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NON-EXISTENCE OF ODD PERIODIC MAPS ON

CERTAIN SPACES WITHOUT FIXED POINTS

TEJ BAHADUR SINGH

In this paper, we show that the fixed point set of Z -actions,

p an odd prime, on a finitistic space X of type (a,b) is

non-empty, whenever b = 0 (mod p) . We also prove a similar

result for circle group actions on finitistic spaces of

(a,0) type.

1. Statement of main results

Let X be a finitistic space, that is, X is paracompact Hausdorff

and each open cover of it has a finite dimensional open refinement. We

say that a space X has type (a,b) if

HVn{X;Z) = Z , i = 0,1,2,3

are the only non-trivial cohomology groups and there are generators

u. e Hin{X;Z) , £ = 0,1,2,3 such that

w1 = au2 , M 1 M 2 = bu3 , a,b e Z .

For arbitrary integers a and b , there are spaces of type ia,b) [6],

Here, by ff*(J;A) we mean the sheaf cohomology of the space Y with
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closed supports on Y and coefficients in the constant sheaf associated

with a given ring A , in the sense of [/]. It is easy to see that the

Universal Coefficient formula for Z -coefficients holds in general.

Therefore, we have

H™{X-,Z ) = Z , i = 0,1,2,3 .

Thus X is a Poincare duality space over Z , if b t 0 (mod p) , having

cohomology ring isomorphic to that of S x S or a cohomology projective

space of height 3, according as a = 0 (mod p) or a t 0 (mod p) . The

fixed point sets of Z -actions and S -actions on such spaces have been

studied in detail (for example see [2, Chapter VII]). We consider the

remaining cases here. In fact we prove the following

THEOREM 1. Let G = Z , p an odd prime, act continuously on a

finitistic space X of (a,b) type; with fixed point set F . If

b - 0 (mod p) then F is non-empty.

For circle group actions, we prove the following.

THEOREM 2. Let G = S act continuously with finitely many orbit

types on a finitistic space X of (a,0) type. Then the fixed point

set F = A is non-empty.

We generalise some results in §2 and prove the theorems in §3.

2. A criterion for the existence of fixed points

Let a topological group G act continuously on a space X and let

£"_ -*• Bn be a universal principal ff-bundle. The quotient space of X x En
Lr U Lr

under the diagonal action of G is denoted by Xn . We have the
u

associated bundle

over BQ with fiber X and structural group G . For a compact Lie group

G , B- is a CV-complex with finite ^-skeleton wL for all N . If
G G

£„ is the inverse image of &„ , then &„ is compact and tf-universal.
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that i s , Ep(£^;A) = 0 for j < N . Let

which is the associated bundle over an with fiber X . The equi-variant
Lr

cohomology of the G-space X is defined by

H*G(X) = H*(XG) .

For Hausdorff spaces X , it is easily seen that

H°G(X) = ff7'^) for 3 < N ,

(for example see [5]). Thus we may assume that E~ and B~ = E~/G are

locally contractible and X- is paracompact whenever X is.

The projection ir : L + B. induces the homomorphism

•n* : H*{BG) y H\XQ)

and thus H~(X) can be regarded as a module over the ring H (S_) via

the cup product.

Let 5 c H (B~) be a multiplicative system. Then the sets A are

defined by

F = {xeX|no element of S is mapped to zero in H {BQ) >• ff (B ) } .

The inclusion A C Z induces an 5 CB«)-homomorphism

u

ff(AT) y

By localizing at 5 , we have the homomorphism

In [3] we proved the following result .

THEOREM 2.1 . Let a compact Lie group G act on a finitistic space X

with finitely many orbit types. If S is a multiplicative system in

E (BG;A) and A is a prime field, then the localized restriction

homomorphism
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S ~ V tY. A\ . C~ 17 / V^ A\

G G

is an isomorphism.

We use this theorem to prove the following

PROPOSITION 2.2. Let G = Ẑ  act on a finitistic space X and F

be the fixed point set. If S is the multiplicative system
A[t , . . , £ , ] - {o} where Mt^ ... ,t, ] is the polynomial part of

H (B_; A) , A = Z , then the localized restriction homomorphism

S~X EAX-.K) > S~X Hr(F;A) = H*(F;A) 8 S"1 H*{Bn-,h)

is an ismorphism.

This also holds for G = T and A = Q , if the number of orbit types

is finite.

Proof. We need to show that A = F , and our Proposition, then,

follows immediately from Theorem 2.1. It is obvious that F c x . To

prove the inclusion A C F , assume that x jL F . Then G = Z
X p

k X,
I < k when G = Z ; and G' = H x T , I < k and H a finite group,

p x
V *

when G = T . Thus the polynomial part of H (B^ ) is generated by H

variables while that of H (B_) is generated by k variables. Therefore

some generators t. of ACt. ,. .. , t, ] map to zero under the homomorphism

B^
x

H (BG) • H {BG ) .

So x i A . Together with the fact F c X3 , this implies that A = F .

The isomorphism

S'1 tf*(F) = H\.F) ® S'1 H*(BQ)

follows from the Runneth rule. D

The following corollary gives us a criterion for the existence of

fixed points of actions of p-tori or tori on finitistic spaces.

COROLLARY 2.3. Let G = Zk act on a finitistic space X . Then the

fixed point set F = X1 is non-empty if and only if
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is a monomorphism, where A = Z

This also holds for G = T" and A = Q , if there are only finitely

many orbit types.

Proof. Let F be non-empty and x e F . Then the composite

is a homeomorphism of 5_ onto itself. Therefore the composite

homomorphism

H*(XG)

is an isomorphism, and hence

is a monomorphism.

