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ABSTRACT

Haberman and Sung (1994) have presented a dynamic model for a defined
benefit occupational pension scheme which considered two types of risk:
the "contribution rate" and the "solvency" risk. The current paper, extends
this work by deriving optimal funding control procedures for determining
the contribution rate for the case of a stochastic model with incomplete state
information, making use of the separation principle. The stochastic inputs mod-
elled are the investment returns and the benefit outgo.
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1. INTRODUCTION

Haberman and Sung (1994) have presented a stochastic dynamic funding
model for a defined benefit pension scheme under the circumstances that
(i) there is no accounting bias and lags in actuarial valuations (i.e. the com-
plete state information case), (ii) there is random disturbances only for invest-
ment rate of return and (iii) the fund level is a controlled variable, the contri-
bution rate is a controlling variable and the control performance is designed
to give a discounted weighted penalty to the deviations from their targets.

The motivations for extending our former work are as follows.
Firstly, the valuation process may not be able to refer to the exact finan-

cial status of the scheme at the valuation date, largely due to the physical
inaccessibility of some of the economic parameters, inaccuracies in the mea-
surement procedures and the costs of determining the exact values of the
important state variables. Thus, this paper treats the incomplete state infor-
mation case: the effects of delays in the valuation process have also been
analysed by Haberman (1992, 1993), and Zimbidis and Haberman (1993).
Given that the financial status of the pension scheme would be reviewed at
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the next valuation date, we believe that it is reasonable to focus on a one-unit
time delay in the financial accounts. Secondly, stochastic demographic distur-
bances are of potential importance and so we incorporate both stochastic
demographic and economic disturbances in the model rather than consider
only stochastic economic disturbances. Thirdly, actuaries (including super-
visory authorities) have an increasing interest in controlling the current and
future scheme's solvency ratios. In this respect, the fund ratio is controlled
instead of the fund level and the contribution ratio is controlled instead of
the contribution rate, so that the control performance is designed to give a
(not discounted) weighted penalty to the deviations from their target ratios.
The use of ratios in this context has been proposed by Chang (1999).

The purpose of this paper is to derive the optimal pension funding plan
for determining contribution ratios and the consequential optimal fund ratios
(subject to given constraints) in the case of a stochastic model with incom-
plete state information, which has been constructed according to the above
motivations. The extensions to longer accounting lags than one time unit would
follow in a straightforward manner.

2. MODEL CONSTRUCTION AND ASSUMPTIONS

As with any model, it is necessary to make a number of simplifying assump-
tions in order that we may focus effectively on the key features of the problem
to be solved. Adapting the optimal stochastic control theory for the incom-
plete state information case to pension funding, we construct a mathematical
model with the following elements (i)~(iv). Here, we work with a finite control
period (0, T), in which T is a positive integer.

(i) Stochastic Controlled Dynamics

We assume that valuations are carried out periodically so that, at time t e Z
(={0,1,2,.-.. T-l}), an actuarial valuation is conducted in order to estimate the

ALt: the actuarial liability at time t, in respect of all members at time t.

Ft: the size of the scheme funds at time t, measured in terms of the market
value of the underlying assets.

Ct: the contribution to apply to (t, t+1), which we assume, for convenience
to be payable at time t.

We assume that the benefit outgo in year (t, t+1) occurs immediately after
time t and we denote the actual outgo by Bt and the outgo assumed in the
valuation by EBt. We let NQ be the normal cost at time t: this would be the
contribution level if all of the actuarial assumptions were realised exactly.

We work with a simplified pension scheme where the only benefit offered
is a final salary benefit. We assume that there is a single age at entry (a) and
a single age of retirement (r). It is assumed that the number of new entrants
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and the level of salaries grow geometrically and that this has applied for a
sufficiently long period of time so that a demographically stable population
results (in the sense of Keyfitz (1985)).
Then, the following recurrence relations hold:

Ft+1 = exp(5t+1)(Ft + Ct-Bt) (1)

ALt+, = exp(n) (ALt + NC, - EBt) (2)

(3)

where 8t+1 is the force of interest corresponding to the rate of investment
return, defined in a manner consistent with Ft, during the period (t, t+1) and
is assumed to be constant over (t, t+1); r\ is the force of interest correspond-
ing to the valuation interest rate, assumed to be constant for all t; a is the
force of membership growth and P is the force of salary growth.

