NON-EXISTENCE OF ODD PERIODIC MAPS ON

CERTAIN SPACES WITHOUT FIXED POINTS

Tej Bahadur Singh

In this paper, we show that the fixed point set of Z_{p}-actions, p an odd prime, on a finitistic space X of type (a, b) is non-empty, whenever $b \equiv 0(\bmod p)$. We also prove a similar result for circle group actions on finitistic spaces of $(a, 0)$ type.

1. Statement of main results

Let X be a finitistic space, that is, X is paracompact Hausdorff and each open cover of it has a finite dimensional open refinement. We say that a space X has type (a, b) if

$$
H^{i n}(X ; Z)=Z, \quad i=0,1,2,3
$$

are the only non-trivial cohomology groups and there are generators $u_{i} \in H^{i n}(X ; Z), i=0,1,2,3$ such that

$$
u_{1}^{2}=a u_{2}, u_{1} u_{2}=b u_{3}, a, b \in Z
$$

For arbitrary integers a and b, there are spaces of type (a, b) [6]. Here, by $H^{*}(Y ; \Lambda)$ we mean the sheaf cohomology of the space Y with

Received 29 March 1985.

[^0]closed supports on Y and coefficients in the constant sheaf associated with a given ring Λ, in the sense of [1]. It is easy to see that the Universal coefficient formula for Z_{p}-coefficients holds in general.
Therefore, we have
$$
H^{i n}\left(X ; Z_{p}\right) \approx Z_{p}, \quad i=0,1,2,3
$$

Thus X is a Poincaré duality space over Z_{p}, if $b \neq 0(\bmod p)$, having cohomology ring isomorphic to that of $S^{n} \times S^{2 n}$ or a cohomology projective space of height 3 , according as $a \equiv 0(\bmod p)$ or $a \neq 0(\bmod p)$. The fixed point sets of Z_{p}-actions and S^{1}-actions on such spaces have been studied in detail (for example see [2, Chapter VII]). We consider the remaining cases here. In fact we prove the following

THEOREM 1. Let $G=Z_{p}, p$ an odd prime, act continuously on a finitistic space X of (a, b) type; with fixed point set F. If $b \equiv 0(\bmod p)$ then F is non-empty.

For circle group actions, we prove the following.
THEOREM 2. Let $G=S^{l}$ act continuously with finitely mony orbit types on a finitistic space X of $(a, 0)$ type. Then the fixed point set $F=X^{G}$ is non-empty.

We generalise some results in $\$ 2$ and prove the theorems in $\S 3$.
2. A criterion for the existence of fixed points

Let a topological group G act continuously on a space X and let $E_{G} \rightarrow B_{G}$ be a universal principal G-bundle. The quotient space of $X \times E_{G}$ under the diagonal action of G is denoted by X_{G}. We have the associated bundle

$$
X \longrightarrow X_{G} \xrightarrow{\pi} B_{G}
$$

over B_{G} with fiber X and structural group G. For a compact Lie group G, B_{G} is a $C W$-complex with finite N-skeleton B_{G}^{N} for all N. If ${ }_{E}{ }_{G}^{N}$ is the inverse image of B_{G}^{N}, then E_{G}^{N} is compact and N-universal,
that is, $H^{j}\left(E_{G}^{N} ; \Lambda\right)=0$ for $j<N$. Let

$$
X_{G}^{N}=X \times{ }_{G} E_{G}^{N},
$$

which is the associated bundle over B_{G}^{N} with fiber X. The equi-variant cohomology of the G-space X is defined by

$$
H_{G}^{*}(X)=H^{*}\left(X_{G}\right)
$$

For Hausdorff spaces X, it is easily seen that

$$
H_{G}^{j}(X) \simeq H^{j}\left(X_{G}^{N}\right) \quad \text { for } \quad j<N
$$

(for example see [5]). Thus we may assume that E_{G} and $B_{G}=E_{G} / G$ are locally contractible and X_{G} is paracompact whenever X is.

The projection $\pi: X_{G} \rightarrow B_{G}$ induces the homomorphism

$$
\pi^{*}: H^{*}\left(B_{G}\right) \longrightarrow H^{*}\left(X_{G}\right)
$$

and thus $H_{G}^{*}(X)$ can be regarded as a module over the ring $H^{*}\left(B_{G}\right)$ via the cup product.