H*G(X)

Conversely, if the above homomorphism is a monomorphism then

* -1 *
1 e HQ(X) is torsion-free and hence S JiAX) ? 0 . By Proposition 2.2,

H (F) / 0 , which holds only if F is non-empty. Q

3. Proofs of Theorems 1 and 2

Let a compact Lie group G act on a paracompact Hausdorff space X .

We consider the Leray spectral sequence of the map ir : X~ -*• B-, with

coefficients in the constant sheaf associated with a given ring A and

closed supports on both XG and 5. . Its £--term is given by

The coefficients if (X;A) are locally constant, but are twisted via the

canonical action of TQC?) on if (X,h) . The spectral sequence

converges to H~(X;A) in the sense that there exists a decreasing

filtration F1 of H {X) such that

Z"7' = Fk(HkGJ(X))/F
k+X(H1£;j{X)) .
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In particular

& - t \nr,\A) )
CO (j

for each k , since Fk+l{H^(X)) = 0 .

We first prove the following:

PROPOSITION 3.1. Let G = Z . p an odd prime, act on a finitistic

space X of type (a,b) . If b = 0 (mod p) , then the Leray spectral

sequence of the map TT : X^ -»• B« , with coefficients in A = Z ,

degenerates on the base, that is, WL' = £T' for all k .

Proof. By the Universal Coefficient theorem, we have

H^iX-.Z ) = Z £ = 0,1,2,3

Also, we can choose generators V • £ H (X;Z ) , i = 1,2,3 such that

^ p
u1 = au2 and v v = 5u

where a and 5 denote modulo p reductions of integers a and £> ,

respectively. Since Z has no automorphism of period p , it follows

that Z acts trivially on H (X) . Therefore

where H (B7 ; Z ) = Z Cs,t]/(s
2) , deg e = 1 and deg t = 2 .

p P P

Assume that b = 0 (mod p) . Then v t). = 0 . Now there are two

cases depending on whether a % 0 or a E 0 modulo p .

First we consider the case a f 0 (mod p) . Thus the mod p

cohomology ring of X satisfies

V1 f
1 0 and U U = 0 .

Since p is odd, n must be even. If possible, suppose

dn+1il 9 Wl) * 0 .

Without any loss in generality, we may assume that

dn+1a « vx) = e 0 i ,
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where

«+l ' n+1 "n+1

If d ,(1 ® y.) = 0 for some i = 2,3, then

0 = d (l ® y,y.) = s 8 y. ^ o ,

a contradiction. But the assumption d .,(18 V.) = S 8 U_ implies that

0 = d (1 ® uiU3) = s 0 U3 + s 8 yiy2 = s ® U3 ^ °

again a contradiction. Therefore we must have i (1 8 l>.) = 0 .

Now suppose that

^ ® y^> ^ ° ' f o r ^ = 2, or 3 .

Let d. (18 V.) = 4s 8 1 , 0 / i £ 2 . Obviously d- (1 8 y.,) = 0 ,

so that we have

in+1 1 i 1

a contradiction. Therefore d. .(10 V.) = 0 for •£ = 1,2,3, in this
t-Yl'T A. 1*

Now we consider the case a = 0 (mod p) . Thus the generators

V, , Vj i U3
 o f m o d P cohomology ring of X satisfy the relations

V1 = 0 , and y u = 0 .

If possible, suppose that

We then notice that n must be odd, for otherwise, we may assume that

d +1(1 0 yi) = 4s 8 1 for some 0 ^ A e Z which implies that

0 = d . . (1 0 y?) = 2i(s 0 u.) 7< 0 .
71+1 1 1

Hence, we can write

. 8 y,) = tq 8 1 .

If d ( 1 8 y . ) = 0 for i = 2 or 3 , then we have
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o = dn+1a « W =t«evifto

a c o n t r a d i c t i o n . And, i f d . ( 1 ® U . ) ^ 0 f o r some i = 2 , 3 , t h e n we

may a s s u m e t h a t d {1 8 V.) = t" 0 V. . T h i s i m p l i e s t h a t

o = d n + 1 ( i e w ^ ) = *« 0 ^ * o ,

again a contradiction. Therefore we must have d (1 8 V.) = 0 . As in

the first case, we see that

<£_ . (1 8 v ) = 0 and d,M1,(l 0 U.) = 0 for n even .2M+1 2 3W+1 3

For odd n , the assumption

p

implies that

0 = d,Mll (1 ® U,U,) = - A t
q 0 un ^ 0 .

So d ,,(1 8 V.) = 0 in this case also.

It is now clear that the differentials

are zero. Hence, i t follows that the differentials

dr : £ ^ ' r " 1 • £^'° , r > 2 and fe > 0

are also zero and this completes the proof of the proposition. D

Proof Of Theorem 1. It is obvious from Proposition 3.1 that

H\BG) = F\H*Q(X)\
 C H*G(X)

and thus we have a monomorphism H (5_) *• H~(X) . It is easily seen

that this homomorphism is induced by the projection X^, *• B- . Hence it

Lr Lr

follows from Corollary 2.3, that the fixed point set F is non-empty. Q

Proof Of Theorem 2. Since there are only finitely many orbit types,

we can choose a prime p so large that Z c S is contained in no proper

1 ZV S
isotropy subgroup of S . Then X y = X° = F . Now it follows from
Theorem 1, that F is non-empty. Q
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REMARK. It remains to determine the possible cohomology structures

of components of the fixed point set as has been done in case of product of

spheres and cohomology projective spaces.
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