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Recent attempts to use deep learning for super-resolution reconstruction of turbulent flows
have used supervised learning, which requires paired data for training. This limitation
hinders more practical applications of super-resolution reconstruction. Therefore, we
present an unsupervised learning model that adopts a cycle-consistent generative
adversarial network (CycleGAN) that can be trained with unpaired turbulence data
for super-resolution reconstruction. Our model is validated using three examples: (i)
recovering the original flow field from filtered data using direct numerical simulation
(DNS) of homogeneous isotropic turbulence; (ii) reconstructing full-resolution fields using
partially measured data from the DNS of turbulent channel flows; and (iii) generating a
DNS-resolution flow field from large-eddy simulation (LES) data for turbulent channel
flows. In examples (i) and (ii), for which paired data are available for supervised learning,
our unsupervised model demonstrates qualitatively and quantitatively similar performance
as that of the best supervised learning model. More importantly, in example (iii), where
supervised learning is impossible, our model successfully reconstructs the high-resolution
flow field of statistical DNS quality from the LES data. Furthermore, we find that the
present model has almost universal applicability to all values of Reynolds numbers within
the tested range. This demonstrates that unsupervised learning of turbulence data is indeed
possible, opening a new door for the wide application of super-resolution reconstruction
of turbulent fields.

Key words: turbulence simulation

1. Introduction

Turbulence is a chaotic, spatio-temporal multi-scale nonlinear phenomenon. Thus,
it generally requires huge costs to accurately measure or simulate with sufficiently
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high resolution. In particular, direct numerical simulation has been actively used in the
study of turbulence. However, securing the computational resources needed to resolve even
the smallest-scale motions of turbulence is progressively challenging with high Reynolds
numbers. To help resolve this problem, a neural network (NN), which has the ability
to approximate arbitrary nonlinear functions (Hornik, Stinchcombe & White 1989), as
well as linear-theory based methods such as proper orthogonal decomposition (Berkooz,
Holmes & Lumley 1993), linear stochastic estimation and Kalman filter have been studied.
Indeed, there have been attempts to apply neural networks to represent turbulence (Lee
et al. 1997; Milano & Koumoutsakos 2002). However, those applications were based on
shallow learning and, thus, were restricted to the extraction of simple correlations between
turbulence quantities at two close locations in a near-wall flow. In recent years, deep neural
networks (DNN) have been extended to various fields of turbulence research, owing to
the development of data-driven learning algorithms (e.g. deep learning LeCun, Bengio
& Hinton 2015), computational equipment (e.g. graphical process units), big data (e.g.
Johns–Hopkins Turbulence Database (JHTDB) Perlman et al. 2007) and open-source code
(e.g. TensorFlow Abadi et al. 2015).

Various deep-learning applications have recently been developed for broad areas of
turbulence research (Kutz 2017; Brenner, Eldredge & Freund 2019; Duraisamy, Iaccarino
& Xiao 2019; Brunton, Noack & Koumoutsakos 2020; Fukami, Fukagata & Taira
2020a; Pandey, Schumacher & Sreenivasan 2020). Ling, Kurzawski & Templeton (2016)
proposed a tensor-based NN by embedding the Galilean invariance of a Reynolds-averaged
Navier–Stokes (RANS) model, showing a greater performance improvement than linear
and nonlinear eddy viscosity models. Parish & Duraisamy (2016), Wang, Wu & Xiao
(2017), and other researchers have actively engaged in improving RANS models (e.g. Kutz
2017; Duraisamy et al. 2019). On the other hand, Gamahara & Hattori (2017) proposed a
large-eddy simulation (LES)-closure model based on DNN for wall-bounded turbulence. It
was then extended to other flows, such as two-dimensional (2-D) turbulence (Maulik et al.
2019) and homogeneous isotropic turbulence (Beck, Flad & Munz 2019; Xie et al. 2019).
Additionally, the prediction of the temporal evolution of turbulent flows has been actively
pursued. As a fundamental example, Lee & You (2019) studied the historical prediction
of flow around a cylinder using generative adversarial networks. Srinivasan et al. (2019)
predicted the temporal behaviour of simplified shear turbulence expressed as solutions of
nine ordinary differential equations using a recurrent NN (RNN). Kim & Lee (2020a)
proposed a high-resolution inflow turbulence generator at various Reynolds numbers,
combining a generative adversarial network (GAN) and an RNN. As another noticeable
attempt to apply machine learning to fluid dynamics, Raissi, Yazdani & Karniadakis
(2020) reconstructed velocity and pressure fields from only visualizable concentration
data based on a physics-informed NN framework. Recently, deep-reinforcement learning
has been applied to fluid dynamics, such as observations of how swimmers efficiently use
energy (Verma, Novati & Koumoutsakos 2018) and the development of a new flow-control
scheme (Rabault et al. 2019).

Apart from the above studies, the super-resolution reconstruction of turbulent flows
has recently emerged as an interesting topic. This capability would help researchers
overcome environments in which only partial or low-resolution spatio-temporal data are
available, owing to the limitations of measurement equipment or computational resources.
Particularly, if direct numerical simulation (DNS)-quality data could be reconstructed
from data obtained via LES, it would be very helpful for subgrid scale modelling.
Maulik & San (2017) proposed a shallow NN model that could recover a turbulent flow
field from a filtered or noise-added one. Fukami, Fukagata & Taira (2019a, 2020b) and
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Liu et al. (2020) reconstructed a flow field from a low-resolution filtered field using a
convolutional NN (CNN). The method shows significant potential. The CNNs were trained
to reduce the mean-squared error (MSE) between the predicted and true values of target
quantities. However, small-scale structures were not represented well, and non-physical
features were observed when the resolution ratio between the target and input fields was
large. Deng et al. (2019) considered flow data around a cylinder measured using particle
image velocimetry (PIV) in a learning network using a GAN in which the small-scale
structures were better expressed than when only MSE was used. Similarly, Xie et al.
(2018) and Werhahn et al. (2019) applied GANs on super-resolution smoke data. In all
these prior studies, researchers used a supervised deep-learning model, which required
labelled low- and high-resolution data for training. Therefore, paired data were artificially
generated by filtering or averaging so that supervised learning could be made possible. In
a more practical environment, however, only unpaired data are available (e.g. LES data
in the absence of corresponding DNS data or measured data using PIV with limited
resolution). For more practical and wider applications, a more generalized model that
can be applied, even when paired data are not available, is needed. Kim & Lee (2020a)
recently showed that unsupervised learning networks could generate turbulent flow fields
for inflow boundary conditions from random initial seeds. This indeed demonstrates that
a DNN can learn and reflect hidden similarities in unpaired turbulence. Based on this
evidence, we presume that super-resolution reconstruction of unpaired turbulence is now
possible by learning the similarities among the unpaired data. Such an extension would
enable outcomes previously thought impossible. For example, the simultaneous learning
of LES and DNS data becomes possible, and, thus, high-resolution turbulence fields with
DNS quality can be reconstructed from LES fields. This can be useful for the development
of subgrid-scale models through the production of paired data. Another example is the
denoising and resolution enhancement of real-world data such as PIV measurements.
This can be accomplished by learning noise-added experimental data and high-fidelity
(experimental or simulation) data simultaneously. These are only a few examples of the
new possibilities.

In this paper we propose an unsupervised deep-learning model that can be used, even in
the absence of labelled turbulent data. For a super-resolution reconstruction using unpaired
data, we apply a cycle-consistent GAN (CycleGAN) (Zhu et al. 2017) to various turbulent
flows as an unsupervised learning model. The detailed methodology is presented in § 2. For
comparison, we use bicubic interpolation and supervised learning models (i.e. CNN and
conditional GAN (cGAN)). The models are applied to three examples, as shown in figure 1.
First, with homogeneous isotropic turbulence, a reconstruction of the DNS flow field from
a top-hat-filtered (i.e. low-resolution) one is considered in § 3.1. Next, in § 3.2 we cover
the reconstruction of full DNS data from a partially measured (i.e. low-resolution) one in
wall-bounded turbulence. In §§ 3.1 and 3.2 we train our CycleGAN model using unpaired
datasets with supervised learning models using paired ones. Finally, in § 3.3 DNS-quality
reconstruction from LES is addressed using independently obtained LES and DNS data of
wall-bounded turbulence. In this case, only the unsupervised learning model is applicable.
We conclude our study with a discussion in § 4.

2. Methodology

In this study we apply CycleGAN to an unsupervised learning task. A typical GAN
model consists of two networks: a generator network (G) and a discriminator network (D)
(Goodfellow et al. 2014). In the field of image generation, G generates a fake image similar
to the real one by applying convolution and upsampling to random noise z; D distinguishes
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Figure 1. Illustration of present work. The proposed CycleGAN is an unsupervised learning model for the
super-resolution reconstruction of turbulence. For comparison, CNN and cGAN are used as supervised learning
models. In this study, three examples including filtered homogeneous and isotropic turbulence, partially
measured wall-bounded turbulence, and large-eddy simulation (LES), are considered.

between the fake image and the real one and returns a probability value between 0 and 1 by
applying convolution and downsampling. The final goal is to obtain G, which can generate
fake images that are difficult to distinguish from real ones. This process is similar to a
min–max two-player game for the value function, V(D, G),

min
G

max
D

V(D, G) = Ex∼PX [log D(x)] + Ez∼PZ [log(1 − D(G(z)))], (2.1)

where X is a real image set, and x ∼ PX means that x is sampled from
the real image distribution. Here z is a random noise vector of latent space
used as the input to the generator. Network G is expected to generate a fake
image similar to the real one. Thus, trainable parameters in G are trained
in the direction of D(G(z)), having a value close to 1. On the other hand,
those in D are trained in the direction of D(x), returning a value close to 1.
The term D(G(z)) returns a value close to 0. Thus, even a slight difference between the
real image and the generated one can be distinguished. In other words, the G parameters
are adjusted in a direction that minimizes V(D, G), and D parameters are adjusted in a
direction that maximizes V(D, G). From this competitive learning, we can expect to obtain
a generator, G, capable of providing a new image having a distribution similar to a real
one. In the present work, GAN is applied to super-resolution reconstruction in the frame
of finding an input–output mapping function, and, instead of random noise, low-resolution
image data are used as the input of G, as illustrated in figure 2.

