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Summary

Statistical models for genetic evaluation often make use of Gaussian distributions. However, some
new statistical developments allow the use of an asymmetric distribution for the residuals. Within
this context, we analysed three different patterns for the residual term on a data set consisting of
63 208 litter-size records, belonging to 19 255 sows, with a pedigree including 27 911 individuals.
The three different residual distributions were: (1) Gaussian distribution, (2) asymmetric Gaussian
distribution and (3) asymmetric Gaussian distribution with a hierarchical scheme for the asymmetry
parameter. The operational model always included order of parity and herd-year-season as
systematic effects, and the permanent environmental and infinitesimal genetic effect of each sow as
random effects. The most suitable model using the deviance information criterion (DIC) and
posterior predictive checking was model 3. This implies systematic, additive genetic and permanent
environmental control of both litter size and the asymmetry parameter of the residual distribution.
The asymmetry parameter can be understood as a measure of sensitivity to negative (or positive)
environmental influences on phenotypes. The posterior mean (standard deviation) of the additive
genetic variance was 0.28 (0.06) for litter size and 0.07 (0.01) for the asymmetry parameter. The
posterior mean (standard deviation) of the additive genetic correlation between litter size and the
asymmetry parameter was 0.21 (0.07).

1. Introduction

Mixed linear models (Henderson, 1984) are used
broadly in livestock and plant breeding to predict
breeding values and to estimate variance components
for traits of interest. The Gaussian distribution of the
residual term is a common assumption in mixed linear
models. In the animal breeding context, an alternative
to the Gaussian assumption was proposed by
Stranden & Gianola (1999), who modelled the re-
sidual term using a Student’s t density. This kind of
heavy-tailed distribution allows for more extreme
residual values and, as a consequence, deviations
from the Gaussian distribution such as preferential
treatment (Kuhn et al., 1994) or other causes of out-
liers or abnormal phenotypic records (Jamrozik et al.,
2004). Nevertheless, both Gaussian and Student’s

t distributions are symmetric, and little investigation
into alternative approaches assuming a variable
degree of skewness for the residual term has been
done.

It is important to note that most of the uncon-
trolled sources of variation in animal production
can be viewed as adverse factors involving a slight,
moderate or even dramatic reduction in productive
performance (e.g. pathologies, heat or cold, stress,
fights and accidents), whereas favourable factors
are probably limited to preferential treatment and
social dominance hierarchy. Some authors have
proposed the use of mixtures of distributions to
model these peculiarities (Gianola et al., 2006),
where observations can be assigned to different dis-
tributions (e.g. healthy vs. affected). However, it is
very difficult to assign records to a finite number of
distributions when sources of variation are unknown
(e.g. preferential treatment, sub-clinical pathologies,
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unregistered heat or cold stress) and the statistical
approach for infinite mixtures becomes very complex.
An alternative to model these data is via the use of
non-symmetric residual distribution for the environ-
mental deviations, as was initially proposed by
Fernandez & Steel (1998) and adapted to an animal
breeding context by von Rohr & Hoeschele (2002).

The use of skewed residual distributions in linear
models has been focused mainly on describing the
overall asymmetry in the population analysed
(Fernandez & Steel, 1998; von Rohr & Hoeschele,
2002). However, individual variation in the degree of
asymmetry also seems plausible. Within this context,
the asymmetry parameter could be modelled through
a hierarchical model (Wakefield et al., 1994; Varona
et al., 1997). Each record-specific asymmetry par-
ameter would represent the ability to buffer against
undesirable environmental influences and after ac-
counting for genetic and environmental sources of
variation. Indeed, this approach could be viewed as an
attractive method to model robustness (or weakness)
against controllable and uncontrollable genetic
and environmental sources of variation. Within this
context, there are several references in the literature
regarding the genetic determinism of disease resist-
ance (Gibson, 2002; Bishop, 2004) and immune
responses (Mallard et al., 1998; Henryon et al., 2001).
Despite the crucial role that selection for disease
resistance or robustness could play in animal breed-
ing, not much attention has been focused on this
question, mainly due to the difficulties involved
in obtaining appropriate phenotypic records
(Rothschild, 1991).

Unfortunately, the Bayesian implementation of
skewed distributions using the procedure suggested by
Fernandez & Steel (1998) and von Rohr & Hoeschele
(2002), and involving Markov chain Monte Carlo
(MCMC) techniques, requires a Metropolis–Hastings
step (Hastings, 1970) to sample the asymmetry par-
ameter. The development of a hierarchical model
for the asymmetry parameter is therefore complex
and computationally demanding for large data
sets. However, other authors in statistics have devel-
oped new procedures for modelling non-symmetric
distributions (Sahu et al., 2003; Jara & Quintana,
2007).