Then, from (1) and (3), we obtain

FRt+1 = exp((pt+1) (FRt + CRt - BRt) (4)

F C
= -ry~ contribution ratio CR = -W~

F
where we define the funding ratio, FRt = -ry~, contribution ratio, CRt =
benefit ratio, BRt = -^4- and (pt+] = 8t+1 - a - p.

Here, we introduce two stochastic processes, {5t+1; teZ} and {Bt; teZ}, as
defined below, in order to incorporate the real world phenomena of random
economic and demographic disturbances into the dynamics of the funding
ratio dynamics, given by (4). For each unit period (t, t+1), we assume that

(5)

where
aet+1 is a random variable which follows an independent and identically dis-
tributed N(0, a^) distribution (with a^ < °°) and similarly bet+1 ~ iid N(0, a2),
(with a£ < °°) and aei+1 and b8j+1 are mutually independent for all i, j e Z.

Thus, from (5), we derive the following linear stochastic dynamic model as a
stochastic version of (4), which governs the behaviour of the variable to be
controlled: for all t e Z,

FRt+1 = exp(q>t+,)(FR, + CRt - BRt) (6)

where

cpt+1 = (rj - a - P) + as t +, = u + st+, - iid N(u, a2); and

BRt = ̂ 5 i + -|ttk ~ iid N(EBRt, VBRt), where VBRt = %
ALt

https://doi.org/10.2143/AST.32.1.1019 Published online by Cambridge University Press

https://doi.org/10.2143/AST.32.1.1019


132 S. HABERMAN AND JOO-HO SUNG

(ii) Actuarial Valuation Process

Unlike the complete state information case, we introduce an observable/realis-
able valuation variable M, (i.e. which is the output from the actuary's valua-
tion process) for dealing with the incomplete state information case, so that
we can formulate the characteristics of including accounting lags in the actu-
arial valuation. Thus, for all te Z, we define

Mt = FRt_b with the given initial condition Mo = FR_b (7)

where b denotes the accounting lag parameter and be {1, 2, 3, . . . } .

As mentioned in section 1, we only consider here the case of "b=l" on the
grounds that, in practice, a one-unit time delay would be the most likely case.
Thus, the pension scheme actuary, at time t does not have direct access to the
current value of FRt; for this reason, FRt is called the conceptual state vari-
able. Then, he is required to estimate FRt from the information available up
to time t, represented by the information vector at time t (s 3, = (FR.b FR0,
..., FRt.b CR.], CR0, ..., CRt.O with the given initial information 30=(FR_,,
CR^)). The estimation procedure will be discussed in section 4.1. (We note
that the complete information case corresponds to the case b=0).

(iii) Controlling Variable

From the actuary's point of view, CR, is a controlling variable to be determined
by him/her. Without loss of generality, we assume that the decision at time t,
determining CRt, is influenced principally by the pace of funding up to t,
{CRji i=0, 1, t-1}, and the progress of the solvency level up to t, {FRJ: j=0, 1,
t-1}. Thus, we are concerned with linear feedback (not feedforward) control,
which implies that our funding plan is restricted by the causality principle i.e.
present decisions, or control actions, should not depend on future controlled
responses. We note also that the dynamic model (6) maintains linearity. In this
respect, we assume that

CRt=7i t(3,)forall teZ (8)

so that control actions depend only on the currently available information
and the functional form is linear with respect to 3,.