For an unsupervised learning model of unpaired turbulence, we adopt CycleGAN (Zhu
et al. 2017) to find a mapping function between unpaired data, X and Y . We aim to obtain a
model that performs super-resolution reconstruction when the low- and high-resolution
flow fields are not matched. Here X and Y are low- and high-resolution datasets,
respectively. CycleGAN consists of two generator networks, (G, F), and two discriminator
networks, (DY , DX), as shown in figure 3(a,b). Generators G and F are networks mapping
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D (YHR)
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D (Y~HR)
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Figure 2. The GAN architecture consists of two networks, the generator (G) and the discriminator (D). Here
G learns to reconstruct the high-resolution flow field (ỸHR) from the low-resolution field (XLR), while D learns
to distinguish ỸHR from the target field (YHR).

X

X

XX G

G

F

F

Y

Y

YY

Y
~

X
~

Generator (G) Generator (F)

Discriminator (DY) Discriminator (DX)

Cycle-consistency loss Cycle-consistency loss

(a) (b)

(c)

Figure 3. CycleGAN architecture consisting of (a) forward GAN and (b) backward GAN. Here G and F are
generators, and DY and DX are discriminators. (c) Forward cycle-consistency loss: x → G(x) → F(G(x)) ≈ x,
and backward cycle-consistency loss: y → F( y) → G(F( y)) ≈ y.

X −→ Y and Y −→ X, respectively. Discriminators DY and DX distinguish between a
fake image from generators and a real image, returning a probability value. Here DY
distinguishes between G(x) generated by G and y from Y , whereas DX distinguishes
between F( y) generated by F and x from X. The objective function of CycleGAN consists
of the GAN and cycle-consistency losses. The GAN loss helps the generators find the
distribution of the target image. The cycle-consistency loss connects two generators,
(G, F), and reflects the dependency of input on them. First, the GAN loss function is
used as

LGAN(G, DY) = Ey∼PY [log DY( y)] + Ex∼PX [log(1 − DY(G(x)))], (2.2)

LGAN(F, DX) = Ex∼PX [log DX(x)] + Ey∼PY [log(1 − DX(F( y)))], (2.3)

where x and y are the images sampled from X and Y datasets, respectively. Here G is trained
in a direction to minimize LGAN(G, DY), and discriminator DY is trained in a direction to
maximize LGAN(G, DY); F and DX in (2.3) are trained in the same way.

In principle, the properly trained generators, G and F, can provide data having a similar
distributions as the target data, Y and X. However, the above loss cannot guarantee
that the generated image will be properly dependent upon the input image. In other
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words, the high-resolution image, G(x), from the low-resolution one, x, could have the
characteristics of target datasets, Y , and the reconstructed image, G(x), might not have
a large-scale similarity to the low-resolution one, x. Therefore, a cycle-consistent loss
that reduces the space of the mapping function with G and F is additionally used (see
figure 3c). The cycle-consistent loss helps to ensure the dependency of the generated
data on the input. This loss function consists of two terms for domains X and Y . In the
left panel of figure 3(c), the forward cycle-consistency loss reduces the space of image x
and F(G(x)) in domain X. It makes G(x) dependent upon x (x → G(x) → F(G(x)) ≈ x).
Similarly, in the right panel of figure 3(c), the backward cycle-consistency loss reduces
the space of image y and G(F( y)) in domain Y and makes F( y) dependent upon y
(y → F( y) → G(F( y)) ≈ y). The cycle-consistency losses can be expressed as

Lcycle(G, F) = Ex∼PX [‖ F(G(x)) − x ‖2
2] + Ey∼PY [‖ G(F( y)) − y ‖2

2], (2.4)

where the first term on the right-hand side is the forward cycle-consistency loss, and the
second term is the backward cycle-consistency loss. Here ‖‖2

2 denotes mean-squared error,
which is normalized by vector size. The MSE between F(G(x)) and x and that between
G(F( y)) and y are used. The cycle-consistency loss provides a decisive effect on learning
the unpaired data. The final objective function used in this study is

L(G, F, DY , DX) = LGAN(G, DY) + LGAN(F, DX) + λLcycle(G, F), (2.5)

where λ is a weight factor and is fixed at 10. Generators G and F are trained in the
direction of minimizing L(G, F, DY , DX), whereas discriminators DY and DX are trained
in the direction of maximizing L(G, F, DY , DX). Learning with the above GAN loss often
diverges, because the discriminator easily distinguishes between the generated image and
the target one before parameters in the generator are sufficiently trained. Additionally,
there is a well-known problem (i.e. mode collapse) in which the generation distribution
is restricted to a small domain, although training does not diverge. To solve this problem,
we change the above GAN loss to a Wasserstein GAN (WGAN) having a gradient penalty
(GP) loss (Gulrajani et al. 2017). With the WGAN-GP loss, the GP term is added, and the
probabilistic divergence between the real image and the generated one becomes continuous
with respect to the parameters of the generator. Training and performance can, therefore,
be stabilized and improved.

To effectively handle the spatial structures of turbulence, a CNN comprising discrete
convolution operations and nonlinear functions is used as generators G and F and
discriminators DY and DX , respectively. To change the dimension of the image (i.e.
the flow field), up- and down-sampling are applied to generators G and F, respectively.
Downsampling is used for discriminators DX and DY . Additionally, the fully connected
layer is used in the last two layers for the discriminators. As a nonlinear function, a leaky
rectified linear unit (ReLU) is used, i.e.

f (x) =
{

x, x � 0,

αx, x < 0,
(2.6)

where α = 0.2. This nonlinear function reliably updates the weight by avoiding the
dead-ReLU problem that produces an output, 0, for the negative input. We have
tried both the ReLU and the leaky ReLU functions. The latter had a slightly better
qualitative performance, although both functions performed well enough. We also tested
a linear activation function and observed significantly poor performance compared to the
nonlinear models. It indicates that the strongly nonlinear model, such as the deep neural
network, is needed to capture the relation between low- and high-resolution turbulences.
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Detailed hyperparameters used for training and network architecture are provided in
appendix A. For implementation, we use the TensorFlow open-source library (Abadi et al.
2015).

To assess our unsupervised learning, we consider supervised learning that adopts CNN
and cGAN. Their generators comprise the same network as does G in the CycleGAN. In
our study we did not consider a fully connected NN because of the inefficiently large
number of trainable parameters versus the performance. The CNN is trained with the
MSE that represents the pixel loss between the target flow field and the reconstructed
one. With an L2 regularization added to prevent overfitting, the objective function of the
CNN consists of the sum of MSE and L2 regularization loss, as follows:

LCNN = Ex∼PX [‖ G(x) − y ‖2
2] + λ

2

∑
k

w2
k . (2.7)

Here, in the MSE of the data sampled during training, y and G(x) are the DNS flow field
and the predicted one, respectively. The second term is the L2 regularization loss, where
w represents trainable weights. The strength of the regularization is denoted by λ, fixed at
0.0001. The CNN is trained in the direction of minimizing LCNN to accurately predict the
target flow field. Conditional GAN, as proposed by Mirza & Osindero (2014), is similar
to GAN. The cGAN model applies the generator input as a condition to the discriminator
to constrain the output of the generator to be dependent upon the input. In this study,
the dependency of low-resolution data is effectively reflected in the reconstruction of
high-resolution data using low-resolution data as the condition. Thus, the correlation
between the large-scale structure and the reconstructed small-scale structures of turbulence
can be more accurately represented. The objective function of the cGAN is

LcGAN = Ey∼PY [log D( y|x)] + Ex∼PX [log(1 − D(G(x)|x))], (2.8)

where x and y are sampled low- and high-resolution turbulent flow fields, respectively.
A low-resolution field is used as the input of the discriminator in addition to the
high-resolution one (y or G(x)). For example, flow-field information, comprising a total
of six channels, including high-resolution velocity vector fields and paired low-resolution
fields, are used as input. Note that we can use cGAN only when paired data are provided.

In this study, the unpaired low- and high-resolution turbulent fields are used when
training the CycleGAN, whereas the paired data are used when training the CNN and the
cGAN. In the first two examples (§§ 3.1 and 3.2), paired data exist, because low-resolution
data are obtained from high-resolution DNS data. When learning the CycleGAN, low- and
high-resolution data are shuffled and unpaired intentionally. In § 3.3 LES and DNS data
are unpaired naturally. Thus, we cannot train the CNN and the cGAN, whereas we can
train the CycleGAN in the same way as explained in §§ 3.1 and 3.2.

