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Abstract

In modelling phenomena involving diffusion and chemical reactions, coupled sys-
tems of linear differential equations are often obtained, which can involve several
dependent variables. For two dependent variables, coupled reaction-diffusion sys-
tems can be uncoupled, and in principle the original boundary value problem
can be reduced to two separate boundary value problems for the classical heat
equation. Here we address various aspects of the fundamental unsolved problem
of the determination of corresponding uncoupling transformations for systems
involving several dependent variables. We present, in an elementary manner,
the current state of knowledge relating to this complex problem area. Several
new results are obtained here. For example, in reviewing known results for two
dependent variables we observe that those systems for which uncoupling transfor-
mations have been found are essentially those which can be reduced to a coupled
system involving a single spatial operator L. In addition, for several dependent
variables, the general solution structure for the kernel matrix, involved in the un-
coupling transformation, is presented together with some explicit results for values
of components of the kernel matrix along characteristics, which are deduced from
elementary considerations.

1. Introduction

Multi-component systems undergoing diffusion and chemical reactions frequently
give rise to coupled systems of linear differential equations involving several de-
pendent variables. For example, for three diffusing species undergoing first-order
chemical reactions we have the following coupled system for the concentrations
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484 J. M. Hill and A. McNabb [2]

Cj(x,t) (; = 1,2,3),

dc2/dt — d2V2ci + a2\Ci + a22c2 + 023C3, (1-1)

3 + O3iCi + O32C2 + O33C3,

where V2 denotes the usual spatial Laplacian, the diffusivities dj(j = 1,2,3) are
positive constants which we suppose are such that d\ > d2 > dz, and the matrix
A = [dij] is assumed here to be a constant matrix with all components nonzero.
In this paper we address the unsolved problem of finding transformations which
uncouple systems such as (1.1) and in particular we seek uncoupling transforma-
tions which are independent of the spatial operator V2 involved in (1.1). Thus
for any linear spatial operator L, involving partial derivatives of any order, we
wish to uncouple the system,

dci/dt = diL(ci) + auCi + ai2c2 + 013C3,

dc2/dt = d2L{c2) + a2iCi + a22C2 + a23Cz, (1-2)

032C2 +

For two dependent variables, this problem has been solved. Hill [2] shows that
the coupled equations

dc2/dt = d2L(c2) + a2ici + a22c2,

where L is any linear spatial operator, admit formal solutions of the form

_ /*V« { (•"3f-*<)) "2 /.MM*, 0
- d2) Jd2t [ \ (dxt - 0 /

(1.4)

where the constants A and n are given by

x = { dX-± J' ^ U ^ - J ' (L5)
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[3] Uncoupling systems of equations 485

and IQ and I\ are modified Bessel functions with r\ defined by

(1.6)

Further /ii(x, t) and ft2(x, £) are understood to be solutions of

dh/dt = L(h), (1.7)

satisfying the same initial conditions as c\ (x, t) and c2 (x, t) respectively. This
result is important because, for example for coupled reaction-diffusion equations,
certain boundary value problems can be reduced to similar boundary value prob-
lems but for the classical diffusion equation (see Hill [2]). The extension of this
result to more than two dependent variables would have many important appli-
cations in applied mathematics. The original derivation of the formal solutions
(1.4) (Aifantis and Hill [1] and Hill and Aifantis [3]) depends on formal mathe-
matical devices such as Laplace and Fourier transforms and the success of this
method hinges on the simple form of solutions of quadratic equations. For three
dependent variables the method involves the solution of a cubic equation and
the subsequent analysis proves intractable (see Lee [4]).

However McNabb [7] identified the essential structure of the uncoupling trans-
formation (1.4) for any number of dependent variables and showed that the un-
coupling problem hinges on solving a first order coupled system for a kernel
matrix k(t, s). Unfortunately the problem of the determination of this kernel
matrix is also difficult and the purpose of this paper is to provide an elemen-
tary presentation of this problem and to address various aspects which are not
explicitly discussed in McNabb [7]. In addition, we present one or two explicit
results which are deduced from elementary considerations.