(iv) Control Performance

The scheme actuary will, in general, have their own solvency and funding
targets for the realisation of their funding purpose such as maintaining
(long-term) benefit security and contribution stability. Here, we denote the
desired levels of FR, and CRt by frt and crt, respectively. Unlike the approach
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of Haberman and Sung (1994), the following control performance index, PIe,
is designed to give an undiscounted weighted penalty to the mismatches between
FRt and frt, and between CRt and crt, caused by the control action CRt.
Because we are dealing with ratio measures rather than cash flows, we have
used an undiscounted formulation. The weighting parameter 0(e(O, 1)) is to
be determined by the scheme actuary (balancing the interests of the scheme's
sponsor and members).

PIe=E{2[e(FR,-fr t)
2+(l-e)(CRt-crt)

2l + 0(FRT-frT)2l. (9)
U=ol J

In the special case that frt = E(FRt) and crt = E(CRt), then PIe becomes

T-l
{ • Var(FRt)+ (1-9)- Var(CRt)] + 6 • Var(FRT),

t=o

which gives the primary reason why a quadratic performance index is often
considered in evaluating decision processes. This approach is considered further
by Haberman et al (2000).

Hence, from the viewpoint of the realisation of our funding purpose, our
performance criterion is, for a given G,

Min PL. (10)
{CRt;t=0,l,...,T-l} H V '

Finally, the control mechanism can be summarised by the diagram in Appen-
dix A. The detailed procedure for establishing the dynamic pension funding
plan will be given in the following sections.

3. CONTROL OPTIMISATION PROBLEM

As specified in section 2, we consider the model given by (6), (7) and (8) with
the quadratic optimisation criterion (10). This is a so-called stochastic LQP
optimisation problem with incomplete state information.

Thus, our incomplete stochastic (pension funding) control problem over
[0, T] can be written in the form:

{cRtMinT|}E{|{[e(FRt-frt)
2+(l-e)(CRt-crt)

2]} + [9(FRT-frT)2]} (11)

subject to the linear stochastic dynamics model (6) with initially given 30 =
(FR_b CR^), which is also applicable at t = - 1 ; Mt = FRt_,; and CRt = 7ct(3t).

The procedure for solving the control problem (11) will be considered in
the next section.
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4. SOLUTION OF THE PROBLEM

Apart from the fact that the current value of FRt in the controlled dynamic
model (6) is no longer known to the actuary because Mt = FRt_], the control
problem (11) is similar to the corresponding case of complete state informa-
tion (as discussed by Haberman and Sung (1994)). Therefore, we need firstly
to find an optimal state estimator to play the same role as the state variable
representing the fund level in Haberman and Sung (1994). As explained in
Appendix A, we can take advantage of the Separation Principle which is
applicable to the control problem (11) because of its structure as an incom-
plete state stochastic LQP control problem. Then the procedure for solving
the full problem can be separated into two steps: the first is to estimate opti-
mally the currently unobservable state variable FR, and the second is to solve
the resulting control problem.

4.1. Optimal Estimation of FRt

Consider the situation at time t e Z. Although FRt is not observable, its dynam-
ics are governed by (6). Then, we define a new dynamic model, replacing (6),
for a state variable which is generated recursively with certainty when the
actuary makes his t-th decision (as in the complete state information case dis-
cussed by Haberman and Sung (1994)), and which also represents the current
financial status in as small a dimension space as possible [see Whittle (1983*
Ch 39)]. As a result of this argument, we propose that the conditional expec-
tation = FR, = E(FR, | 3,) is the optimal solution of the problem of estimat-
ing the conceptual state FR, for the following reasons (a) and (b): for each
teZ,

(a) Assuming that E(FR^) < °°, then FR, = E(FR, | 3t) is the so-called mini-
mum mean-squared error estimator of FR, given 3t, because setting K, =
f(3t) (i.e. an estimator of FR,), MinE[(FR, - K,)2] = MinE{E[(FR, - K,)2]

Kt ^ K,

13,} leads to our result. This implies that FR, provides a "better" estimate
for the inaccessible value of FR, from a given information vector 3, than
any other estimator. Furthermore, using the fact that
FR, = exp(cp,) • [exp(- u -o2j2) • FR, + EBR,_, - BRW], then
Pr(FR, | 3,) = Pr(FR, | FR,), which implies that the value of FR, provides
complete information about the vector 3t.