3. Results and discussion

3.1. Example 1: filtered homogeneous isotropic turbulence
In this section, using various resolution ratios, super-resolution reconstruction leveraging
both supervised and unsupervised learning are considered for homogeneous isotropic
turbulence at a Taylor-scale Reynolds number, Reλ = 418. Here Reλ = λu′/ν where the
Taylor microscale λ = (15νu′2/ε)1/2, the root-mean-squared velocity u′ = (〈uiui〉/3)1/2,
and ν and ε are the kinematic viscosity and dissipation rate, respectively. Data
were obtained from the JHTDB. The governing equations were incompressible
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Navier–Stokes equations. Direct numerical simulation was performed based on the
pseudo-spectral method, and the domain and mesh size were 2π × 2π × 2π and 1024 ×
1024 × 1024, respectively. Kinematic viscosity ν = 0.000185, and the Kolmogorov length
scale η = 0.00280. Details are given in Perlman et al. (2007) and Li et al. (2008). We
used 200 fields with Δt = 0.02 for training and 10 fields with Δt = 0.2 for validation.
The fields for validation were well separated from the fields in the training data by the
large-eddy turnover time. In the current study, we focus on the best performance of both
supervised and unsupervised learnings that we can achieve. Therefore, we tried to collect
as much independent data as possible. We restricted our scope to the reconstruction
of 2-D fields of three-dimensional (3-D) turbulent fields to confirm the plausibility of
reconstructing turbulence using an unsupervised learning. Input and output data were 2-D
velocity fields (u, v, w) in an x − y plane. All velocity components are closely related
with one another, although statistically, the three components are not correlated with
one another in isotropic turbulence. Therefore, we combined all the components in the
construction of the learning network. Low-resolution velocity fields and filtered DNS
(fDNS) data were obtained by applying downsampling and average pooling (i.e. top-hat
filter) to high-resolution DNS data. Average pooling is a local average operation that
extracts the mean value over some area of the velocity fields. The size of DNS data was
Nx × Ny, and that of the low resolution was Nx/r × Ny/r, where r is the resolution ratio.
We considered three cases: r = 4, 8 and 16. For training, the target (high-resolution) size
was fixed at Nx × Ny = 128 × 128, which was a sub-region extracted from the training
fields. This choice of input and target-domain sizes was made based on our observation
that the domain length of 128Δx(=0.785) was greater than the integral length scale of the
longitudinal two-point velocity autocorrelation of 0.373. This condition is an important
guideline for the choice of the input domain, because high-resolution data at any point in
the same domain can be reconstructed restrictively based on all of the data in the input
domain.

To demonstrate the performance of unsupervised learning using CycleGAN for the
super-resolution reconstruction of turbulent flows, we tested a bicubic interpolation and
two kinds of supervised learning by adopting CNN and cGAN. Bicubic interpolation is a
simple method of generating high-resolution images through interpolation using data at 16
adjacent pixels without learning. CycleGAN was trained using unpaired fDNS and DNS
fields, and CNN and cGAN were trained using paired fDNS and DNS fields. The same
hyperparameters, except those of the network architecture, were used for each resolution
ratio, r. The velocity, u, of the reconstructed 2-D field, using the test data, is presented
in figure 4. Bicubic interpolation tends to blur the target turbulence and, thus, cannot
reconstruct well the small scales of the target flow field, regardless of the resolution
ratio. This obviously indicates that the bicubic interpolation is unsuitable for small-scale
reconstruction of turbulence. However, data-driven approaches can fairly well-reconstruct
small-scale structures that are not included in the input data. Convolutional neural
networks can reconstruct a velocity field similar to that of the target data when r = 4. As r
increases, the CNN shows only slight improvement over bicubic interpolation. Meanwhile,
cGAN can generate high-quality velocity fields similar to the DNS ones, regardless of the
input data resolution.

As also shown in figure 4, CycleGAN showed excellent performance in reconstructing
the velocity field, reflecting the characteristics of the target, given that it used unsupervised
learning. When r = 4 and 8, our model produced a flow field quite similar to that of the
target and that of the cGAN reconstruction trained using paired data. When r = 16, the
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Target

Unsupervised

learning

Supervised

learning

Without

learning

Input data

Resolution

× 4 × 8 × 16

CycleGAN

cGAN

CNN

Bicubic

0.5

0.5

–1.5

–0.9

–0.3

0.3

0.9

1.5

u

0 x/π

y/
π

Figure 4. Reconstructed instantaneous velocity field (u) from a given low-resolution input field with
homogeneous isotropic turbulence by various deep-learning models. The low-resolution field was obtained
through top-hat filtering on the DNS field.

910 A29-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
28

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1028


H. Kim, J. Kim, S. Won and C. Lee

generated field by CycleGAN had a slightly different point-by-point value from the target.
However, our model showed similar performance as cGAN.

Vorticity field (ωz), obtained from the reconstructed velocity information, is
presented in figure 5. Vorticity was not directly considered during the training
process. Similar to velocity fields, bicubic interpolation and CNN were unable to
reconstruct vorticity structures shown in the DNS, because the resolution of the
input data decreased. Especially, CNN represents non-physical vortical structures and
under-estimates magnitude of them. This phenomenon becomes very severe as r increases.
However, both cGAN and CycleGAN generated vorticity structures similar to the DNS
ones, although performance was a bit deteriorated when r = 16. This indicates that
GAN-based models reflect the spatial correlation between velocity components well,
unlike the CNN model. We first investigated the MSE to rigorously compare the
differences between the target and the reconstructed flow fields, as shown in table 1. The
CNN had the lowest error in both velocity and vorticity, whereas cGAN and CycleGAN
had relatively large errors for all r. A possible explanation for this is as follows. In
turbulent flow, a low-resolution (or filtered) flow field obviously lacks the information
to fully reconstruct a high-resolution field identical to the target field. As r increases, the
possible high-resolution solution space for a given low-resolution field becomes larger.
In this situation, the best that a CNN trained to minimize the pointwise error against the
DNS solution can possibly achieve is to generate the average of all the possible solutions.
The reconstructed field therefore has non-physical features and lower magnitudes than
the DNS field. On the other hand, the GAN-based models are trained by minimizing
more sophisticated losses and reflect the spatial correlation and important features in
the turbulence through the latent vector in the generation and discrimination stages. As a
result, the GAN-based models recover flow fields within the possible solution space which
better reflect the physical characteristics at the expense of relatively large pointwise errors.
As we confirmed in figures 4 and 5, cGAN and CycleGAN have superior capability to
reconstruct small-scale turbulence compared with CNN. It appears that considering only
the pointwise error can lead to misinterpretations in the super-resolution reconstruction of
turbulent flows, because even bicubic interpolation produces a smaller pointwise error
than cGAN and CycleGAN. As will be detailed below, a comprehensive diagnosis of
the reconstructed flow fields including statistics such as the energy spectrum, spatial
correlation and probability distributions seems to be more effective in assessing the
representation of small-scale turbulence structures.

For more quantitative assessment of the performance of learning models, the probability
density function (p.d.f.) of vorticity, p.d.f.(ωz), for three resolution ratios are given in
figure 6(a–c). For obvious reasons, bicubic interpolation could not produce a wider
distribution of the p.d.f. of vorticity for DNS data, and CNN performed very poorly.
On the other hand, the p.d.f. of cGAN and CycleGAN recovered the DNS well, regardless
of r. The performance of learning models in representing small-scale structures of
turbulence can be better investigated using an energy spectrum. The x-directional energy
spectrum is defined as

E(κx) = 1
2π

∫ ∞

−∞
e−ipκxRViVi( p) dp, (3.1)

where
RViVi( p) = 〈Vi(x, y)Vi(x + p, y)〉. (3.2)

Here, 〈〉 denotes an average operation, and Vi represents the velocity components; RViVi( p)

is the x-directional two-point correlation of velocity. The transverse energy spectrum is
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Target

Unsupervised

learning

Supervised

learning

Without

learning

Low resolution

Resolution

× 4 × 8 × 16

CycleGAN

cGAN

CNN

Bicubic

0.25

0.25

–50

–30

–10

10

30

50

ωz

0 x/π

y/
π

Figure 5. Vorticity field calculated from the reconstructed velocity fields obtained by various deep-learning
models. The low-resolution velocity field was obtained through top-hat filtering on the DNS field.
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Deep-learning models

r Bicubic CNN cGAN CycleGAN

u 4 0.00254 0.00168 0.00230 0.00548
8 0.01387 0.01019 0.01840 0.02672

16 0.04140 0.03539 0.06440 0.08677

ωz 4 2.43345 1.81107 2.51739 3.31821
8 6.55246 5.55726 10.20006 10.97804

16 9.74686 9.25919 17.55671 18.69322

Table 1. Mean-squared error of generated velocity and vorticity field for the resolution ratio, r. The velocity
and vorticity were normalized using the standard deviation of the DNS field.

obtained by the average of the y-directional spectrum of u, the x-directional spectrum of v,
and the x- and y-directional spectra of w. The transverse energy spectra for r = 4, 8 and 16
are presented in figures 6(d), 6(e) and 6( f ), respectively. The vertical dotted line indicates
the cutoff wavenumber, which is the maximum wavenumber of low-resolution fields.
Bicubic interpolation and CNN cannot represent the energy of wavenumbers higher than
the cutoff one. However, cGAN and unsupervised CycleGAN show great performance in
recovering the energy of the DNS in the high-wavenumber regions, which is not included
in the input data. Because we are reconstructing two-dimensional sliced snapshots of
a three-dimensional simulation, there can be differences in the statistical accuracies
between the velocity components. However, the present CycleGAN shows almost identical
distributions for the transverse energy spectra of the horizontal velocities (u and v) and the
vertical velocity (w), and reproduces the isotropic characteristics well (figure not shown
here).

Furthermore, we assessed the generalization ability of the present model with respect to
the Reynolds number. For this purpose, we tested the model using data with a higher
Taylor-scale Reynolds number Reλ = 611 (Yeung, Donzis & Sreenivasan 2012) from
JHTDB than the trained Reynolds number Reλ = 418. Here, the major assumption is
that there exists a universal relation between low-resolution fields and the corresponding
high-resolution fields non-dimensionalized by the Kolmogorov length scale η and velocity
scale uη. Here η for Reλ = 611 is 0.00138 and approximately half that of Reλ = 418. The
grid interval at the higher Reynolds number, which was normalized by η, was set almost
identical to the grid interval used for training. High-resolution data were sub-sampled
from the simulation grids to set the grid interval of both Reynolds numbers to almost the
same interval. The high-resolution grid size for the test is 2048 × 2048. We considered
the resolution ratio r = 8 so that the dimension of the low-resolution data generated
by applying the top-hat filter to the high-resolution data is 256 × 256. The resulting
reconstructed velocity and vorticity fields are provided in figure 7(a). Although we only
considered a single Reynolds number for the training, the present model, CycleGAN,
performs very well in the reconstruction at a higher Reynolds number, indicating its ability
to extrapolate successfully. Similar to figures 4 and 5 where the same Reynolds number
was used for both training and testing, pointwise differences from the reference DNS
field are naturally observed because the low-resolution turbulence lacks the information
to uniquely determine the high-resolution solution at r = 8. However, the p.d.f. and the
energy spectrum obtained by our model in figures 7(b) and 7(c) are almost perfectly
consistent with those of DNS, indicating that the deep-learning model can be a universal
mapping function between the filtered flow field and the recovered flow field. There is a
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Figure 6. Probability density function of vorticity and transverse energy spectra for various resolution
ratio, r. (a–c) Probability density functions of vorticity corresponding to r = 4, 8 and 16, respectively. (d–f )
Energy spectra for r = 4, 8 and 16.

slight deviation at very high wavenumbers, but this deviation is similar to the deviation
present when the testing and training Reynolds numbers were the same (figure 6).