The aims of this study are: (1) to include non-
symmetric residual distributions in the linear mixed
models currently used in livestock and plant breeding
following Sahu et al. (2003), (2) to develop a hier-
archical Bayesian scheme including systematic and
additive genetic variation of the asymmetry par-
ameter (Wakefield et al., 1994; Varona et al., 1997)
and (3) to implement and compare these procedures
with the standard mixed model approach using a lit-
ter-size data set from a pure-bred Landrace commer-
cial population.

2. Materials and methods

(i) Statistical models

We took as a starting point the standard mixed model
commonly used in animal breeding (Henderson,
1984):

y=Xb+Wp+Zu+e, (1)

where y is the vector of phenotypic data (number of
piglets born alive (NBA)), b is the vector of systematic
effects, p, u and e are the vectors of permanent en-
vironmental effects, additive genetic effects and
residuals, respectively, and X, W and Z are the ap-
propriate incidence matrices. Under a standard
Bayesian approach, bounded uniform prior distri-
butions between x50 and 50 units were assumed for
b, and the following independent prior distributions
were assumed for p and u :

p � N(0, Ips
2
p), (2)

u � N(0,As2
u), (3)

where Ip is the appropriate identity matrix, A is the
numerator relationship matrix between individuals
and sp

2 and su
2 are the permanent environmental

and the additive genetic variances, respectively. In
addition, for computational convenience, prior dis-
tributions for sp

2 and su
2 were scale inverse chi-squared

distributions with parameters s=0 and v=x2, which
reduced it to a uniform distribution (Sorensen &
Gianola, 2002). Moreover, it is computationally
equivalent to a bounded proper prior between 0 and a
huge and unreachable value. For the residual term, we
considered three different prior distributions.

(a) A priori Gaussian distribution for the
residual term (model 1)

The simplest model assumed a standard Gaussian
distribution of residuals :

e � N(0, Ies
2
e), (4)

f(ejs2
e)=

Yn
i=1

1ffiffiffiffiffiffiffiffiffiffi
2ps2

e

p exp x
e2i
2s2

e

� �
, (5)

where n is the number of phenotypic records, Ie is an
identity matrix with dimensions nrn, ei is the ith term
in e and se

2 is the residual variance. As before, the prior
distribution for se

2 was a scale inverse chi-squared
distribution with parameters s=0 and v=x2.

(b) A priori asymmetric Gaussian distribution for
the residual term (model 2)

Following Sahu et al. (2003), asymmetry in the
residual term can be easily modelled by a
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skewed-normal density :

e � SN(0, Ies
2
e, l), (6)

f(e s2
e, l

�� )=
Yn
i=1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
e+l2

q w
eiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
e+l2

q
0
B@

1
CA

rW
l

se

eiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
e+l2

q
0
B@

1
CA, (7)

where l is the degree of asymmetry defined in the
real space and w and W denote the density function
and cumulative distribution function of a standard
normal distribution with kernel as defined between
parentheses, respectively.

Following Sahu et al. (2003), the mean of the
asymmetric Gaussian distribution is

E(ei)=

ffiffiffi
2

p
lffiffiffi
p

p , (8)

the variance becomes

Var(ei)=s2
e+l2 1x

2

p

� �
(9)

and the third central moment of the distribution is

E [eixE(ei)]
3=l3

ffiffiffi
2

p

r
4

p
x1

� �
: (10)

Thus, the three parameters of the asymmetric
Gaussian distribution are statistically identifiable
from the first three moments of a given data set.

As before, the prior distribution for se
2 was a scale

inverse chi-squared distribution with parameters s=0
and v=x2. Finally, the prior distribution for l was
assumed flat between bounded limits (x50, 50).

(c) A priori asymmetric Gaussian distribution for
the residual term with a hierarchical Bayesian
scheme (model 3)

As suggested in the previous sections, the asymmetry
parameter can be modelled under a hierarchical
structure, with the a priori distribution of e being:

e � SN(0, Ies
2
e, l), (11)

f (ejs2
e, l)=

Yn
i=1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
e+l2

i

q w
eiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
e+l2

i

q
0
B@

1
CA

rW
li
se

eiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
e+l2

i

q
0
B@

1
CA, (12)

where l is the vector of li. A hierarchical model was
assumed for l such as

l=Xbl+Wpl+Zul, (13)

where bl, pl and ul are the vectors of systematic,
permanent environmental and additive genetic effects,
respectively. The prior distribution for each systematic
effect of the asymmetry parameter is defined as a
bounded uniform distribution between x50 and 50
units, and pl and ul are assumed to be correlated with
p and u, respectively. Thus, the prior distributions for
both effects were defined as:

p

pl

� �
� N

0

0

� �
, Ip �D

� �
, (14)

u

ul

� �
� N

0

0

� �
,A�G

� �
, (15)

where D and G are 2r2 permanent environmental
and additive genetic (co)variance matrices, respect-
ively. The following inverted Wishart distributions
were assumed for G and D :