Let $S \subset H^{*}\left(B_{G}\right)$ be a multiplicative system. Then the sets X^{S} are defined by

$$
X^{S}=\left\{x \in X \mid \text { no element of } S \text { is mapped to zero in } H^{*}\left(B_{G}\right) \longrightarrow H^{*}\left(B_{G_{x}}\right)\right\}
$$ The inclusion $X^{S} \subset X$ induces an $H^{*}\left(B_{G}\right)$-homomorphism

$$
H_{G}^{*}(X) \longrightarrow H_{G}^{*}\left(X^{S}\right)
$$

By localizing at S, we have the homomorphism

$$
S^{-1} H_{G}^{*}(X) \longrightarrow S^{-1} H_{G}^{*}\left(X^{S}\right)
$$

In [3] we proved the following result.
THEOREM 2.1. Let a compact Lie group G act on a finitistic space X with finitely many orbit types. If S is a multiplicative system in $H^{*}\left(B_{G} ; \Lambda\right)$ and Λ is a prime field, then the localized restriction homomorphism

$$
S^{-1} H_{G}^{*}(X ; \Lambda) \longrightarrow S^{-1} H_{G}^{*}\left(X^{S} ; \Lambda\right)
$$

is an isomorphism.
We use this theorem to prove the following
PROPOSITION 2.2. Let $G=z_{p}^{k}$ act on a finitistic space X and F be the fixed point set. If S is the multiplicative system $\Lambda\left[t_{1}, \ldots, t_{k}\right]-\{0\}$ where $\Lambda\left[t_{1}, \ldots, t_{k}\right]$ is the polynomial part of $H^{*}\left(B_{G} ; \Lambda\right), \Lambda=Z_{p}$, then the localized restriction homomorphism

$$
S^{-1} H_{G}^{*}(X ; \Lambda) \longrightarrow S^{-1} H_{G}^{*}(F ; \Lambda) \simeq H^{*}(F ; \Lambda) \otimes S^{-1} H^{*}\left(B_{G} ; \Lambda\right)
$$

is an ismorphism.
This also holds for $G=T^{k}$ and $\Lambda=Q$, if the number of orbit types is finite.

Proof. We need to show that $X^{S}=F$, and our Proposition, then, follows immediately from Theorem 2.1. It is obvious that $F \subset X^{S}$. To prove the inclusion $X^{S} \subset F$, assume that $x \notin F$. Then $G_{x}=z_{p}^{\ell}$ $\ell<k$ when $G=Z_{p}^{k}$; and $G_{x}=H \times T^{\ell}, \ell<k$ and H a finite group, when $G=T^{k}$. Thus the polynomial part of $H^{*}\left(B_{G_{x}}\right)$ is generated by ℓ variables while that of $H^{*}\left(B_{G}\right)$ is generated by k variables. Therefore some generators t_{j} of $\Lambda\left[t_{1}, \ldots, t_{k}\right]$ map to zero under the homomorphism

$$
H^{*}\left(B_{G}\right) \longrightarrow H^{*}\left(B_{G_{x}}\right)
$$

So $x \notin X^{S}$. Together with the fact $F \subset X^{S}$, this implies that $X^{S}=F$. The isomorphism

$$
S^{-1} H_{G}^{*}(F) \simeq H^{*}(F) \otimes S^{-1} H^{*}\left(B_{G}\right)
$$

follows from the Kunneth rule.
The following corollary gives us a criterion for the existence of fixed points of actions of p-tori or tori on finitistic spaces.

COROLLARY 2.3. Let $G=z_{p}^{k}$ act on a finitistic space X. Then the fixed point set $F=X^{G}$ is non-empty if and only if

$$
H_{G}^{*}(p t ; \Lambda) \longrightarrow H_{G}^{*}(X ; \Lambda)
$$

is a monomorphism, where $\Lambda=Z_{p}$.
This also holds for $G=T^{k}$ and $\Lambda=Q$, if there are only finitely many orbit types.

Proof. Let F be non-empty and $x \in F$. Then the composite

$$
B_{G} \longrightarrow\{x\}_{G} \longrightarrow X_{G} \longrightarrow B_{G}
$$

is a homeomorphism of B_{G} onto itself. Therefore the composite homomorphism

$$
H^{*}\left(B_{G}\right) \longrightarrow H^{*}\left(X_{G}\right) \longrightarrow H^{*}\left(B_{G}\right)
$$

is an isomorphism, and hence

$$
H^{*}\left(B_{G}\right) \longrightarrow H_{G}^{*}(X)
$$

is a monomorphism.
Conversely, if the above homomorphism is a monomorphism then $1 \in H_{G}^{*}(X)$ is torsion-free and hence $S^{-1} H_{G}^{*}(X) \neq 0$. By Proposition 2.2, $H^{*}(F) \neq 0$, which holds only if F is non-empty.