Test results in this section clearly indicate that CycleGAN is an effective model for
super-resolution reconstruction of turbulent flows when low- and high-resolution data are
unpaired. The CycleGAN model can provide statistically accurate high-resolution fields
for various resolution ratios. Reconstructed velocities are very similar to targets at all r.
Although training with unpaired data, CycleGAN performs nearly equally to cGAN,
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Figure 7. Test of CycleGAN for a higher Reλ = 611 than the trained value. The network was trained at Reλ =
418. The resolution ratio r for both training and testing was 8. Panel (a) shows the recovered velocity fields
(top panels) from the filtered low-resolution field and the vorticity fields (bottom panels) calculated from the
recovered velocity field. Panel (b) shows the p.d.f. of the vorticity. (c) Transverse energy spectrum. The vertical
dashed line denotes the cutoff wavenumber used for the low-resolution field.

showing the best performance among supervised learning models. It appears that repetitive
convolution operations and up- or down-sampling of turbulence fields in the generator
and discriminator capture the essential characteristics of turbulence, which are otherwise
difficult to describe.

3.2. Example 2: measured wall-bounded turbulence
To evaluate the performance of our model for anisotropic turbulence, in this section we
attempt a high-resolution reconstruction of low-resolution data for wall-bounded flows.
This time, the low-resolution data were extracted from high-resolution DNS data from
pointwise measurement at sparse grids instead of the local average. This is similar
to experimental situations in which PIV measurements had limited spatial resolution.
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We used JHTDB data collected through DNS of turbulent channel flows for solving
incompressible Navier–Stokes equations. The flow was driven by the mean pressure
gradient in the streamwise (x) direction, and a no-slip condition was imposed on the
top and bottom walls. Periodicity was imposed in the streamwise, x, and spanwise, z,
directions, and a non-uniform grid was used in the wall-normal direction, y. Detailed
numerical methods were provided in Graham et al. (2015). The friction Reynolds number,
Reτ = uτ δ/ν, was defined by the friction velocity uτ , channel half-width δ and the kinetic
viscosity ν is 1000. Velocity and length were normalized by uτ and δ, respectively, and
superscript (+) was a quantity non-dimensionalized with uτ and ν. The domain length
and grid resolution were Lx × Ly × Lz = 8πδ × 2δ × 3πδ and Nx × Ny × Nz = 2048 ×
512 × 1536, respectively. The simulation time step, Δt, which was non-dimensionalized
by uτ and δ, was 6.5 × 10−5. The learning target was the streamwise velocity, u, the
wall-normal velocity, v, and the spanwise velocity, w, in the x–z plane at y+ = 15 and
y+ = 100. Here y+ = 15 is the near-wall location with maximum fluctuation intensity of
u, and y+ = 100 (y/δ = 0.1) is in the outer region. Each model was trained separately
for each wall-normal location. Similar to what we did in § 3.1 for isotropic turbulence, we
trained the model using all the velocity components (u, v, w) simultaneously although only
u and v are statistically correlated. For training and validation data, 100 fields separated by
an interval, Δt = 3.25 × 10−3, and 10 fields separated by Δt = 3.25 × 10−2 were used,
respectively. After training, we verified the trained model using 10 fields separated by an
interval of Δt = 3.25 × 10−2 as test data. These fields are sufficiently separated in time
from the training data by longer than 10 times the integral time scale of the streamwise
velocity. Low-resolution partially measured data were extracted at eight-grid intervals in
the streamwise and spanwise directions in the DNS fully measured data. Similar to the
previous learning example in § 3.1, during training, input and target sizes were fixed at
16 × 16 and 128 × 128, respectively. They were sub-region extracted from training fields.
Here, the streamwise input domain length was 128Δx = 1.57, which was greater than the
integral length scale of the two-point correlation of the streamwise velocity, 1.14.

In this example, because the low-resolution data were pointwise accurate, reconstruction
implies the restoration of data in-between grids where low-resolution data are given.
Therefore, a stabler model can be obtained by utilizing the known values of the flow field
during reconstruction. To account for the known information, a new loss term (i.e. pixel
loss) is added to the existing loss function (see (2.5)). The pixel-loss function used in the
unsupervised learning model, CycleGAN, is expressed as

Lpixel = λEx∼PX

⎡
⎣ 1

Np

Np∑
i=1

(xLR( pi) − yDL( pi))
2

⎤
⎦ , (3.3)

where yDL is the reconstructed velocity field, and xLR is the low-resolution one; pi is a
measured position and Np is the number of measured points, λ is a weight value and we
fix it to 10. Although trial and error was required to select the optimal value of λ, learning
with λ = 10 was quite successful in all the cases considered in this paper. CycleGAN
is trained to minimize Lpixel. Table 2 shows the error of the test dataset, depending on
the use of the pixel loss. When the pixel loss is used, the smaller error occurs at the
position where exact values are known. Thus, the entire error of the reconstructed field
becomes small. In the situation where a partial region is measured, a simple pixel loss
could improve reconstruction accuracy for entire positions in addition to measured ones.
The point-by-point accuracy can be further improved through the fine tuning of λ.
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Without Lpixel With Lpixel

Pixel error Entire error Pixel error Entire error
y+ = 15 1.403 1.390 0.124 0.595
y+ = 100 0.871 0.768 0.075 0.477

Table 2. Error of measured positions (i.e. pixel error) and error of entirety (i.e. entire error) for CycleGAN
with and without pixel loss. The error is normalized by the standard deviation of the velocity of DNS.

The absolute phase error of the Fourier coefficients in an instantaneous flow field
reconstructed from test data using CycleGAN is given in figure 8. The phase error
obtained without pixel loss at y+ = 15, that with pixel loss at y+ = 15, and that with pixel
loss at y+ = 100 are shown in figures 8(a), 8(b) and 8(c), respectively. The maximum
wavenumbers of the low-resolution field, κx,cutoff and κz,cutoff , are indicated by a white
line. When pixel loss was not used, a large phase error and a phase shift occurred
for specific-size structures. This happened, because, when spatially homogeneous data
are used for unsupervised learning, the discriminator cannot prevent the phase shift of
high-resolution data. On the other hand, when pixel loss is used for training, the phase
of all velocity components (u, v, w) is accurate in the area satisfying κ � κcutoff . This
means that, although the large-scale structures located in the low-resolution field were
well captured, the small-scale structures were reconstructed. We also noticed that the
reconstructed flow field near the wall (y+ = 15) had higher accuracy than that away from
the wall (y+ = 100) in the spanwise direction (as shown in figure 8b,c). This might be
related to the fact that the energy of the spanwise small scale was larger in the flow field
near the wall. Furthermore, as shown in figure 8(b), the streamwise velocity, (u), at y+ =
15 had a higher-phase accuracy in the spanwise direction compared with other velocity
components, (v, w). The reason might be that the energy of the streamwise velocity in
high spanwise wavenumbers was higher. Overall, the higher the root-mean-square (RMS)
of fluctuation, the higher the phase accuracy of the reconstructed flow field.

Figure 9 shows the velocity field (u, v, w) reconstructed by various deep-learning
processes from partially measured test data at y+ = 15. For CycleGAN, an unsupervised
learning model, the network was trained using unpaired data with pixel loss, and the
supervised learning models (i.e. CNN and cGAN) were trained using paired data with
the loss function presented in § 2. Bicubic interpolation smoothed the low-resolution data.
Thus, it could not at all capture the characteristics of the wall-normal velocity of the DNS
(target). Convolutional neural networks yielded slightly better results, but it had limitations
in generating a flow field that reflected small-scale structures observed in the DNS field.
On the other hand, cGAN demonstrated excellent capability to reconstruct the flow field,
including features of each velocity value. It accurately produced a wall-normal velocity,
where small scales were especially prominent. CycleGAN, an unsupervised learning
model, showed similar results as cGAN, although unpaired data were used. CycleGAN
reconstructed both streak structures of the streamwise velocity and small strong structures
of the wall-normal velocity, similar to the DNS field.

To better evaluate the performance in reconstructing the small-scale structures, we
present the vorticity fields obtained from the reconstructed velocities in figure 10.
Here, the performance difference between the CNN model and GAN-based models is
clearly observed. In the field obtained from CNN, the vorticity magnitude was highly
underestimated compared to the one from DNS because only the velocity pointwise error
was targeted during the training. Furthermore, the small-scale structures were not well
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Figure 8. Phase error defined by |phase(ûCycleGAN
i ) − phase(ûDNS

i )| between the Fourier coefficients of the
DNS field and the generated one by CycleGAN. (a) CycleGAN without pixel loss at y+ = 15, (b) CycleGAN
with pixel loss at y+ = 15, and (c) CycleGAN with pixel loss at y+ = 100. The box with the white line denotes
the range of low-resolution input fields, |κx| � κx,cutoff and |κz| � κz,cutoff .

captured by the CNN. On the other hand, the GAN-based models, CycleGAN and cGAN,
could reconstruct the vortical structures with characteristics similar to those from DNS.
The small-scale structures in the fields by GAN-based models are slightly different from
those from DNS. This is natural because the low-resolution information is not sufficient
to determine the high-resolution information uniquely. It can hence be concluded that
GAN-based models are more effective in representing the small-scale structures than the
CNN model. Although user-defined loss related to the vorticity or spatial correlation in
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Figure 9. Reconstructed instantaneous velocity field from a partially measured field at y+ = 15 obtained by
various deep-learning models.

the turbulence was not directly considered during learning, the GAN models are able to
pick up these turbulence characteristics very well.