In the following section we first present a review of known results for coupled
systems involving only two dependent variables. We show that those systems for
which an uncoupling transformation has been found are essentially those which
can be transformed into a coupled system (1.3) involving a single linear spatial
operator L only. In Section 3 we give the basic equations underlying the uncou-
pling procedure of McNabb [7] and we detail the general solution structure for
the two kernel matrices k+(t, s) and k~(t, s). In Section 4 we then use invariance
under a one-parameter group of transformations to give a brief derivation of the
known kernels for the case of two dependent variables, and from these explicit
expressions we deduce special values of the kernels along characteristics and show
that the same special values can also be derived directly. Motivated by these
results for the case of two dependent variables, we obtain corresponding expres-
sions for three and more dependent variables in Sections 5 and 6 of the paper
respectively. We remark that while systems such as (1.1) can be formulated as
abstract evolution equations, for which the Hille-Yosida theorem provides suffi-
cient conditions for a semi-group solution, unfortunately the verification of such
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conditions can be at least as complicated as the process of obtaining explicit
results. For the semigroup approach we refer the reader to Pazy [9].

2. Review of known results for two dependent variables

In this section we show how other uncoupling transformations for two de-
pendent variables (see Lee and Hill [5, 6]) can also be derived from the basic
results (1.3)-(1.7) by transformations of the given system. In the first exam-
ple (Lee and Hill [5]) we consider two coupled reaction-diffusion equations with
convective terms, namely

dc2/dt + v2dc2/dx = d2d
2c2/dx2 + a2ic\ + a22c2,

where the constants dj, a,ij (i,j = 1,2) are as before and vx and v2 are further
constants. On introducing constants p and a defined by

and noting the relations,

vi = dip -a, v2 = d2p - a, (2.3)

we see that the system (2.1) becomes

dc2 dc2

(2.4)
where here the operator L is

L = ^ - j - p—. (2.5)

Accordingly if we make the transformation

x' = x + at, t' = t, (2.6)

then using

d/dt = d/dt' + ad/dx', d/dx = d/dx', (2.7)

and from (2.4) we see that the coupled system finally becomes

da ,j , -^ = d2L'(c2) + a2Xcx + a-22c2, (2.8)

where the operator V is given by

Thus in this instance, we have by transformation of the independent variables,
transformed (2.1) into a coupled system of the form (1.3) and the formal solutions
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(1.4)-(1.7) coincide with those derived in Lee and Hill [5], which were originally
derived using formal techniques of mathematical analysis. In the second example
we transform the coupled system into (1.3) by a transformation of the dependent
variables.

Following the notation of Lee and Hill [6] we consider the reaction-diffusion
system with cross-effects, that is

dui/dt = DiV2ui -I- EiV2u2

du2/dt = D2V
2u2 + £2V2ux - A2u2 + B2ui, (2.10)

where A3, Bj, D} and Ej(j = 1,2) are all constants. Thus with

\u2j
(2.11)

\ "2 /

the system (2.10) becomes

£ - ( 2 £)*»•(*' -l> (212)

We now look for a transformation of dependent variables

such that

where the elements of the matrix T and dj(j = 1,2) are all constants. If (2.14)
holds then (2.12) becomes

which is a coupled system of the form (1.3). Undertaking the necessary algebra
it is a simple matter to show that

di = {(£>! + D2) + [(£>! - D2f + 4£1£2]1/2}/2,

d2 = {(/?! + D2) - [(£>! - D2f
I f [(A1-A2)(D1-D2)-2(B1E2an - - - j ^ ! + A2) + _ _ _ _ _ _ _ 7

d (Di-di \ ( A s , BjE2 B2Ej \
au = — I ~~A T I 1 (Al ~ A<2> + Tn TT ~ 7n T\ ('

c \di-d2 ) { (D2 - d2) (Di - d2) }
a21 = -d{ 1^T2) \{Al ~ M) +
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where the constants a and b are related to the constants c and d respectively by
the equations,

a = -Eic/{Di -dx) = -(D2- d

b = -E1d/{D1 - d2) = -{D2 - d2)d/E2. (2.17)

We observe that c and d are undetermined arbitrary constants and that in the
notation of Lee and Hill [6] we have an = — v\ and 022 = —v2. Further, on
making repeated use of the relation d\ + d2 = Di+D2, we can show from (2.16)
that the quantity k = 012021 arising in (1.6) becomes

k = [ExEt^Ai - A2f + BlB2{D1 - D2)
2 - (Bx 2

(2.18)

which is precisely as given in Lee and Hill [6]. Thus, assuming we can transform
(2.10) into a coupled system of the form (1.3), the formal solutions (1.4) are "es-
sentially" those given in Lee and Hill [6], which were obtained by an alternative
procedure. However the two sets of solutions are not identical, since those aris-
ing from (1.4) have an initial condition coinciding with that of c3 (x., t) (j = 1,2)
while those derived in Lee and Hill [6] have an initial condition coinciding with
that of Uj(x.,t) {j = 1,2).