3. Proofs of Theorems 1 and 2

Let a compact Lie group G act on a paracompact Hausdorff space X. We consider the Leray spectral sequence of the map $\pi: X_{G} \rightarrow B_{G}$ with coefficients in the constant sheaf associated with a given ring Λ and closed supports on both X_{G} and ${ }^{B}{ }_{G}$. Its E_{2}-term is given by

$$
E_{2}^{k, j}=H^{k}\left(B_{G} ; H^{j}(X ; \Lambda)\right)
$$

The coefficients $H^{j}(X ; \Lambda)$ are locally constant, but are twisted via the canonical action of $\pi_{0}(G)$ on $H^{j}(X, \Lambda)$. The spectral sequence converges to $H_{G}^{*}(X ; \Lambda)$ in the sense that there exists a decreasing filtration F^{k} of $H_{G}^{*}(X)$ such that

$$
E_{\infty}^{k, j}=F^{k}\left(H_{G}^{k+j}(X)\right) / F^{k+1}\left(H_{G}^{k+j}(X)\right)
$$

In particular

$$
E_{\infty}^{k, 0} \simeq F^{k}\left(H_{G}^{k}(X)\right)
$$

for each k, since $F^{k+1}\left(H_{G}^{k}(X)\right)=0$.
We first prove the following:
PROPOSITION 3.1. Let $G=Z_{p}, p$ an odd prime, act on a finitistic space X of type (a, b). If $b \equiv 0(\bmod p)$, then the Leray spectral sequence of the map $\pi: X_{G} \rightarrow B_{G}$, with coefficients in $\Lambda=Z_{p}$, degenerates on the base, that is, $E_{2}^{k, 0}=E_{\infty}^{k, 0}$ for all k.

Proof. By the Universal Coefficient theorem, we have

$$
H^{i n}\left(X ; Z_{p}\right) \simeq Z_{p}, \quad i=0,1,2,3
$$

Also, we can choose generators $v_{i} \in H^{i n}\left(X ; Z_{p}\right), i=1,2,3$ such that

$$
v_{1}^{2}=\bar{a} v_{2} \text { and } v_{1} v_{2}=\bar{b} v_{3}
$$

where \bar{a} and \bar{b} denote modulo p reductions of integers a and b, respectively. Since Z_{p} has no automorphism of period p, it follows that Z_{p} acts trivially on $H^{*}(X)$. Therefore

$$
E_{2}^{k, j}=H^{k}\left(B_{G}\right) \otimes H^{j}(X)
$$

where $H^{*}\left(B_{Z_{p}} ; Z_{p}\right)=Z_{p}[s, t] /\left(s^{2}\right)$, deg $s=1$ and $\operatorname{deg} t=2$.
Assume that $b \equiv 0(\bmod p)$. Then $v_{1} v_{2}=0$. Now there are two cases depending on whether $a \not \equiv 0$ or $a \equiv 0$ modulo p.

First we consider the case $a \not \equiv 0(\bmod p)$. Thus the $\bmod p$ cohomology ring of X satisfies

$$
v_{1}^{2} \neq 0 \text { and } v_{1} v_{2}=0
$$

Since p is odd, n must be even. If possible, suppose

$$
d_{n+1}\left(1 \otimes v_{1}\right) \neq 0 .
$$

Without any loss in generality, we may assume that

$$
d_{n+1}\left(1 \otimes v_{1}\right)=s \otimes 1
$$

where

$$
d_{n+1}: E_{n+1}^{0, n} \longrightarrow E_{n+1}^{n+1,0}
$$

If $d_{n+1}\left(1 \otimes v_{i}\right)=0$ for some $i=2,3$, then

$$
0=d_{n+1}\left(1 \otimes v_{1} v_{i}\right)=s \otimes v_{i} \neq 0
$$

a contradiction. But the assumption $d_{n+1}\left(1 \otimes v_{3}\right)=s \otimes v_{2}$ implies that

$$
0=d_{n+1}\left(1 \otimes v_{1} v_{3}\right)=s \otimes v_{3}+s \otimes v_{1} v_{2}=s \otimes v_{3} \neq 0
$$

again a contradiction. Therefore we must have $d_{n+1}\left(1 \otimes v_{1}\right)=0$.
Now suppose that

$$
d_{i n+1}\left(1 \otimes v_{i}\right) \neq 0, \text { for } i=2 \text {, or } 3
$$

Let $d_{i n+1}\left(1 \otimes v_{i}\right)=A s \otimes 1,0 \neq A \in Z_{p}$. Obviously $d_{i n+1}\left(1 \otimes v_{1}\right)=0$, so that we have

$$
0=d_{i n+1}\left(1 \otimes v_{1} v_{i}\right)=A s \otimes v_{1} \neq 0
$$

a contradiction. Therefore $d_{i n+1}\left(1 \otimes v_{i}\right)=0$ for $i=1,2,3$, in this case.