The streamwise and spanwise energy spectrum of each velocity component are shown
in figures 11(a–c) and 11(d–f ), respectively. Statistics are averaged using test datasets.
In the streamwise energy spectrum, bicubic interpolation and CNN could not reproduce
DNS statistics at high wavenumbers. On the other hand, cGAN accurately expressed DNS
statistics at high wavenumbers. Despite using unpaired data, CycleGAN, an unsupervised
learning model, showed similar results as cGAN. The spanwise energy spectrum showed
similar results as the streamwise one. However, both low-resolution data and bicubic
interpolation had higher energies than did DNS statistics at low wavenumbers, as shown
in figure 11(e). These results are closely related to the structure size of the reconstructed
velocity field. In figure 9 the reconstructed field through bicubic interpolation includes
structures larger than those observed in the DNS flow field in the spanwise direction.
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Figure 10. Vorticity field calculated from the reconstructed velocity fields at y+ = 15. The velocity was
obtained from a sparsely measured field using various deep-learning models.

Notably, an artificial large-scale structure can be generated by interpolation if the
measuring is not carried out with sufficient density. The predicted flow through the CNN
requires overall smaller energy than does the DNS statistics. Particularly, this phenomenon
is prominent at relatively high wavenumbers. When the input (i.e. low-resolution field) and
target (i.e. high-resolution field) are not uniquely connected, CNN tends to underestimate
the energy. On the other hand, cGAN and CycleGAN can accurately describe the statistics
of the DNS at both low and high wavenumbers. The reconstructed flow field and statistics
of the energy spectrum at y+ = 100 show similar results (see appendix B).

To assess the robustness of the models for noisy input, we carried out tests for input with
the Gaussian noises added. We present the wall-normal velocity reconstructed from the
noise-added input at y+ = 15 for two kinds of noise levels along with the result for clean
input in figure 12. Even for 20 % noise compared to the standard deviation of the input
velocity fields, CycleGAN can successfully reconstruct the small scales of the velocity in
which noise and spatial discontinuity are not observed. In one-dimensional (1-D) spanwise
energy spectra for 20 % noise (figure 12b), we can confirm the statistical robustness of both
CycleGAN and cGAN. For 50 % noise, however, the statistics of the reconstructed flow
field by both models deviate from those of DNS substantially, which seems to be caused
by an increase in the energy of input fields by noise (figure 12c). This clearly shows the
limitation of both models.

Similar to § 3.1 for isotropic turbulence, we assessed whether the present model,
CycleGAN, can perform well at a higher friction Reynolds number Reτ . We performed
a test with data at a very high Reynolds number Reτ = 5200 (Lee & Moser 2015),
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Figure 11. One-dimensional energy spectra of reconstructed flow field using deep-learning models at y+ = 15.
Streamwise energy spectra for (a) streamwise velocity, (b) wall-normal velocity and (c) spanwise velocity;
spanwise energy spectra for (d) streamwise velocity, (e) wall-normal velocity and ( f ) spanwise velocity.

which is 5.2 times higher than the trained Reynolds number taken from JHTDB.
We assumed that there is a universal relation between the low- and high-resolution
turbulence after non-dimensionalization by the viscous length scale ν/uτ and the friction
velocity scale uτ . The grid interval at Reτ = 5200 is Δx+ = 12.7 and Δz+ = 6.4, which
differs from that at the trained Reynolds number Reτ = 1000 at which Δx+ = 12.3 and
Δz+ = 6.1. However, the difference is smaller than 5 %, so we did not employ any
interpolation. The grid size of the high-resolution fields is 10240 × 7680, and the size
of the low-resolution fields sub-sampled from the high-resolution data is 1280 × 960.
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Figure 12. Robustness of deep-learning models for noisy input. Panel (a) shows clean and noise-added
low-resolution input test fields of the wall-normal velocity at y+ = 15 and the corresponding reconstructed
high-resolution fields with DNS data. One-dimensional spanwise energy spectra of the reconstructed field
from input with 20 % noise (b) and 50 % noise (c) compared to the standard deviation of the input velocity.

The reconstructed velocity fields at both y+ = 15 and 100 are illustrated in figures 13(a)
and 13(b), respectively. The quality of the fields at the higher Reynolds number is similar to
that at the trained Reynolds number (figures 9 and 24). Furthermore, the one-dimensional
energy spectra from the present model in figures 14(a) and 14(b) are almost perfectly
matched to those from DNS at both y+ = 15 and 100. Although there is a slight deviation
from the DNS results at very high wavenumbers, the deviation is also present in the
results at the trained Reynolds number (figures 11 and 25). The present model, CycleGAN,
exhibits an impressive extrapolation capability even at a very high Reynolds number. This
result strongly implies the universality of the relation between the low- and high-resolution
fields in wall-bounded turbulence.

When using partially measured data, as with experimental situations, our model can
reconstruct fully measured data in wall-bounded turbulence and probably other types.
By considering the pixel loss in the unsupervised learning of the homogeneous data,
the point-by-point error and phase error can be reduced effectively. Compared to cGAN,
which shows excellent performance among supervised learning models, CycleGAN shows
similar results despite using unpaired data. CycleGAN can reconstruct the flow fields that
reflect the characteristics of each velocity component, and they are statistically similar to
the target DNS. Furthermore, we found that the CycleGAN model can provide a universal
reconstruction function with respect to the Reynolds number.
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Figure 13. Reconstructed velocity fields from partially measured information using CycleGAN for
Reτ = 5200, which is 5.2 times higher than the trained value; (a) y+ = 15 and (b) y+ = 100.

3.3. Example 3: application to large-eddy simulation data
In this section we apply CycleGAN to a more practical situation in which supervised
learning is impossible, because paired data are not available. We investigate whether
CycleGAN can reconstruct high-resolution flow fields having DNS quality from LES
data. Unlike the previous two examples in §§ 3.1 and 3.2, the low-resolution data was not
artificially generated from the high-resolution data, but taken from LES data. An implicit
filter can thus be considered to have been applied during the downsampling operation. For
unsupervised learning, we chose the same DNS data of channel turbulence as those used in
§ 3.2. For LES data, we numerically solved filtered Navier–Stokes equations and collected
two types of data obtained using the Smagorinsky subgrid-scale model (Smagorinsky
1963) and the Vreman subgrid-scale model (Vreman 2004). We validated that the basic
statistics of LES, such as mean and RMS profile of velocities, showed similar tendencies as
those of the DNS. The detailed LES set-up is given in appendix C. The LES and DNS data
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Figure 14. One-dimensional energy spectra of reconstructed flow field using CycleGAN for Reτ = 5200,
which is 5.2 times higher than the trained value. The vertical dashed lines denote the maximum wavenumber
of the low-resolution field. (a) Streamwise (left panel) and spanwise (right panel) energy spectra at y+ = 15
and (b) streamwise (left panel) and spanwise (right panel) energy spectra at y+ = 100.

used in the training process were 2-D velocity fields (u, v, w) in an x–z plane at y+ = 15
at Reτ = 1, 000. Direct numerical simulation training data contained 100 velocity fields
of 2048 × 1536 size, and LES training data contained 10 000 velocity fields of 128 × 128
size. Large-eddy simulation data were collected per Δt = 0.004 non-dimensionalized by
uτ and δ. The domain size of DNS was Lx × Ly × Lz = 8πδ × 2δ × 3πδ, and that of LES
was Lx × Ly × Lz = 2πδ × 2δ × πδ. Based on the same length scale, the resolution ratio
between LES and DNS was four in both x and z directions.

During the training of CycleGAN, input (LES) and the output size of the generator
G were fixed as 32 × 32 and 128 × 128, respectively. After training, the input size
was not fixed, and the output had 4 × 4 higher resolution than the input. The trained
model was tested using 100 LES fields independent from the training data. In § 3.2 it
was confirmed that the phase shift of structures might occur in the reconstructed flow
field when statistically homogeneous data are used in learning CycleGAN. This can be
prevented by introducing pixel loss. Similarly, in this section a new loss (LLR) is added to
the existing loss function (2.5) in unsupervised learning. The added loss term is defined as

LLR = λEx∼PX

⎡
⎣ 1

Np

Np∑
i=1

(x( pi) − IG( pi))
2

⎤
⎦ , (3.4)
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where x is the LES data used as input data, I is top-hat filter operation, IG( pi) is the
filtered flow field after reconstruction through G (the same size as the input data), and pi
and Np are the position and size of the low-resolution field, respectively. The value of λ
is 10. This loss is proposed based on the assumption that the filtered flow field has a similar
distribution as LES data. Using this, we expect that the small scales will be reconstructed
while the phase of the large-scale structures is maintained.