G � IW(0,x3), (16)

D � IW(0,x3): (17)

(ii) Field data

The models were tested on a data set consisting of
NBA per litter from a pure-bred Landrace commer-
cial pig population. The data set consisted of 63 208
litter-size records collected between 1982 and 1997
in six commercial farms from COPAGA SCCL
(Lleida, Spain). Phenotypic data were from to 19 255
sows and the pedigree included 27 911 individuals.
The raw mean was 9.04 piglets born alive with a
standard deviation of 2.41 piglets. Data were grouped
in six orders of parity (1, 2, 3, 4, 5 and >5) and 226
herd-year-season effects.

(iii) Bayesian implementation

The Bayesian implementation of the models was
performed using a Gibbs sampler (Gelfand & Smith,
1990). Full details of the conditional distributions
needed for the implementation are presented in the
Appendix. For each model, a single chain of 500 000
iterations was performed after discarding the first
50 000. Convergence was checked using the Raftery &
Lewis (1992) and Gelman et al. (1996) procedures.

(iv) Sensitivity analysis

The influence of prior information on the posterior
distribution has been tested under models 2 and 3.
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For model 2, the assumed prior for the degree of
asymmetry was uniform, and model performance
under two additional priors was studied,

l � N(1, 1), (18)

l � N(x1, 1): (19)

Under model 3, the prior distribution for the additive
variance components was assigned to an inverted
Wishart distribution with parameters 0 and x3. Two
alternative scenarios were considered:

G � IW(G*, 10), G*=
0�50 0
0 0�10

� �
, (20)

G � IW(G**, 10), G**=
0�10 0
0 0�02

� �
: (21)

(v) Model checking and model comparison

(a) Model checking

The fit of the statistical model to the data analysed
can be assessed in a variety of ways. In a Bayesian
context, a standard method for model checking in-
volves the use of the posterior predictive distributions
of discrepancies to diagnose particular failures of
the model (Rubin, 1984; Gelman et al., 1996). Take
T(y ; h) as a specific discrepancy measure allowing
comparison of the posterior distribution of T(yobs ; h)
with the posterior predictive distribution of T(yrep ; h).
Here, yobs is the observed data, yrep is a simulated
replicate of the data set at each iteration of the
MCMC procedure, and h represents the values
sampled for all the parameters in the model in the
given iteration. Systematic differences between
T(yobs ; h) and T(yrep ; h) indicate a possible failing of
the model.

In our particular case, we wanted to study the glo-
bal discrepancy and the discrepancy associated with
order of parity and sire family, and their relationship
with the symmetry of the environmental variation
under model 1. For global discrepancy, we defined the
following measure of skewness:

T(y,h1)=
g
n

i=1
(yixmi)

3

(nx1)~ss2
e

, (22)

where h1 represents all the unknown parameters in
model 1, ~ss2

e is the sampled value of the residual
variance at each iteration and mi is the ith row
in Xb+Wp+Zu. The expected value of T(yobs, h1)x
T(yrep, h1) under model 1 is zero, and values larger or
smaller than 0 indicate asymmetry of the residuals.
The degree of discrepancy was defined through the
predictive P-values, calculated as the proportion of

iterations where T(yobs, h1)xT(yrep, h1) was below
zero (Gelman et al., 1996).

To study the discrepancy associated with the jth
specific effect (order of parity or sire family), we also
calculated the following measure:

Tj(y, h1)=
g
Nj

i=1
(yixmi)

3

(Njx1)~ss2
e(j)

, (23)

At this point, Nj is the number of records for the jth
effect and ~ss2

e(j) is the sampled value of the residual
variance within the records for the jth effect at
each iteration. As before, the expected value of
Tj(y

obs, h1)xTj(y
rep, h1) under model 1 is zero, and

larger or smaller values indicate positive or negative
asymmetry of the residuals. The degree of discrepancy
was calculated through the predictive P-values.