(b) The sequence {FR0, FRb ..., FRT} is generated recursively by the following
recursion:
FRt+1 = exp(u+o2j2) • [exp(cp, - u - ajj/2).
FR, + CR, - EBR, + exp((p,)(EBR,_! - BR,^)]
with the initial condition FR0= exp(u+c^/2)-(FR_, -CR^ -EBR^). (12)

Hence, this new dynamic model is a stochastic difference equation of order
one, which will sequentially generate FR, with certainty and no time delay as
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time progresses. Furthermore, {FR0, FRj ..., FRT} is a discrete-time, finite-state
Markov process because Pr(FRt+1, FRt+2, ..., FRT 13t) = Pr(FRt+1, FRt+2, ...,
FRt|FRt).

As a result, FRt summarises effectively all the information available to the
actuary at the time of taking the control action CRt and is recursively calcu-
lable by means of the newly derived system equation (12), so that FRt is a
state variable of the controlled object specified by (12). It is then sufficient to
determine CR, as a linear function of FRt, i.e. CRt = nt (FRt).

Therefore, the next step in the application of the Separation Principle is to
seek the optimal solution to the incomplete control problem (11) assuming
that complete state information is available and sequentially generated by way
of redefining the controlled stochastic object by equation (12) instead of the
original system equation (6). Hence, we can solve the problem (11) in a similar
manner to the approach employed Haberman and Sung (1994) for the com-
plete state information case. The optimisation procedure will be considered in
the next section.

4.2. Bellman Equation

In order to solve the control problem (11), we apply the backward dynamic
programming (BDP) approach (based on Bellman's principle of optimality:
Bellman (1957)) developed in the field of optimal control theory. To produce
the backward recursion in time t e Z, we then define

V(FRt,t) ={CRs;sM^ ,T_1 }E{T |{[9• ^Rs-frs)
2+ (1-9)-(CRs-crs)

2]} +

9(FRT-frT)2 FRt},

which represents the minimal expected future mismatching penalty at time 0,
given the summarised information up to time t (i.e. the state variable FRt).

Then, we establish the following Bellman equation for sequential control
optimisation: for each t e Z,

V(FRt,t)

= MjnE{[9 • (FRt-frt)
2+ (1-9)- (CRt-crt)

2] +

E{{ 2 ([9(FRs-frs)
2+(l-0)(CRs-crs)

2]) +
s=t+l

9(FRT-frT)2}|FRt+1}|FRt}

= MinE{[9(FRt-frt)
2+(l-9)(CRt-crt)

2] + V(FRt+1,t+l)|FRt} (13)
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with the boundary condition V (FRT, T) = E {9 • (FRT - frT f \ FRT}.

Here, V(FRT, T) is computed as

V(FRT, T) = 0 • {exp(<7a
2) • FR-2- - 2 • frT • FR T +exp(2u + 2aa

2) • VBRT_, + fr^}.

4.3. Control optimisation

Utilising the fact that the control law at time t is a linear function of the (cur-
rently observable) dynamic state FRt (i.e. CRt = nt (FRt)), we can demonstrate
that the solution of the Bellman equation (13) is uniquely determined by the
following quadratic form, as shown at the terminal time T (i.e. V(FRT, T)):

t) = A1(t)FRt
2 + A2(t)FRt + A3(t) (14)

with the boundary conditions:

A1(T) = eexp(cTa
2),

A2(T) = - 2 - 0 f r T and

A3(T) = 9 • [exp(2u + 2a2)- VBRT_! + fr2].

This result is demonstrated below, using a mathematical induction argument.