For the first test, we used data obtained using the same subgrid-scale model as those used
for training, the Vreman model. An example of the reconstructed velocity fields with DNS
resolution from the LES data is shown in figure 15. Learning both LES and DNS data was
possible only with the cycle-structured GAN. For comparison, we presented velocity fields
reconstructed by supervised learning models (i.e. CNN and cGAN) that were trained using
filtered DNS data. As shown in figure 15, only the CycleGAN could reconstruct a flow
field that captured the features of each velocity component of the DNS field. Meanwhile,
CycleGAN maintains the large-scale structure observed in LES data. On the other hand,
neither bicubic interpolation nor the CNN could generate small-scale structures of DNS
at all. Although cGAN demonstrated the best performance among supervised learning
models (§§ 3.1 and 3.2), it provided a slightly better flow field than did the CNN, and it was
difficult to acknowledge that the generated fields correctly reflected DNS characteristics.
In particular, the structure of the wall-normal velocity did not represent the tilted feature
in the spanwise direction frequently observed in DNS data. This clearly suggests that the
deep-learning model that trained the fDNS will not likely work well in the super-resolution
reconstruction of LES data. We assumed that this would occur, because the deep-learning
model is overfitted to the training environment and becomes very sensitive to the
input data distribution. Therefore, to successfully apply a deep-learning model to
LES, an environment and a methodology capable of learning LES data are required.
CycleGAN indeed meets this requirement for our super-resolution reconstruction of LES
data.

The wall-normal vorticity field obtained from the reconstructed velocity is presented
with the vorticity of the input LES field in figure 16. Because vorticity is not directly
considered in training, it can be a good measure for assessing the performance of learning.
The vorticity of LES data was much weaker than that of DNS, and the cGAN reconstructed
the vorticity field much stronger than that of DNS. The thin streaky structures of vorticity
found in DNS data were not captured by cGAN. Recall that cGAN was trained using
filtered DNS, not LES, because the cGAN required paired data. However, structures of the
vorticity field reconstructed by CycleGAN showed a striking similarity to that of the DNS.
CycleGAN indeed showed an ability to accurately reconstruct the high-order component
obtained through differentiation.

Probability density functions of the reconstructed velocities and wall-normal vorticity,
ωy, are presented in figure 17. The velocity p.d.f. obtained by bicubic interpolation was
similar to the LES statistics, not the DNS statistics. Additionally, the p.d.f. by either
CNN or cGAN did not well approximate that of DNS, except for the spanwise velocity,
especially in a high-magnitude range. Conditional GAN overestimated the range of the
vorticity, as shown in figure 17(d). On the other hand, the p.d.f. of all velocity components
and the vorticity by CycleGAN closely reproduced that of DNS, except only for the
low-speed range of streamwise velocities. Additional quantitative statistics obtained from
test data, including mean, RMS, Reynolds stress, skewness and flatness, are presented
in table 3. Likewise, bicubic interpolation had nearly the same value as did LES in all
statistics, except for vorticity statistics. The supervised learning models (i.e. CNN and
cGAN) generally showed results closer to the DNS statistics than did bicubic interpolation.
However, they differed significantly from DNS in skewness of velocities and RMS of
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Figure 15. Reconstructed instantaneous velocity fields (u, v, w) at y+ = 15 obtained by various deep-learning
models. During the training of CycleGAN, the flow field of LES with the Vreman model is used, and a new
LES field having the same model is used for testing.

wall-normal velocity and vorticity. On the other hand, CycleGAN shows similar results
to DNS in all statistics.

Further assessment of learnings can be carried out with an investigation of energy
spectra. The spectrum of the velocity field at y+ = 15 is presented in figure 18, where
the streamwise and spanwise spectrum of each component of velocity are shown in
figures 18(a), 18(b) and 18(c) and figures 18(d), 18(e) and 18( f ), respectively. For
comparison, the LES statistics used as input data are presented together, and the vertical
dotted line indicates the maximum wavenumber of the LES. Overall, bicubic interpolation
could not improve the spectrum of LES. Additionally, the supervised learning models (i.e.
CNN and cGAN) tended to underestimate DNS statistics at high wavenumbers. Although
cGAN appeared to represent small-scale energies in the streamwise and wall-normal
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Figure 16. Instantaneous wall-normal vorticity field calculated from reconstructed velocity fields at y+ = 15
by cGAN and CycleGAN with input LES and target DNS fields.
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models.
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Deep-learning models

LES Bicubic CNN cGAN CycleGAN DNS

Mean u 10.255 10.255 10.878 10.833 10.749 10.725
v 0 0 0.001 −0.012 0.002 0
w −0.015 −0.015 −0.021 −0.011 −0.193 −0.007

RMS u 3.115 3.039 2.826 3.102 2.940 2.831
v 0.324 0.309 0.487 0.652 0.598 0.570
w 0.945 0.942 1.298 1.361 1.341 1.292
ωy 92.6 149.9 145.6 189.8 178.1 171.2

Reynolds stress uv −0.543 −0.505 −0.714 −0.990 −0.745 −0.661

Skewness u 0.451 0.389 0.338 0.341 −0.056 −0.050
v −1.033 −0.787 −0.852 −1.078 −0.231 −0.212
w −0.035 −0.035 −0.040 −0.033 −0.081 −0.005
ωy 0.010 0.003 0.013 −0.114 −0.061 −0.004

Flatness u 2.731 2.667 2.508 2.650 2.375 2.378
v 7.702 6.871 6.597 8.809 6.022 6.620
w 3.695 3.687 3.685 3.761 3.536 3.691
ωy 2.700 3.255 3.715 4.430 3.512 3.625

Table 3. Velocity and vorticity statistics of reconstructed flow field at y+ = 15 obtained by various
deep-learning models.

directions well (figure 18d,e), it seemed to be a coincidence, given the flow field
comparison in figure 15. It is noteworthy that, for the wall-normal velocity (figure 18b,e),
the supervised learning models could cause large errors, even at low wavenumbers. On the
other hand, CycleGAN showed excellent performance in recovering overall DNS statistics
via the learning of unpaired LES and DNS data. In particular, even when there was a
difference in energy between LES and DNS at low wavenumbers, CycleGAN reproduced
DNS statistics properly (figure 18b,e). This indicates that the supervised learning models
were sensitive to input data. Thus, it was difficult to expect good performance for new data
having distributions different from the training data. Meanwhile, CycleGAN reconstructed
the flow field with the statistics of the target field by reflecting the statistical differences
between LES and DNS. Likewise, at y+ = 100, we observed similar results for the
instantaneous velocity fields (figure 27), energy spectra (figure 28) and some statistics
(table 4) as given in appendix D.

We also checked two-point correlations of the reconstructed velocity field in figure 19,
in which the streamwise and spanwise correlations for various learnings were compared
in figures 19(a), 19(b) and 19(c), and figures 19(d), 19(e) and 19( f ). The distribution of
all correlations by CycleGAN was nearly indiscernible from that of DNS. On the other
hand, prediction by bicubic interpolation and supervised learning models (i.e. CNN and
cGAN) could not mimic the DNS statistics, and they tended to be close to the LES
statistics. The two-point correlation of LES data was mostly higher than that of DNS data,
because the near-wall structures elongated in the streamwise direction were less tilted in
the spanwise direction. The reconstructed flow fields using supervised learning models
could not capture this tilted feature, as shown in figure 15. Additionally, as shown in
figure 19(d–f ), the minimum position of the spanwise correlation by bicubic interpolation
and supervised learning models was quite different from that of the DNS. This position as
known to be related to the distance between high- and low-speed streaks and the diameter
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Figure 18. One-dimensional energy spectra for reconstructed velocity field at y+ = 15. Streamwise energy
spectra of (a) streamwise velocity, (b) wall-normal velocity and (c) spanwise velocity; spanwise energy spectra
of (d) streamwise velocity, (e) wall-normal velocity and ( f ) spanwise velocity.

of streamwise vortical structures (Kim et al. 1987). Therefore, this means that the flow field
reconstructed by supervised learning models contained non-physical structures. However,
the accurate statistics of CycleGAN indicated that it could represent physically reasonable
structures.

Our CycleGAN model successfully reconstructed the super-resolution field of
the instantaneous low-resolution turbulence field obtained by filtering, pointwise
measurement and independent LES. However, temporal information was not considered
during training. Here, we investigate whether the trained network can reproduce
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Deep-learning models

LES Bicubic CNN cGAN CycleGAN DNS

Mean u 16.592 16.592 16.553 16.532 16.936 16.458
v 0 0 −0.006 −0.006 0.019 0
w −0.054 −0.054 −0.060 −0.067 −0.145 −0.010

RMS u 1.783 1.769 1.940 2.030 1.884 1.946
v 0.986 0.978 1.064 1.156 1.111 1.080
w 1.203 1.201 1.375 1.424 1.394 1.375
ωy 43.4 59.6 65.2 82.5 73.4 73.1

Reynolds stress uv −0.869 −0.859 −1.041 −1.111 −0.837 −0.863

Skewness u −0.137 −0.131 −0.132 −0.169 −0.108 −0.084
v −0.058 −0.063 −0.062 −0.038 0.233 0.220
w 0.001 0.001 −0.001 0 −0.006 −0.002
ωy −0.001 0 0.007 −0.028 0.024 0

Flatness u 2.988 2.976 2.954 3.045 2.855 2.760
v 3.224 3.241 3.221 3.245 3.385 3.370
w 3.153 3.152 3.147 3.166 3.051 3.190
ωy 3.444 4.268 4.443 6.095 5.784 5.996

Table 4. Velocity and vorticity statistics of the reconstructed flow field at y+ = 100 obtained by various
deep-learning models.

the correct temporal behaviour of a turbulent field by testing our model in the
reconstruction of temporally consecutive fields. Temporal correlation, defined as
Rt

ViVi
( p) = 〈Vi(t)Vi(t + p)〉 of the reconstructed fields by CycleGAN, is demonstrated

with that of DNS and LES data in figure 20, where 〈〉 denotes an average operation. Clearly,
the correlation by CycleGAN recovered that of the DNS, which was quite different than
that of the LES in the early period shown in the right panel of figure 20(a). In figure 20(b)
the spatio-temporal behaviour of the streamwise velocity field shows that the structures by
CycleGAN were tilted in the spanwise direction, resembling that of the DNS. This is an
encouraging result, because it showed that the temporal information was not necessary for
successful training of super-resolution reconstruction.