(b) Model comparison

Models were also compared using the deviance in-
formation criterion (DIC) proposed by Spiegelhalter
et al. (2002). The DIC is defined as:

DIC=2DxD(hM), (24)

where hM is the vector of average values for all par-
ameters in a given model (M) at the end of the sam-
pling process,

D(hM)=x2 log p(yjhM,M), (25)

D=x2

Z
[ log p(yjhM)]p(hMjy,M)dhM

=EhMjy[D(hM)], (26)

with hM being the sampled values of all unknowns in
model M in a given MCMC iteration. The DIC
combines a measure of model fit (D) and a measure of
model complexity (D(hM)) (Spiegelhalter et al., 2002).
Models with smaller DIC exhibit a better fit.

(vi) Response to selection

We also used model 3 to infer the selection response
for NBA and the asymmetry parameter. We calcu-
lated the posterior mean of the average breeding value
corresponding to individuals born each year between
1981 and 1997, following the Bayesian techniques
described by Sorensen et al. (1994). Furthermore, we
also compared the expected selection gain using three
different selection criteria in model 3: (1) breeding
values for NBA, (2) breeding values for the degree of
asymmetry and (3) a combined index with weights
related to the potential increase in number of piglets.
The expected litter size for a future individual can
be calculated from E(yxm)=ui+(

ffiffiffi
2

p
=
ffiffiffi
p

p
)uli, and
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we applied these weights for both breeding values in
the selection index. We assumed directional selection
for the top 20% of the pigs born after 1995. The
procedure calculates the average breeding value at
each iteration for the selected individuals. We con-
sidered selection on the basis of (1) breeding values
for NBA under model 3, (2) breeding values for the
degree of asymmetry and (3) a combined index with
weights related to the potential increase in number of
piglets.

3. Results and discussion

(i) Model fit and model comparison

Results from the study of model fit based on posterior
predictive model checking are shown in Figs 1–3.
Figure 1 presents the measure of global discrepancy
showing that the posterior distribution of T(y, h1)x
T(yrep, h1) was centred at a negative value and did not
include zero, their highest posterior density at 95%
(HPD95), indicating a strong negative asymmetry
of residuals under model 1. In fact, the posterior
predictive P-value was lower than 10x6. Figure 2
presents the discrepancy measure associated with

order of parity. As before, the posterior distribution
of the discrepancy measure revealed negative asym-
metry for each order of parity, with posterior predic-
tive P-values lower than 10x6. Moreover, the
posterior distributions of the measure of discrepancy
for order of parity 1 differed considerably from the
rest of the classes (i.e. orders of parity 2, 3, 4, 5 and 6;
Fig. 2). This suggests that a model including differ-
ences between the degrees of asymmetry across sys-
tematic effects may be more plausible for the analysed
data set. Finally, Fig. 3 shows discrepancy measures
for the ten larger sire families. As in the previous
case, the posterior estimates and posterior predictive
P-values (lower than 10x6) indicate negative asym-
metry. In addition, the non-negligible differences
between some sire families (e.g. sire family 7 vs. 8),
suggests a possible genetic determinism with regard
to the degree of asymmetry.

In strong concordance with the previous results
concerning model fit, the Monte Carlo estimates of
DIC for models 1, 2 and 3 were 139619.0, 138398.8
and 137757.8, respectively. Spielgelhalter et al. (2002)
considered differences in DIC of more than 7 to
be important. Comparison based on DIC therefore
favoured model 3 followed by model 2, and generally
favoured the model that best captured the asymmetric
pattern of the data.

(ii) Inferences on model parameters

The posterior mean and standard deviation estimates
for the variance components under models 1 and 2
are presented in Table 1. The posterior estimates for
the additive and permanent environmental variances
were similar in the two models. On the contrary, the
posterior mean estimate for se

2 differed notably
between model 1 (4.77, with a posterior standard de-
viation of 0.03) and model 2 (1.92 with a posterior
standard deviation of 0.04). The posterior estimate

0·
0

–0
·1

–0
·2

–0
·3

–0
·4

–0
·5

Fig. 1. Boxplot for posterior predictive realizations of the
discrepancy measure designed to test asymmetry in
environmental variance.

0·
0

–0
·1

–0
·2

–0
·3

–0
·4

–0
·5

1 2 3 4

Order of parity

5 6

Fig. 2. Boxplot of posterior predictive realizations of the
discrepancy measure designed to test environmental
variance heterogeneity due to order of parity.