As we know from the Bellman equation (13), the first step for solving (13) is to
determine the conditional first and second moments of FRt and FRt+i given
FRt which come from the following equations:

and

FRt+1=expai+CTa
2/2)[exp((pt-u-cTa

2/2)FRt+ (15)

CRt-EBRt+exp((Pt)(EBRt_1-BRt_1)]

And then, the conditional first and second moments are obtained in the form

E{FRt+11 FRt} = exp(u + aa
2/2)- [FRt + CRt-EBRt] ,

E {FRt
2
+11 FRt} = exp(M + a 2) • [exp(aa

2) • FRt
2+2 (CRt - EBRt) • FRt

(CRt-EBRt)
2+exp(2n + 2a 2

Using the above results, we can simply rewrite the Bellman equation (13) in the
form: for each t E Z,
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V(FRt,t)

=Min{xi(t)CR2 + X2(t)CRt+X3(t)} in which

X, (t) = (1 - 6) + exp(2n + a 2 ) • A, (t +1),

A2(t + 1) and

X3(t)= 0 • [exp(oa
2)- FR2+ exp(2n + o2)- VBRt_1-2frt- FRt + fr2] + (l-0)- cr2

+ exp(2^ + a I) • A, (t +1) • [exp(aa
2) • FR2 -2EBRt • FRt + EBR2 + exp(2n +2oa

2)

Hence, we can obtain the unique sequence of optimal control actions {CRt;
teZ} under the following condition for all t e Z ,

X,(t)> 0 (or equivalent^, A^t + 1) > ^ 6 ' )
 2 J (17)

exp(2|x+aa)

Differentiating the convex function in (16) with respect to CRt, we then derive
the optimal control action at time t, CR, (= 7tt (FRt)), which can be written as:

CR*=- § ^ | •p R t + § J § ' i n which

and

D3(t)=(l-9)+exp(2n+CT2)A1(t + l).

Thus, the contribution ratio postulated in (8) is optimally specified and then
the optimal pension funding plan, {nt(.): t e Z } , is clearly determined in a
form which depends only on A^tH-1) and A2(t+1) (not on A3(t+1)). So, we
need only to specify the backward recursive equations below, obtained by
substituting CR^ into (16). For all t e Z ,

2)-l)A1(t + l)2]/[(l-0)+exp(2n+a2)A1

with the boundary condition Aj(T)= 8 • exp(a2),

and
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cra
2)((l-e)(crt-EBRt)-0frt)A

with the boundary condition A2(T) = - 2 • 0 • frT.

These are soluble by back-tracking step by step, starting from the boundary
conditions.

We note that the uniqueness condition (17) is redundant due to {A] (t): t e Z}
being a positive sequence. This is because A](T) = 0 • exp(cra

2)> 0 and also if
A1(t + l)>0 then Aj(t)>0.

Therefore, the mathematical induction argument is complete, showing that
the solution of the Bellman equation (13) is uniquely determined and is qua-
dratic in form as postulated in (14).

The optimal funding ratio FR*+, corresponding to CR* is generated recur-
sively with time t in the form:

2/2)[exp((pt-n-CTa
2/2)FR*+CR*-EBRt +

exp(cpt)(EBRt_1-BRt_1)]

with the initial condition FR0= exp(u + aa
2/2)- (FR_1-CR_]-EBR_1).

The format of the solution is then similar to that obtained by Haberman and
Sung (1994) for the complete state information case. This, similarity comes
from the Separation Principle because, as noted earlier, this Principle makes
it possible to reformulate an incomplete state control problem into its corre-
sponding complete state control problem by way of replacing the conceptual
state variable with its optimal state estimator.

5. COMMENTS O N OPTIMAL FUNDING PLAN

In this section, we give some further comments on the optimal contribution
ratio defined in (18).

We rewrite the formula (18) in the form

D2(f)-D,(t) D,(t)

Thus, this transformed formula has a similar mathematical form to the spread
funding formula specified in (B2) in Appendix B: that is, the fact that {A! (t):

t e Z} is positive implies that 0 < p ' L < 1, so that p ' L can be thought of as

j - , D,(t)-D,(t)
corresponding to the spread parameter kt and r w f l — t o normal cost

t. .™ NC, 3 U

ratio
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Further, we also rewrite (18), for the specific case crt = NRt, as follows

CR*= NRt-5(t)- (FRt-l)-i;(t), in which

g f and

Then, this formula has mathematically the same form as the spread funding
formula (B2), except for the term ^(t). Here, ^(t) can be thought of as the pro-
portional state feedback controlling parameter (i.e. playing a similar role to kt
in (B2)), whereas £(t) can be regarded as an additive controlling parameter,
playing the additional role of a cushion to improve the contribution stability
and fund solvency at the same time.