An important unsolved problem would be to obtain formal solutions (1.4)-
(1.7) for coupled systems of the form (1.3) but with distinct linear spatial oper-
ators L\ and L2, namely

dci/dt = diLi(ci) + anci +01202, dc2/dt = d2L2(c2) + a2iCi +O22C2-
(2.19)

A more restricted version of this problem would be to obtain formal solutions
for a coupled system involving linear spatial operators L and M and being of
the form,

dci/dt = diL(ci) + eiM (ci) + anCi + ai2c2,

dc2/dt = d2L(c2) + e2M(c2) + a21cx + a22c2, (2.20)

where e3-(J = 1,2) are constants. In the remaining sections of the paper we focus
on the problem of obtaining uncoupling transformations for systems involving
several dependent variables.

3. Basic equations for the kernel matrix

McNabb [7] showed that solutions of the coupled system

dc/dt = DL(e) + Ac, (3.1)
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where D = [dj] is a positive constant diagonal matrix and A — [atJ] is a general
matrix not involving spatial variables, can be expressed in terms of solutions of
the uncoupled system

dH/dt = DL(H), (3.2)

by means of relations of the form,

/
Jo

c(x,t) = (J + K)H(x,t)

/ i,s)H(x,s)ds+ / k~ {t, s)H(x, s) ds. (3.3)
o Jt

Here for simplicity we assume at the outset firstly that the elements of D are
distinct and the variables are labelled such that

d1>d2>d3...dn, (3.4)

and secondly that the matrix A is a constant matrix with all elements nonzero.
In these circumstances the matrix J in (3.3) is diagonal and given simply by

J(t) = [exp(a^)]- (3-5)

Further the kernel matrices k+(t, s) and k~(t, s) are obtained as solutions of the
hyperbolic equations

dk+ dk+

D + D-z-D + D-r- = Ak+D, 0<t<oo, 0<s<t,

dk~
D + D-z— = Ak~D, 0 < s < o o , 0<t<s,

as
T D + Dz
at as

with boundary conditions

k+(t,O) = k-{O,s) = O, (3.7)

and jump conditions along s = t,

[k+(t,t) - k~(t,t))D - D[k+{t,t) - k~{t,t)} = (A- A°)JD, (3.8)

where with the above assumptions A0 is simply the diagonal matrix [a^].
In component form, with k+(t,s) = [k*At,s)] and k~(t,s) = [fc~((,s)] the

above equations become for 1 < i, j < n,

j ) = k-j{O,s) = O, (3.10)

Hit, t) - kr^t, t)](dj - di) = aijdje*"* (i ± j). (3.11)

We make the following observations relating to the solution of (3.9)-(3.11).
Clearly kf^ and k~, satisfy the same system of first-order partial differential
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equations and in principle both are solved column by column; that is, the cou-
pling in (3.9) arises only through elements of the kernel matrix which are in the
same column. Further, the character of the solutions fct+- and k~- is dictated by
the slope of the characteristics of (3.9), which are given by

s - dit/dj = constant. (3.12)

Thus if we consider the problem of solving for the jth column, then because of
(3.4) we have di/d, > 1 for 1 < i < j - 1 while di/d3 < 1 for j + 1 < i < n.
Further, the largest ratio is d\/dj and the smallest is dn/dj, which means that
the kernel matrices are nonzero only in the fan contained by s — dnt/dj and
s = d\t/dj. In particular k^ is nonzero only in the fan contained by s = dnt/dj
and s = t, while fc~ is nonzero only in the fan contained by s = t and s = dit/dj.

For the first column of the kernel matrices (j = 1) we have di/di < 1 for all
i and therefore A;,̂  (t, s) is identically zero for 1 < i < n. On the other hand,
for the last column of the kernel matrices (j — n) we have dt/dn > 1 for all i,
and therefore kfn(t, s) is identically zero for 1 < i < n. For these two special
columns, the jump conditions along s = t become

k+(t,t)=aile
a"t/(l-di/d1) (2<i<n),

k ^ 0 = ainea""7W/dn - 1) (1 < * < n - 1).