0·
0

–0
·2

–0
·4

–0
·6

–0
·8

1 2 3 4

Sire family

5 6 7 8 9 10

Fig. 3. Boxplot of posterior predictive realizations of the
discrepancy measure designed to test environmental
variance heterogeneity due to sire family.
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was smaller under model 2 because of the presence
of the asymmetry parameter on the skewed residual
distribution. Following formula (9), the variance
of the distribution depends on both the asymmetry
parameter and the residual variance. The posterior
mean estimate for the asymmetry parameter in
model 2 was x2.79, with a posterior standard devi-
ation of 0.02. Using expression (8), the posterior
mean of the expectation of the asymmetric distri-
bution was x2.23 piglets (with standard deviation of
0.02). This value can be understood as the loss of
prolificacy due to environmental factors according
to model 2, and agrees with previous assumptions
suggesting a greater incidence of adverse uncontrolled
environmental sources of variation than favourable
ones. Finally, using formula (9), the posterior mean
estimate of the variance for the asymmetric distri-
bution under model 2 was 4.75 (with a posterior
standard deviation of 0.04). As expected, this variance
for model 2 was very similar to the residual variance
under model 1.

Results concerning the posterior distributions of
variance components under model 3 are presented in
Fig. 4. Posterior means for additive and permanent
environmental variances affecting NBA were similar
to those reported with models 1 and 2, but with
greater standard deviations, due to increased com-
plexity of the model. Under model 3, a different de-
gree of asymmetry was peculiar to each of the data,
and the average posterior mean estimate of the degree
of asymmetry was x1.84 (with an empirical standard
deviation of 1.91). Moreover, around 88% of the data
were associated with negative posterior means for the
degree of asymmetry.

The posterior mean (and standard deviation) esti-
mates for the additive genetic and permanent en-
vironmental variances of the degree of asymmetry
were 0.07 (0.01) and 0.05 (0.01), respectively. The
posterior probability over 0.04 of the additive vari-
ance component was 0.99. This provides evidence
of the presence of additive genetic determinism in
the individual degree of asymmetry, which can be
interpreted as the indicator of genetic variability
in robustness against unfavourable environmental ef-
fects affecting prolificacy. The posterior distributions

of the additive genetic and permanent environmental
correlations between NBA and the degree of asym-
metry are presented in Fig. 5. These results suggest a
slight, but positive, association between the NBA and
resistance to environmental influences.

The posterior mean estimates for order of parity
effects with models 1, 2 and 3 are presented in Table 2.
These results indicate that prolificacy increased until
the fourth parity and decreased subsequently, con-
firming previous research findings (Kennedy &
Moxley, 1978; Clark & Leman, 1986; Noguera et al.,
2002a). The posterior estimates for systematic effects
with models 2 and 3 are higher than with model 1, as
the former referred to the expectation of the asym-
metric residual distribution, which is negative in the
analysed data set. Estimates under models 2 and 3 can
be understood as the potential NBA after the as-
sumption of the asymmetric residual distribution,
whose expectation is not zero. Posterior estimates
in model 3 were lower than in model 2, consistent
with the smaller estimates for the degree of asym-
metry (x1.84 vs. x2.79). Posterior estimates for
the degree of asymmetry associated with each order
of parity were also obtained in model 3. The maxi-
mum degree of asymmetry was obtained in the first
parity, indicating that younger sows were more sen-
sitive to environmental stressors, as pointed out by
several authors (Dagorn et al., 1984).

The correlations between posterior mean estimates
of breeding values for NBA were 0.99 between models
1 and 2, 0.92 between models 1 and 3 and 0.92
between models 2 and 3. From these results, the
consequences of selection for NBA do not differ
notably if we compare models 1 and 2, but more
marked differences are expected if we use model 3.
This model also provides the breeding values for the
asymmetry parameter. For example, the female with
the best breeding value for the asymmetry parameter
showed a strong robustness against environmental
influences along five parities, and had litter-size re-
cords of 11, 18, 16, 13 and 15 live-born piglets. On
the contrary, the worst individual had a good per-
formance in the first parity (ten piglets), but it suffered
from negative environmental effects in the subsequent
ones (NBA records 10, 5, 2 and 6).

(iii) Sensitivity analysis

The results of the sensitivity analysis to prior dis-
tributions are presented in Tables 3 and 4. Under
model 2 (Table 3), estimates with alternative prior
distributions for the degree of asymmetry were very
similar. In all cases, even when the prior distribution
was a Gaussian distribution with mean and variance
equal to one, the posterior distribution placed its
density in the negative space. This fact indicates that
the likelihood (data) is very informative for the degree

Table 1. Monte Carlo estimates of posterior mean
(and posterior standard deviation) for variance
components and the degree of asymmetry under
models 1 and 2

Model sa
2 sp

2 se
2 l

1 0.30 (0.04) 0.49 (0.04) 4.77 (0.03) –
2 0.35 (0.04) 0.42 (0.03) 1.92 (0.04) x2.79 (0.02)
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of asymmetry and it dominates clearly over the prior
distribution.