These conclusions support the findings of Owadally and Haberman (1999,
2000) who demonstrate the efficiency of the spread method, based on pro-
portional control, in achieving secure funding levels and stable contribution
rates, albeit in the complete state information case.

Lastly, it would be worth noting that we can obtain a general solution 7tt(.)
for the stationary first-order (unconditional) autoregressive model AR(1) with
§t+i = •>! + Y' (Sf-fi) + agt+b only if Y = 0, since expressions like EfA^t +1) •
(exp(5t)| 8M} and E{A2(t +1) • (exp(8t)| 8t_x} are not integrable.

6. FUTURE DEVELOPMENTS

There are practical and academic areas in which the dynamic funding approach
adapted in this paper could be extended and improved. Firstly, it would be
worthwhile to extend the control period (T) to infinity. Secondly, even though
benefit outgoes are assumed to be stochastic in this paper, stochastic model-
ling for each of the force of membership growth and salary inflation would be
more realistic. Thirdly, a simple model is employed to represent the stochastic
behaviour of the rate of investment return for the pension fund, because of
the insolubility mentioned at the end of section 5. Possibilities for relaxing
this assumption would be worthy of exploration.

New applications of control theory to problems in insurance and pensions are
appearing with increasing frequency in the literature. In this paper, we would
like to highlight the important role played by the Separation Principle, in
allowing estimation and optimisation to be undertaken sequentially, so that a
solution can be derived.
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APPENDIX A

Controlled Stochaistic
Dynamics

I

CRt

> *

Optimal Feedback Control
Law (Optimal Funding)

FRt

Control Measurement Process
(Actuarial Valuation Process)

One-Unit Time
Delay

FRt

M.

CR,.,

f

Optimal State Estimator
of FRt

{0, frt, crj

Optimal pension funding feedback control system for the incomplete state
information case, starting with the initial information 30 = (Mo, CR 0 given
at time t = 0; Mt = F R ^ and FRt = E(FRt 13t).

The "Optimal Feedback Control Law" represents a dynamic pension
funding plan for the incomplete state information case, designed using control
optimisation. The combination of the "Optimal Feedback Control Law" plus
the "Optimal State Estimator of FRt" (from section 4) is usually called the
optimal feedback controller. This optimality structure is assured by the Sepa-
ration Principle. This Principle is limited to stochastic LQP optimisation
problems with incomplete state information and provides a connection between
filtering theory and optimal stochastic LQP control problems as illustrated in
the above figure. That is, the first part of the optimal controller is the esti-
mator which, assuming no control action takes place, produces an optimal
solution FRt of the problem of estimating the conceptual state variable FRt
from the available information vector 3t. And the second part (of the optimal
controller) is the control law which provides an optimal solution CRt of the
control problem assuming the case of complete state information and using
the state variable FRt. This property, which shows that these two parts of the
optimal controller can be designed independently and separately as optimal
solutions of an estimation and a control problem, has been called the Sepa-
ration Principle and is widely applied to solve similar control problems - for
more details, see, Bertsekas (1976) and Kwakernaak and Sivan (1972).
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APPENDIX B

As noted by Dufresne (1988) and Owadally and Haberman (1999), a commonly
used method for adjusting the contribution in response to deviations in expe-
rience is to spread the unfunded liability at time t, ALt-F t , over a spread
period of m years so that

Ct=NCt + k(ALt-F t) (Bl)

where k = 1 / a^, calculated at the valuation rate of interest iv.

Dividing by ALt we obtain

where NRt = NCt / ALt. If we generalise the interpretation of k and replace
it by kt (for 0 < kt < 1) we obtain

C R t = N R t - k t ( F R t - l ) (B2)

which is used in the main text for comparison with the results emerging from
the optimisation.
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