Incorporating these details in (3.3) gives

ci{x,t) = ea»tHitx,t)
n- l rt " rdit/d,

+ E / *£•(*' s ) ^ ( x > s ) d s + £ / *«•(*' sWx>s)d s-
J = lJdnt/d, j=2Jt (314)

Thus the underlying feature when solving (3.9)-(3.11) for either of the ker-
nel matrices k+(t,s) or k~(t,s) is that either all elements of the column are
identically zero or they are all nonzero. Clearly for certain special matrices A
with some zero elements this may not be the case. Our discussion pertains to
the general matrix A with all elements nonzero, so that once one element of the
column of the kernel matrices is nonzero the coupling in (3.9) generates nonzero
elements throughout the column. Finally in this section we make the observa-
tion that when solving for the j'th column of the kernel matrices the elements
of k^At, s) and k~At, s) are continuous functions across all characteristics except
their own characteristic, namely s = dit/dj. If we introduce &ijk*p(t) as the
discontinuity of k^p across the characteristic s = dit/dj, that is

/ ^ % , (3.15)

then we are claiming that
A^W = 0, (3.16)
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unless da/dp = di/dj. This means, for example, that when solving for the j'th
column of k+(t, s), all elements are zero in the fan contained by s = 0 and s =
dnt/dj and then h*At, s) suffers a jump across s = dnt/dj and becomes nonzero.
Because of the coupling this nonzero element generates further nonzero elements
of the j th column. These preliminary remarks enable us to make appropriate
interpretation of the known kernel matrices for two variables which lead to one
or two explicit results for several variables which we show can also be deduced
from (3.9)-(3.11) by elementary arguments.

4. Derivation of known kernel matrix for two dependent variables

In this section we present a slightly different derivation of the kernel matrices
for two variables to that given by McNabb [7]. From (3.9) we find that the first
column of the kernel matrices k+(t, s) and k~(t, s) both satisfy

dkn dkn , , , dk21 d2dk2i . . . . . .
-57- + -5— = aii*ii +ai2«2i, —zr + T—*— = 021*11+022*21. I4-1)at os at d\ as

Now since d2/di < 1, the elements k^{t,s) and k^it,s) are identically zero in
0 < t < s. Hence we confine our attention to k+(t, s) and from (3.10) and (3.13)
we require that

kti(t,O) = K + M ) - 0, fc+(M) = a 2 ie a i I 7 ( l - d2/d1). (4.2)

Now kiX{t, s) and kfiit,s) are zero in the fan contained by s = 0 and s =
and on the line 3 = d2tldi, ^ ( t , s) suffers a jump while k^iit, s) is continuous
across this line. It can be seen after a little thought that the natural variables
of the problem are,

x = {s-d2t/d1)/(l-d2/d1), y = (t-a)/{l-d3/d1), (4.3)

because in these coordinates (4.1) becomes

dk^/dx = aufc/j + a12k^x, dk^/dy = a21k^ + a22«2i> (4-4)

and on the line s — d2t/di we have

i = 0, y = t, «+ = 0, (4.5)

while on the line s = t we have

x = t, y = 0, *+j = O2ieo»*/(1 - da/di). (4-6)

We now make the transformation

*+ = eft"'+a«y<l,ll(xty)t fc+ = ea»*+a"V2i(*,j/), (4-7)
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so that (4.4)-(4.6) give

/dx = ai2<t>2i dfai/dy = a,2i<j>ii,

4>n(0,y) = 0,

and it is not difficult to see that this problem remains invariant under the one-
parameter group of transformations

x* = eex, y* = e~ey, <p*n = ee<j>lu <f>*2l = <foi- (4.9)

Accordingly our solution takes the form

0u {x,y) = x$n{xy), <t>2i(x,y) = $n{xy). (4.10)

It is now a straightforward matter to deduce

(«i2a2ix/y)1/2/i[2(a12a21xy)1/2]!