Under model 3 (Table 4), the results were to
some extent different under several prior specifi-
cations. With prior (b), the posterior mean estimates
for the additive variance components for both NBA
and the degree of asymmetry were higher than with
prior (a). On the other hand, the opposite effect is
observed with prior (c), for which the posterior
mean estimates of additive variances decreased.
The results were coherent with the prior specifi-
cations. In both cases, the posterior distribution
moves slightly towards the prior, but the infor-
mation provided by the likelihood still dominates
the prior.

(iv) Experienced and expected response to selection

The evolution of the breeding values for NBA and
the degree of asymmetry from 1981 to 1997 is pres-
ented in Fig. 6. From 1981 to 1992, there was a
positive selection response for asymmetry and a flat
or slightly negative selection response for the NBA.
On the contrary, the tendency was the opposite
from 1992 to 1997, and the selection response was
mainly associated with the NBA. These results were
in strong agreement with the selection background
of the population. Until 1992, selection was per-
formed by the farmers, who culled less productive
individuals, whereas from 1992 onwards, selection
was performed using BLUP procedures with model 1

(b) Additive variance (asymmetry)(a) Additive variance (NBA)

(c) Permanent environmental variance
(NBA)

(d) Permanent environmental variance
(asymmetry)

Mode=0·43
Mean=0·42
SD=0·05

Mode=0·05
Mean=0·05
SD=0·01

Mode=0·07
Mean=0·07
SD=0·01

Mode=0·26

7
6

5
4

3
2

1
0

6
8

4
2

0

0·1 0·2 0·3 0·4 0·5 0·6

0·2 0·3 0·4 0·5 0·6 0.02

0
10

20
30

40

0.04 0.06 0.08 0·10

0.02

0
10

20
30

40

0.04 0.06 0.08 0·10

Mean=0·28
SD=0·06

Fig. 4. Posterior distributions of additive and permanent environmental variance for the NBA and the degree of
asymmetry.

(a) Genetic correlation (b) Permanent environmental correlation

Mode=0·21
Mean=0·21
SD=0·07

Mode=0·12
Mean=0·12
SD=0·04

5
4

3
2

1
0

–0·1 –0·05 0·05 0·15 0·25

10
8

6
4

2
0

0·0 0·1 0·2 0·3 0·4 0·5

Fig. 5. Posterior distribution for genetic and permanent environmental correlations between the NBA and the degree of
asymmetry.
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(Noguera et al., 2002b). Culling of less productive
animals is related to the asymmetry parameter, be-
cause the reason for culling is mainly related to
extremely low NBA caused by environmental effects.
If the asymmetry parameter has some degree of

genetic determinism and it is related to robustness to
undesirable genetic effects, a selection response would
be expected. Thus, the evidence of genetic change
in the asymmetry parameter observed in Fig. 6 is in
agreement with the genetic determinism suggested by

Table 2. Monte Carlo estimates of posterior means
(for order of parity effects for the NBA (models 1, 2
and 3) and degree of asymmetry (model 3))

Order of
parity

NBA
Asymmetry
(model 3)Model 1 Model 2 Model 3

1 8.21 10.27 9.68 x1.87
2 8.85 10.91 10.16 x1.69
3 9.07 11.09 10.24 x1.52
4 9.14 11.19 10.45 x1.70
5 9.09 11.13 10.36 x1.69
6 8.85 10.92 10.11 x1.66

Table 3. Monte Carlo estimates of posterior mean
(and posterior standard deviation) for variance
components and the degree of asymmetry under model
2 and priors (a) (uniform), (b) (N(1, 1)) and
(c) (N(x1, 1)) for the degree of asymmetry

Prior sa
2 sp

2 se
2 l

Uniform 0.35
(0.04)

0.42
(0.03)

1.92
(0.04)

x2.79
(0.02)

N(1, 1) 0.35
(0.04)

0.43
(0.03)

1.94
(0.04)

x2.77
(0.02)

N(x1, 1) 0.35
(0.04)

0.42
(0.03)

1.93
(0.04)

x2.78
(0.02)

Table 4. Monte Carlo estimates of posterior mean (and posterior standard deviation) for variance components,
genetic and permanent environmental correlations under model 3 with priors (a), (b) and (c)

Prior

Number born alive Degree of asymmetry Correlations

sa
2 sp

2 se
2 sa

2 sp
2 rg rp

(a) 0.28 (0.06) 0.42 (0.05) 2.23 (0.03) 0.07 (0.01) 0.05 (0.01) 0.21 (0.07) 0.12 (0.04)
(b) 0.31 (0.06) 0.38 (0.05) 2.17 (0.03) 0.08 (0.01) 0.06 (0.01) 0.21 (0.06) 0.11 (0.04)
(c) 0.26 (0.06) 0.44 (0.04) 2.21 (0.03) 0.06 (0.01) 0.07 (0.01) 0.18 (0.07) 0.13 (0.04)

(a) G � IW(0,x3).

