTL model to analyse the data. The mean test

statistics (obtained from 100 replicated simulations)

are plotted against the map position (Fig. 2). The

overall test (T ) for the presence of QTLs shows two

peaks and has a signal twice as high as either T
m

or

T
f
. The T

m
test statistic indicates a QTL segregating in

the male parent whereas the T
f
test statistic indicates

a QTL segregating in the female parent. The T
m×f

curve is flat because the interaction effect has been set

to zero. We did not examine the multiple QTL model

or the composite mapping approaches (Jansen, 1993;

Zeng, 1994) which are designed to search for multiple

QTLs.

4. Discussion

The tetraploid mapping procedure is developed using

an outbred full-sib family in which the two parents

can carry up to eight different alleles at each marker

and QTL. In practice, however, it is rarely true that

the eight alleles are all different at any marker.

Essentially, all markers are partially informative. the

multipoint method presented in this study has pro-

vided an automatic mechanism for handling partially

informative markers. The genetic model, however,

still assumes eight different alleles at the QTL in

question. This presents no problem because if the

number of alleles at the QTL is less than eight, we will

have less than 36 distinguishable genotypes in the

progeny and some of the linear contrasts (genetic

effects) will have a zero expectation. The test statistics

for those contrasts are expected to be non-significant.

This is equivalent to the situation of eight different

alleles but some of the allelic differences being

infinitesimal. There is no logical problem in statistics

to estimate and test an effect with zero expectation. It

can decrease the statistical power, however, if one

knows exactly the number of distinguishable geno-

types but still pretends there are 36 distinguishable

genotypes. If the history of the base population in

which the parents are sampled is known, the number

of alleles may be known and this information should

be taken into account. For example, if the progeny are

derived from selfing a non-inbred parent, the maxi-

mum number of alleles in the family is immediately

known (four alleles), and the maximum possible

number of genotypes in the progeny will be 6(6­1)}
2¯ 21 instead of 36. If the progeny are derived from

selfing a hybrid of two inbred lines, then the number

of alleles is two and the maximum number of

genotypes in the progeny is six – far fewer than 36.

One advantage of polyploid mapping over diploid

mapping comes from the increased chance of sampling

a non-homozygous parent. If a gene is segregating in

a base population but the sampled parents are

homozygous, then the genetic variance at this locus

cannot be detected, no matter how large the family

size is. This has been explained as the drift error (Xu,

1996). In tetraploid mapping, this drift error can be

substantially reduced compared with diploid mapping.

For instance, the probability of sampling a het-

erozygous diploid (two alleles per locus) parent from

a base population with three (K¯ 3) equally frequent

alleles is (K#−"®1)}K#−"¯ 2}3). However, the prob-

ability of sampling a non-homozygous tetraploid

(four alleles per locus) parent from the same base

population is (K%−"®1)}K%−"¯ 26}27.

Although the model presented in this study is a

single-QTL model, it can be extended to handle

multiple QTLs with no theoretical difficulty. The

model can even be modified to estimate and test

potential epistatic effects. One practical problem of

multiple QTL mapping is the inconvenience of jointly

searching for the number of QTLs and their locations.

The problem has not been completely solved even

with simple line crossing experiments in diploid

species. Bayes’ method of QTL mapping has been

investigated in diploid organisms (Satagopan et al.,

1996) ; Sillanpaa & Arjas, 1998) and its application to

tetraploid mapping certainly represents the direction

of future research.

Existing methods of QTL mapping in tetraploids

rely primarily on dominant markers (Hackett et al.,

1998). The efficiency of these methods depends on the

marker genotypes selected for the parents. Selecting

the simplex–simplex pair of parents proves to be

efficient and any other types of pairs are all inefficient.

If one knows, a priori, that a QTL is sitting near a

marker with both parents being simplex, then the

analysis seems to be meaningful ; otherwise, chromo-

somal scanting is required. The probability of selecting

https://doi.org/10.1017/S0016672399004395 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672399004395


Mapping QTL in tetraploid species 115

two parents with sufficient number of markers of the

required simplex–simplex configuration can be ex-

tremely small. Therefore, co-dominant markers are

necessary for tetraploid mapping. Genotyping a large

number of co-dominant markers is still expensive, but

this economic limitation will soon disappear. This

study has provided the statistical tools with which we

are now ready to analyse real data as they become

available.
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