/ \ • )

*2i(*.«) = 1 , , • Q2i/o[2(oi2a2ixy)1/2],
1 - a2/ai

which coincide with the known expressions given in (1.4).
Similarly for the second column of the kernel matrices k+(t,s) and k~(t, s)

we need to solve

-^• + ^--~=a11ki2+a12k22, - ^ + - ^ = 021*12 + a23*aa, (4-12)at a2 as at as

and in this case, because di/d2 > 1, kf2(t,s) and fc2"2(t,s) are identically zero in
the region 0 < s < t and proceeding exactly as above but with coordinates

d2-l), Y = {d1t/d3-8)/{d1/d2-l), (4.13)

we require to solve

dk^/dX = anfcf2 +ai2fc2~2, dk^/dY = a2ifcf2 + o22A;2"2, (4.14)

such that on the line 3 = dit/d2 we have

X = t, Y = 0, A;̂  = 0, (4.15)

while on the line 3 = t we have

X = 0, y = t, k^ = a12e
a"t/(d1/d2-l). (4.16)

We may readily deduce that
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The solutions (4.11) and (4.17) satisfy the appropriate boundary data but in
addition we may readily confirm the following,

*ii(M) = eauta12a21</(l - th/dj, A ^ M i ' M ) = eOll ta12/(d1/d2 - 1),

fafadat/di) = e a" to2 i / ( l - d3/di), * M ( M ) = ea"'a12a2i</(di/d2 - 1).
(4.18)

It is of some interest that these results can also be derived from elementary
considerations. For example for Jfej^M) we have from the first equation of (4.1)

M) + a12fc2
+

1(M), (4-19)

which on using (4.2) becomes

(it ~ ° u ) *" ( t > l) = a i 2 a 2 i e a U t / ( 1 " <*2/di), (4.20)

where here d/dt is the total derivative with respect to time along the line s = t.
On integrating (4.20) we may readily deduce

kt1(t,t) = ea"t{a12a21t/(l-d2/d1) + C1}, (4.21)

where C\ denotes the constant of integration. Now as t tends to zero we require
that fcjl"1(0,0) is zero and therefore the constant C\ is zero and we have de-
duced the given expression. Similarly for /^(^tfei/di) we have from the second
equation of (4.1)

^ ^ , (4.22)

where we have used the fact that fc^i (£, eM/^i) IS ze ro- Now (4.22) becomes

{it ~ °22) *«(*'*»'/*) = °'
which evidently has the solution

(4.24)

where the constant of integration C2 is determined from the condition that the
jump in k%! across 3 = d2t/di at the origin coincides with the known value
deduced from the expression given in (4.2) as t tends to zero, namely

C2 = oai/(l - <h/di), (4.25)
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which together with (4.24) yields the given expression. These simple results
giving values of components of the kernel matrices along the extreme character-
istics and along s = t can be extended to the case of more than two dependent
variables and this is done in the following sections.

5. Kernel matrices for three dependent variables

For n = 3 we find from (3.9) that the first column of the kernel matrices
k+(t,s) and k~(t,s) both satisfy

at
dk31

at as
2 i oa3*31, (5-1)

+O32K21at di as

and since ofe/di and dz/d\ are both less than unity the first column of k~(t,s)
is identically zero. The first column of k+(t, s) is identically zero in the fan
contained by a = dzt/di and s = 0 and from (3.10) and (3.13) we have the
special values,

= 0,

Now from the first equation of (5.1) along the line s — t and these special values
we have

which on integration and using kfx (0,0) is zero gives as outlined in the previous
section

Further the last equation of (5.1) along the line s — dzt/di yields

so that
A&U.dst/di) = fl3iea337(l - <Wdi), (5.6)

where the constant of integration has to be chosen so that fc^ (0,0) agrees with
the value predicted by (5.2)4. We observe that while the values of fcj^M) and

ii) as given by (5.4) and (5.6) respectively have been deduced to be
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consistent with (5.2) as t tends to zero, it is apparent from (5.2)2 and (5.2)3 that
k^i is certainly not continuous at the origin.

Now since the first column of k+(t, s) is nonzero only in the fan contained by
the lines s = d^t/di and s = t, the natural coordinates for this problem appear
to be

x = (s-d3t/d1)/(l-d3/d1), y = (t-a)/{l-d3/di), (5.7)

in which case (5.1) becomes

013*31,

& + O23*&, (5-8)

k^ + 032^ + a^k^,

where the constants a and /? are defined by

<* = (d7-d3)/(d1-d3), P = (d1-di)/(d1-d3), (5.9)

which we notice are such that a + /? = 1. We now make the transformations

y), (5.10)

kf1(t,s) = ea»x+a™y<t>3(x,y),

so that (5.8) becomes

d(j>i/dx =

y - A<f>2 =

= 0310i

where the constant A is defined by

A = <Z22 - (ctan + /?a33).