(b) G � IW(G*, 10), G*=
0�50 0
0 0�10

� �
.

(c) G � IW(G**, 10), G**=
0�10 0
0 0�02

� �
.
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Fig. 6. Selection response for the NBA and the degree of asymmetry.
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the variance component estimation presented above.
On the other hand, the empirical correlation between
breeding values calculated with model 1 and model 3
was 0.92 and so it is expected that selection on
breeding values from model 1 had determined a
positive genetic response under model 3, as observed
in Figure 6 for the period from 1992 onwards.

Regarding the expected response to selection,
selection on breeding values for NBA (i.e. omitting
the genetic background of the asymmetry parameter)
implied an increase of 0.44 piglets per parity. When
selection was exclusively applied to breeding values of
the asymmetry parameter, the expected improvement
was 0.14 piglets per parity. Finally, a selection index
with both breeding values produced a genetic re-
sponse of 0.48 piglets. Thus, the selection based on an
index that combines both breeding values resulted in a
10% increase in the expected selection response with
respect to selection based on breeding values for NBA
exclusively.

(v) Final remarks

The proposed model allows taking into account the
differential sensitivity to unfavourable environmental
influences in the genetic evaluation by including
breeding values for the asymmetry parameter. They
are related to the robustness of the individuals against
sources of stress. Sensitivity to environmental sources
of stress could have important economic conse-
quences, not only for prolificacy, but also for a
plethora of economically related traits, for which
selection on the asymmetry parameter could therefore

imply additional benefits. Further research must be
conducted on reproductive and growth traits in pigs
simultaneously.

The proposed model can be extended to include
some additional features. First, the Gaussian distri-
bution can be replaced easily by a more robust dis-
tribution, such as Student’s t distribution (Stranden
& Gianola, 1999), which can account for divergence
from the Gaussian distribution explained by prefer-
ential treatment or other possible phenomena.
Moreover, this procedure provides an alternative
to model heterogeneous residual variances and it
should be compared with the methods proposed
by SanCristobal-Gaudy et al. (1998) and Sorensen &
Waagepetersen (2003). Furthermore, it is also poss-
ible to combine both strategies, although the result-
ing model would be extremely complex and difficult
to interpret. Another possible extension of the
model involves the use of the asymmetric Gaussian
distribution for other random effects in the model.
Hence, the asymmetry of the additive breeding
values can be explained by the presence of major
genes with extreme frequency (Falconer & Mackay,
1996), or by the presence of semi-deleterious mu-
tations (Garcı́a-Dorado et al., 1999). Both can lead
to asymmetric genetic responses of the type reported
in the literature (Argente et al., 1997; Zhang et al.,
2005).
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Appendix. Conditional distributions required for the Gibbs sampler

(i) Model 1

Models were implemented by using MCMC techniques. The implementation of model 1 consisted of a standard
application of the Gibbs sampler for a linear mixed model (Wang et al., 1994). The conditional distributions
involved in the analysis were univariate Gaussian distributions for the additive genetic and permanent en-
vironmental effects and scaled inverse chi-squared distributions for the additive genetic, permanent environ-
mental and residual variance components. For the systematic effects, the conditional distributions were
truncated Gaussian distributions with the bounds of the assumed uniform prior. Computationally, it is
equivalent to a Gaussian distribution when the bounds are far enough.

(ii) Model 2

Under model 2, the marginal distribution of the residuals can be reparameterized by adding a vector of auxiliary
variables (t), following Sahu et al. (2003) :

f(ejs2
e, l)=

Yn
i=1

Z 1

0
f(eijs2

e, l, ti)f(ti)dti

=
Yn
i=1

Z 1

0

1ffiffiffiffiffiffiffiffiffiffi
2ps2

e

p exp x
(eixlti)

2

2s2
e

� �
1ffiffiffiffiffiffi
2p

p exp x
t2i
2

� �
dti: (A1)
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With the parameterization described above, residuals can be reparameterized as e=lt+e* by using a data-
augmentation step (Tanner & Wong, 1987), where prior distributions are assumed to be

e* � N(0, s2
e) (A2)

and

t � HN(0, I), (A3)

where HN(.) is a positive half-normal standard distribution and I the appropriate identity matrix.
The implementation of MCMC for model 2 involved sampling of the conditional distribution of the asym-

metry parameter (l). It must be noted that, after adding the vector of auxiliary parameters (t), the model can be
rewritten as:

y=Xb+Wp+Zu+lt+e*: (A4)