Now we consider the case $\alpha \equiv 0(\bmod p)$. Thus the generators v_{1}, v_{2}, v_{3} of mod p cohomology ring of X satisfy the relations

$$
v_{1}^{2}=0, \text { and } v_{1} v_{2}=0
$$

If possible, suppose that

$$
d_{n+1}\left(1 \otimes v_{1}\right) \neq 0
$$

We then notice that n must be odd, for otherwise, we may assume that $d_{n+1}\left(1 \otimes v_{1}\right)=A s \otimes 1$ for some $0 \neq A \in Z_{p}$ which implies that

$$
0=d_{n+1}\left(1 \otimes v_{1}^{2}\right)=2 A\left(s \otimes v_{1}\right) \neq 0
$$

Hence, we can write

$$
d_{n+1}\left(1 \otimes v_{1}\right)=t^{q} \otimes 1
$$

If $d_{n+1}\left(1 \otimes v_{i}\right)=0$ for $i=2$ or 3 , then we have

$$
0=d_{n+1}\left(1 \otimes v_{1} v_{i}\right)=t^{q} \otimes v_{i} \neq 0
$$

a contradiction. And, if $d_{n+1}\left(1 \otimes v_{i}\right) \neq 0$ for some $i=2,3$, then we may assume that $d_{n+1}\left(1 \otimes v_{i}\right)=t^{q^{\prime}} \otimes v_{i-1}$. This implies that

$$
0=d_{n+1}\left(1 \otimes v_{1} v_{i}\right)=t^{q} \otimes v_{i} \neq 0
$$

again a contradiction. Therefore we must have $d_{n+1}\left(1 \otimes v_{1}\right)=0$. As in the first case, we see that

$$
d_{2 n+1}\left(1 \otimes v_{2}\right)=0 \text { and } d_{3 n+1}\left(1 \otimes v_{3}\right)=0 \text { for } n \text { even }
$$

For odd n, the assumption

$$
d_{3 n+1}\left(1 \otimes v_{3}\right)=A t^{q} \otimes 1,0 \neq A \in Z_{p}
$$

implies that

$$
0=d_{3 n+1}\left(1 \otimes v_{1} v_{3}\right)=-A t^{q} \otimes v_{1} \neq 0
$$

So $d_{3 n+1}\left(1 \otimes v_{3}\right)=0$ in this case also.
It is now clear that the differentials

$$
d_{r}: E_{r}^{0, r-1} \longrightarrow E_{r}^{r, 0}, r \geq 2
$$

are zero. Hence, it follows that the differentials

$$
d_{r}: E_{r}^{k, r-1} \longrightarrow E_{r}^{k, 0}, r \geq 2 \text { and } k \geq 0
$$

are also zero and this completes the proof of the proposition. \square
Proof of Theorem 1. It is obvious from Proposition 3.1 that

$$
H^{*}\left(B_{G}\right)=F^{*}\left(H_{G}^{*}(X)\right) \subset H_{G}^{*}(X)
$$

and thus we have a monomorphism $H^{*}\left(B_{G}\right) \longrightarrow H_{G}^{*}(X)$. It is easily seen that this homomorphism is induced by the projection $X_{G} \xrightarrow{\pi} B_{G}$. Hence it follows from Corollary 2.3, that the fixed point set F is non-empty.

Proof of Theorem 2. Since there are only finitely many orbit types, we can choose a prime p so large that $Z_{p} \subset S^{1}$ is contained in no proper isotropy subgroup of S^{1}. Then $X^{2} p=X^{S^{1}}=F$. Now it follows from Theorem 1, that F is non-empty.

REMARK. It remains to determine the possible cohomology structures of components of the fixed point set as has been done in case of product of spheres and cohomology projective spaces.

References

[1] G. Bredon, "Sheaf Theory", (McGraw-Hill, N.Y. 1967).
[2] G. Bredon, "Introduction to compact transformation groups", Academic Press, 1972.
[4] S. Deo and T.B. Singh, "On the converse of some theorems about orbit spaces", J. London Math. Soc. 25 (1982), 162-170.
D. Quillen., "The spectrum of an equivariant cohomology ring: I", Ann. of Math. 94 (1971), 549-572.
[6] H. Toda, "Note on cohomology ring of certain spaces", Proc. Amer. Math. Soc. 14 (1963), 89-95.

Department of Mathematics and Statistics, University of Allahabad, Allahabad 2ll002, India.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 $\$ \mathrm{~A} 2.00+0.00$.