Finally, we investigated the performance of CycleGAN in a test against different kinds of
input LES data. Our CycleGAN was trained and tested using the input LES data obtained
by the Vreman subgrid-scale model. Here, we tested this CycleGAN for the input LES
data obtained by a different subgrid-scale model: the Smagorinskly model. As shown in
figure 21, the CycleGAN reconstructed the velocity fields that reflect the characteristics of
DNS, despite the use of data from different LES models. Quantitatively, the comparison
of the 1-D energy spectra of the reconstructed wall-normal velocity between LES input
data obtained by the Vreman model and the Smagorinsky model clearly demonstrates
that both yielded nearly the same distribution as that of DNS, although that from the
Smagroinsky LES data showed a slight overestimation for most wavenumbers, as shown
in figure 22(a). As a cross-validation, CycleGAN was trained using LES data obtained by
the Smagorinsky model, and it was tested with LES data obtained by the Vreman model.
As shown in figure 22(b), CycleGAN reproduced DNS-quality reconstructed fields for
both input data. Recall that the cGAN, which was trained using filtered DNS data, could
not reconstruct well DNS-quality data from LES data. This clearly shows the advantage of
unsupervised learning in a situation where paired data are not available.
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Figure 19. Two-point correlation for reconstructed velocity field from LES data at y+ = 15: (a) streamwise
velocity, (b) wall-normal velocity and (c) spanwise velocity in streamwise statistics; (d) streamwise velocity,
(e) wall-normal velocity and ( f ) spanwise velocity in spanwise ones.

4. Conclusion

We presented an unsupervised learning model that adopted CycleGAN to reconstruct
small-scale turbulence structures when low- and high-resolution fields were unpaired.
To investigate the performance of CycleGAN, an interpolation method (i.e. bicubic
interpolation) and supervised learning models (i.e. CNN and cGAN) were considered.
The supervised learning models were trained using paired low- and high-resolution data.
We considered homogeneous isotropic turbulence and a turbulent channel flow where
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Figure 20. (a) Temporal correlation velocities for LES, CycleGAN and DNS. Right panel of (a) is a
magnified view of left one near the origin. (b) Temporal behaviour of the streamwise velocity field at y+ = 15.
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Figure 21. Reconstructed instantaneous velocity field (u, v, w) at y+ = 15 from testing the CycleGAN model
against data obtained using a different LES model. The LES model used in the training process is the Vreman
model, and the test data contain the velocity field from the Smagorinsky model.
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Figure 22. One-dimensional energy spectra for reconstructed wall-normal velocity field at y+ = 15. (a) Test
results of the CycleGAN trained using LES data obtained from the Vreman subgrid-scale model; (b) test results
of the CycleGAN trained using LES data obtained from the Smagorinsky subgrid-scale model. CycleGANVR

and CycleGANSM denote CycleGAN models trained using LES data of Vreman and Smagorinsky models,
respectively. Here LESVR and LESSM are LES input data from the Vreman and Smagorinsky models,
respectively.

paired data existed. Finally, we demonstrated super-resolution reconstruction with DNS
characteristics from LES fields in a channel flow where only unpaired data exist.

First, we investigated the performance of various learning models for different resolution
ratios, r, between input fields obtained by applying a top-hat filter to DNS data, and we
output DNS fields in homogeneous isotropic turbulence. Bicubic interpolation and CNN
did not reconstruct well the small-scale structures. The energy spectrum and vorticity
p.d.f. statistics yielded by bicubic interpolation and CNN were rather similar to those of
low-resolution input data. Such non-physical results, which are present in many previous
works (Fukami et al. 2019a,b; Kim & Lee 2020b; Liu et al. 2020; Scherl et al. 2020),
might be inevitable consequences of minimizing the pointwise error against the target
data because the given information is insufficient to determine the solution uniquely and
the target is only one of the possible solutions. On the other hand, GAN-based models
focus on more sophisticated errors related to spatial correlation and significant features in
the turbulence. As a result, cGAN showed an excellent ability to recover the small-scale
structures, even at a large r. Similarly, our CycleGAN achieved excellent performance in
reproducing the energy spectra and vorticity p.d.f. despite using unpaired data. Although
a slightly larger pointwise error is produced as a tradeoff, the GAN-based models are
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able to reconstruct high-resolution turbulence more successfully compared to CNN from
a physical perspective.

Next, we assessed the performance of the super-resolution reconstruction of anisotropic
turbulence in a limited measurement environment. Low-resolution data were extracted
by pointwise measurement of high-resolution DNS data at y+ = 15 and 100 of channel
turbulence. The phase shift of structures in the reconstructed flow field from unsupervised
learning in spatially homogeneous data was eliminated by introducing pixel loss, which is
the point-by-point MSE of the measured information. As predicted, bicubic interpolation
and CNN did not reconstruct small-scale structures, similar to the previous example.
On the other hand, the cGAN showed high accuracy in reconstruction, reflecting the
characteristics of the DNS. The flow fields reconstructed through CycleGAN were as good
as those provided by the cGAN, and their statistics were similar to those of DNS. Also, we
found that both CycleGAN and cGAN are highly robust for strongly noisy input without
additional learning with the noisy data. For both isotropic turbulence and wall-bounded
turbulence, we tested the generalization ability of the present model at a higher Reynolds
number than the trained one. The quality of the reconstructed fields at the higher Reynolds
number did not deteriorate significantly compared to that of the trained one, and the
statistics of the reconstructed fields are similar to those of DNS, indicating the existence
of universality in the relation between low- and high-resolution flow fields. This provides
great potential for using the present model in more practical applications. Additionally, we
checked the effect of the downsampling operation used for generating low-resolution data
for both turbulence scenarios. We confirmed that learning using CycleGAN was successful
for all the downsampling operations, including top-hat filtering and sparse measurement,
and the reconstruction performance of the reconstruction did not show a critical difference
between both pooling methods.

Finally, CycleGAN was applied to a more practical problem of reconstructing a flow
field with DNS quality from LES data with an implicit filter unpaired from DNS data.
Supervised learning models (i.e. CNN and cGAN) were trained using filtered DNS data,
because paired data were not available. Trained CNN and cGAN did not produce small
scales, and the reconstructed flow field had different structures from the DNS data. All
statistics, including the p.d.f. of velocity and vorticity, the energy spectrum and the
two-point correlations, showed a completely different distribution from those of DNS.
On the other hand, CycleGAN effectively reconstructed the flow field that reflected the
structures of each velocity and vorticity observed in DNS, even though a filter operation
has not been specified. This, in some sense, confirms that the effect of pooling in
turbulence reconstruction is not critical for the learning in CycleGAN. All statistical
quantities produced by CycleGAN were consistent with those of DNS. The temporal
behaviour of turbulent fields were correctly captured by the reproduced fields obtained
by the application of CycleGAN to consecutive LES fields. Finally, we applied CycleGAN
to LES data using a different subgrid-scale model that was not used for training, and it
showed excellent performance.

There are several remaining issues that should be considered in future works. First,
low-resolution data lack information required to uniquely reproduce high-resolution data
in general. When the resolution ratio is large, different high-resolution data can be
generated, depending on the initial value of trainable parameters in the network, and
trained networks randomly map only one of many possible high-resolution solutions.
However, this might be unavoidable because of the intrinsic nature of turbulence and its
strong sensitivity to small disturbances. Second, when low-resolution data are provided
on an irregular mesh rather than on a uniform mesh, it is inappropriate to apply the
current convolution operation. A technique such as graph CNN (Kipf & Welling 2016)
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could be used to resolve this problem. Third, the present study assumed that there
was a sufficient amount of high-resolution data for training. There might be some
situations in which only a limited amount of high-resolution data or even no data are
available. Good solutions should include transfer learning (Guastoni et al. 2020; Kim
& Lee 2020a), data augmentation using symmetry, physics-informed NNs that impose
constraints of governing equation (continuity or momentum equations) (Raissi, Perdikaris
& Karniadakis 2019; Jiang et al. 2020), and physical constraints added to the NN (Mohan
et al. 2020). Fourth, the current study was limited to the super-resolution reconstruction
of the instantaneous 2-D flow field, but a consideration of the temporal behaviour or 3-D
information of the flow might yield better or more efficient reconstructions. For example,
it is possible to account for temporally successive data by adding a discriminator that
considers temporal effects (Xie et al. 2018; Kim & Lee 2020a). Fifth, although in channel
turbulence, we found 5.2 times extrapolation ability of our model in Reynolds number, we
could not tell whether our model works well for the even higher Reynolds number. Because
high-fidelity data for such high Reynolds numbers are not accessible yet, an increase in
public data will enable various learnings and testings for such a purpose. Finally, the
analysis of trained network was difficult because of the large number of parameters. Kim
& Lee (2020b), for example, identified that the gradient map of the trained model could
be used to extract the physics implied in the training data. This progress, with respect
to super-resolution reconstruction, might help identify a nonlinear relationship between
large-scale structures and small-scale ones. Alternatively, an investigation of the latent
vector in the discriminator might also shed light on the physical interpretation of the
networks.