Then, the conditional distribution of l is the following univariate Gaussian distribution:

ljy, b, p, u, t, s2
e=N

g
n

i=1
ti yixxkibxwkipxzkiuð Þ

g
n

i=1
t2i

,
s2
e

g
n

i=1
t2i

0
BB@

1
CCA, (A5)

where xik, wik and zik are the ith rows of X, W and Z, respectively. The conditional distribution for ti is generated
from the conditional likelihood and the half-normal prior distribution. After multiplication, they produced the
following half-normal distribution:

tijy, b, p, u, l, s2
e=N

l(yixxkibxwkipxzkiu)
l2 ,

s2
e

l2

� �
HN(0, 1)

=HN
l(yixxkibxwkipxzkiu)

l2+1
,

s2
e

l2+1

� �
(A6)

defined for values between 0 and infinity. The remaining conditional distributions are the same as in model 1.

(iii) Model 3

As in the previous case, the model can be transformed into the following expression by using a vector of auxiliary
parameters (t) :

y=Xb+Wp+Zu+lkt+e, (A7)

where l is the vector of li.
The implementation of model 3 is similar to that of model 2, the conditional distributions for ti being the

following half-normal distribution defined between 0 and infinity:

tijy, b, bl, p, pl, u, ul, l, s
2
e=HN

li(yixxkibxwkipxzkiu)
l2
i+1

,
s2
e

l2
i+1

 !
, (A8)

where li=xikbl+wikpl+ziul.
The conditional distribution of each level of bl, ul and pl are obtained from the joint distribution of all the

unknowns in the model, after conditioning on the rest of parameters. The conditional distribution of a given
element of bl(bli) is the following Gaussian distribution:

blijy, bl(xi), b, p, pl, u, ul, t,s
2
e

=N

g
Nbi

j=1
tj(yjxxkjbxwkjpxzkjuxtj[xkjbl(xi)xwkjplxzkjul])

g
Nbi

j=1
t2j

,
s2
e

g
Nbi

j=1
t2j

0
BBBB@

1
CCCCA, (A9)
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where blxi is the vector of systematic effects for the degree of asymmetry without bli and Nbi is the number of
records influenced by the ith systematic effect.

The conditional distribution of uli is proportional to the product of two normal distributions; the first one
comes from the conditional likelihood:

N

g
Nui

j=1
tj(yixxkibxwkipxzkiuxtj[xkiblxwkipl])

g
Nui

j=1
t2j

,
s2
e

g
Nui

j=1
t2j

0
BBB@

1
CCCA, (A10)

where Nui is the number of records associated with the ith additive genetic effect, and the second Gaussian
distribution is provided by the prior information of the breeding values :

N ax1k
i ug12+ax1k

i ul(xi)g
22,

1

g22

� �
, (A11)

where ax1k
i is the ith row of the inverse of the numerator relationship matrix, gmn is the element in the mth row

and nth column of the inverse of the additive genetic (co)variance matrix (G), and ul(xi) is the vector of breeding
values for the degree of asymmetry without the ith element. Then, the conditional distribution of uli is :

ulijy, b, bl, p, pl, u, ul(xi), t, s
2
e

/ N

g
Nui

j=1
tj(yixxkibxwkipxzkiuxtj[xkiblxwkipl])

g
Nui

j=1
t2j

,
s2
e

g
Nui

j=1
t2j

0
BBB@

1
CCCA

rN ax1k
i ug12+ax1k

i ul(xi)g
22,

1

g22

� �
: (A12)

Similarly, the conditional distribution of pli is proportional to the product of the two normal distributions :

plijy, b, bl, u, ul, p, pl(xi), t, s
2
e

/ N

g
Npi

j=1
tj(yixxkjbxwkjpxzkjuxtj[xkjblxzkjul])

g
Npi

j=1
t2j

,
s2
e

g
Npi

j=1
t2j

0
BBBB@

1
CCCCA

rN pid
12,

1

d22

� �
, (A13)

whereNpi is the number of records associated with the ith permanent effect and dmn is the element in the mth row
and nth column of the inverse of D.

Finally, the conditional distributions of b, p and u are univariate Gaussian distributions, the conditional
distributions for G and D are inverted Wishart distributions and the conditional distribution for the residual
variance component is an inverted chi-squared distribution.
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