We have shown that super-resolution reconstruction of turbulence using CycleGAN
is possible in situations where paired data are not available. We expect that the
proposed network will be of great assistance to LES modelling, including the production
of pair data for the development of subgrid-scale models and synchronizations for
model evaluation. Furthermore, our model can be utilized to support high-resolution
reconstruction of measurement data, such as PIV (Rabault, Kolaas & Jensen 2017; Cai
et al. 2020), synchronization of different experiments, removal of experimental noise,
semantic inpainting (Buzzicotti et al. 2020) and data assimilation (Leoni, Mazzino &
Biferale 2020). Our code will be released as an open-source code upon publication.
Detailed information is provided in appendix E.
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Appendix A. Network architecture and hyperparameters of deep-learning model

Figure 23 shows the network architecture of components of CycleGAN when the
resolution ratio(r) was eight. A CycleGAN consisted of two generators (figure 23(a) G
and 23(b) F) and two discriminators (figure 23(c) DX and 23(d) DY ). The objective of
learning was to obtain G that could reconstruct the high-resolution turbulent field. Here
G comprised convolution (Conv. in figure 23) and upsampling operations, repetitively; F,
DX and DY comprised convolution and downsampling operations. In DX and DY a fully
connected layer (FC in figure 23) was additionally used to yield one value. The size of
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the discrete convolution operation was fixed at 3 × 3. During this process, a padding was
used to maintain the size of the input data. Zero padding was used during the training
process, and periodic padding was used during testing to automatically satisfy the periodic
boundary condition. Nearest-neighbourhood interpolation and average pooling were used
for up- and down-sampling with 2 × 2 size, respectively. Following the convolutions and
fully connected layers, except for the last layer, a nonlinear activation function (Leaky in
(2.6)) was applied. Depending on the resolution ratio, the number of convolution layers,
up- and down-sampling operations in the network changed slightly. As a preprocess to
training, the training data was normalized to have zero mean and unit standard deviation.
After training, the test data were also normalized by the mean and standard deviation
of the training data. Trainable parameters were randomly initialized (He et al. 2015b).
During training, learning rate, batch size and total iterations were 0.0001, 16 and 500 000,
respectively. A convergence metric could not be defined easily during the training of the
GAN model. We therefore fixed the total iterations qualitatively. The Adam optimizer
(Kingma & Ba 2014) was used for minimizing and maximizing the objective function.
The training of CycleGAN at r = 8 took approximately one day on a single GPU machine
(NVIDIA Titan Xp). There is room for improvement via changes in architecture, such
as batch normalization (Ioffe & Szegedy 2015), residual networks (He et al. 2015a) and
fine-tuning of hyperparameters.

The supervised learning models (i.e. CNN and cGAN), which were used for comparison,
comprised the same generator network as G of CycleGAN. Therefore, the estimation
time of the high-resolution field was the same for all the models after training. The
discriminator of cGAN was nearly the same as DY of CycleGAN, except for the channel
size of the input. The same hyperparameters were used for CNN, cGAN and CycleGAN,
except for the learning rate and total iterations of the CNN. The initial learning rate
of CNN was 0.0005, and we reduced it by 1/5 when the validation error did not
decrease.

Appendix B. Test in the outer-region of wall-bounded turbulent flows

In § 3.2 we applied CycleGAN to the reconstruction of the velocity fields (u, v, w) from
partially measured data at y+ = 15 and 100. Considering that the input was pointwise
measurement data, we additionally used point-by-point pixel loss during training. The
phase of the high wavenumber components in the reconstructed velocity field at y+ = 15
was more accurate than that at y+ = 100, as shown in figure 8. The reason might be that
fluctuation intensity in the near-wall region was stronger than that of the outer region.
However, at y+ = 100, the reconstructed velocity field of CycleGAN was as accurate as
that of cGAN, which showed the best performance among supervised learning models,
as shown in figure 24. The bicubic interpolation and CNN captured only large-scale
structures, compared with DNS. In 1-D energy spectra of reconstructed velocity fields
(figure 25), our model showed excellent performance, similar to DNS and cGAN. There
was only a slight error with the DNS for a few specific wavenumbers. The error
was related to the upsampling scheme in generator G. The error could be avoided by
changing the nearest-neighbourhood interpolation using only linear data (Karras, Laine
& Aila 2018). On the other hand, the statistics of the bicubic interpolation and CNN
did not follow those of the DNS at high wavenumbers. These results indicate that the
CycleGAN was good enough to replace supervised learning models, which require paired
datasets.
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Figure 23. Network architecture of generators and discriminators of CycleGAN for resolution ratio r = 8. (a)
Generator G. (b) Generator F. (c) Discriminator DY . (d) Discriminator DX .

Appendix C. Validation of large-eddy simulation

For the development of an unsupervised learning model, we required LES data, which was
obtained by carrying out a large-eddy simulation of turbulent channel flow. A periodic
boundary condition was imposed in the streamwise and spanwise directions. The constant
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Figure 24. Reconstructed instantaneous velocity fields from measured one at y+ = 100 obtained by various
deep-learning models.

mean pressure gradient drove a mean flow in the streamwise direction. The boundary layer
was developed using a no-slip boundary condition at the top and bottom walls. Governing
equations were those of filtered incompressible Navier–Stokes equations, which can be
written as follows:

∂ ūi

∂xi
= 0, (C 1)

∂ ūi

∂t
+ ∂ ūjūi

∂xj
= − ∂ p̄

∂xi
+ 1

Reτ

∂2ūi

∂xj∂xj
− ∂τij

∂xj
. (C 2)

Equations were made dimensionless using the friction velocity, uτ , and the channel
half-width, δ. Here, ūi was the filtered velocity, and τij was the subgrid-scale stress
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Figure 25. One-dimensional energy spectra for reconstructed velocity field from measured one at y+ = 100.
Streamwise energy spectra of (a) streamwise velocity, (b) wall-normal velocity and (c) spanwise velocity.
Spanwise energy spectra of (d) streamwise velocity, (e) wall-normal velocity and ( f ) spanwise velocity.

that should be modelled. We used two kinds of subgrid-scale models: Smagorinsky
(Smagorinsky 1963) and Vreman (Vreman 2004). Furthermore, the Van Driest damping,
which multiplies the subgrid-scale stress by (1 − e−y+/25)2, was applied to the
Smagorinsky model. We controlled the Smagorinsky constant, Cs, to fit the mean profile
of the LES to that of the DNS. As a result, Cs = 0.17 for both models. The third-order
hybrid Runge–Kutta scheme was used for time integration (Rai & Moin 1991), and the
second-order central difference scheme was used for spatial discretization. We distributed
a uniform grid in the horizontal direction, and a non-uniform grid with a hyperbolic
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Figure 26. (a) Mean velocity profile in wall units, and (b) RMS velocity profiles obtained by LES with the
Vreman and Smagorinsky models.

tangent function in the wall-normal direction. We carried out LES with both subgrid-scale
models using the same grid resolution of 128 × 256 × 128 and the same domain size of
2πδ × 2δ × πδ at Reτ = 1, 000. The resolution ratio, r, between our LES and the DNS
of the JHTDB at the same Reynolds number is four for both steamwise and spanwise
directions. The time interval Δt, which is non-dimensionalized with uτ and δ, is 0.0004.
The time-averaged mean and RMS profiles are given in figure 26. Although there is a
slight gap in the RMS profile, owing to the low grid resolution, the trend of statistics was
consistent with that of the DNS. For training, we collected 10 000 velocity fields in the x–z
plane at y+ = 15. The time interval between temporally successive fields was Δt = 0.004.
For testing, we used new data sufficiently far from the training data.

Appendix D. Test in the outer-region of large-eddy simulation data

In § 3.3 we investigated the possibility of reconstructing of DNS-quality flow fields from
LES in turbulent channel flows. For the training and testing data, we used the flow fields at
y+ = 15 and 100 obtained from LES with the Vreman model. In this example, a new loss
term (3.4) was also added to prevent phase shifts during the training of CycleGAN. For
comparison, we present the results of supervised learning models (i.e. CNN and cGAN)
using filtered DNS data in the training process. The reconstructed flow fields from the LES
field at y+ = 100 are shown in figure 27. CycleGAN generated the small-scale structures
while maintaining the large-scale structures shown in the input data (LES). In addition,
the reconstructed flow fields from CycleGAN have similar characteristics to those from
DNS in all the velocity components. On the other hand, bicubic interpolation and CNN
produced similar results to LES which are quite different from DNS. Conditional GAN,
which showed the best performance among the supervised learning models in §§ 3.1
and 3.2, produced slightly better results than bicubic interpolation and CNN, but did
not reach the quality of DNS. The 1-D energy spectra of the reconstructed flow fields
are presented in figure 28. The vertical dotted line indicates the maximum wavenumber
of the LES fields. CycleGAN reproduced the DNS energy spectra at both high and low
wavenumbers. On the other hand, the bicubic and CNN did not recover the DNS spectra
at high wavenumbers. Conditional GAN seems to reproduce the statistics of DNS in
figure 28(e), but the reconstructed flow fields and other statistics (in figure 28a–c) indicate
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x /π
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π

–4.0 –6 –3.6 –1.2 1.2 3.6 6–2.4–0.8 0.8 2.4 4.0

Figure 27. Reconstructed instantaneous velocity fields (u, v, w) from LES at y+ = 100 obtained by various
deep-learning models. During the training of CycleGAN, the flow field from LES with the Vreman model was
used, and a new LES field having the same model was used for testing.

that this is a coincidence. In addition, we present quantitative statistics including the
mean, RMS, Reynolds stress, skewness and flatness in table 4. The velocity statistics
from bicubic interpolation are close to the LES statistics, but not the DNS statistics.
Although the supervised learning models, CNN and cGAN, show better results than
bicubic interpolation, there are still significant differences from DNS in the vorticity
statistics and Reynolds stress. On the other hand, our model shows similar results to the
DNS statistics for all statistics. These results demonstrate that the unsupervised learning
model, CycleGAN, might be a more practical model for super-resolution reconstruction
of channel turbulent flows at various wall-normal locations, although only two locations
were examined.
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Figure 28. One-dimensional energy spectra for reconstructed velocity field from LES at y+ = 100.
Streamwise energy spectra of (a) streamwise velocity, (b) wall-normal velocity and (c) spanwise velocity;
spanwise energy spectra of (d) streamwise velocity, (e) wall-normal velocity and ( f ) spanwise velocity.

Appendix E. Code release as open source

We created a public repository, https://github.com/HyojinKim-github/SR-Turb-CycleGAN,
on which our code will be hosted upon publication of our paper.
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