Further the boundary conditions (5.2), (5.4) and (5.6) become

d2/d1), ^3(«,0) = 031/(1-ds/di) , (5-13)

, y) = 0, 03(O, y) = a3 i / ( l - c/3/di).

Because of the zero conditions (5.13)4 and (5.13)s and because partial dif-
ferentiation with respect to x only occurs in (5.11) for the functions 0i and
02, it is natural to Laplace transform (5.11) with respect to x. Although the
resulting transforms are readily obtained, they are not of a type which can be
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readily inverted. Accordingly we do not pursue this line of investigation fur-
ther. Alternatively from (5.11) and (5.13) we may deduce the following integral
formulation,

<t>i(x,y)= / [01202(7-,
Jo

x -A(r-x) /Q B(T-X)\

| 0 ( / n r X)j (5.14)

T7TT + /- a3/"u Jo
y) = T.

(1 -

which possibly could form the basis of an iterative scheme for obtaining approx-
imate kernels. This is actually the iterative scheme employed in McNabb [7] to
prove existence.

Prom (3.9) the middle columns of k+(t, s) and k~(t, s) both satisfy

, di dkn 7 , 7
r -j ^— = ail«12 + 012*22

023*32, (5.15)

. ^3 3*32 7 , 7 , 7
Q r ~j o— = O31*12 + 032*22 +O33K32,

while from (3.10) and (3.11) we may deduce

k!2(t,d3t/d2) = k+2{t,d3t/d2) = 0,

*«(*, 0 " fcr2(<, t) = a i 2 e°"7( l " di/d2),

*?a(«. 0 - fc3~2(*. 0 = a3 2ea"7(l " d3/d2),
k^dit/di) = k^{t,dxtld2) = 0.

From these special values and each of the equations (5.15), we may deduce exactly
as previously described, the following additional special values,

= -a 3 2 e
0 3 3 t / ( l - d3/d2),

*M(«, 0 - *M(*. 0 = (021012/(1 - di/dt) + 023032/(1 - dzld2)}tea"\
(5.17)

*ra(«, dit/d2) =
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Similarly the third columns of k+(t,s) and k~(t,s) both satisfy

012*23 + Ol3*33,at 03 as
5*23 . d2 dk23 1 , 1 , 1 / , . o v

d a7" = ° 2 1 fl22fc23 + 023*331 (5-18)
9*33 , #*33 ; , i , i
—QT + "~a— = a31*13 + O32*23 + 033*33,

and since the third column of k+(t, s) is identically zero we have from (3.10) and
(3.13),

fcJ3(t,di*M») = *3~3Mi«/d3) = 0,

*r3(t,0 = a13ea337(di/d3 - 1), *2-3(<>0 = a23e
a^/(d2/d3 - 1),

(5.19)

and in the usual way we may deduce the additional special values

di/d3 - 1),
Q l 3 ° 3 1 + Q 2 3 Q 3 2 1 *-as3« r5 oni

Some of these results are extended to n variables in the following section.
Finally in this section we note that McNabb [7] has shown that the Laplace

transforms of the kernel matrices admit particularly simple forms in a matrix
formulation. For example for the first column of k+(t, s) we have

)ds, (5.21)
o

and from (5.1) and (5.2) we may deduce

dkti/dt = (an - p )* n + 012*2! + 013*3^,

dkji/dt = a 2 i* n + (a22 -pda/di)*& + 023*^1 + o2 ie ( a"- p ) t , (5.22)

= a3ifcu + 032*^1 + (a33

From these equations we may readily deduce, in terms of matrices A and D the
following seemingly simple expression,

\ / ,

*ai I ={elA-pD/di»-e(-a"-ritI} [ 0 ] , (5.23)
ktiJ V 0
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where / denotes the identity matrix. The highly nontrivial problem of inverting
such transforms is considered in some detail by McNabb [8].

6. Some elementary results for n dependent variables

For the first column of the kernel matrices k+ and k~, all the elements of k~
are zero while for k+ which is nonzero in the fan contained by s = dnt/d\ and
s = t, we have from (3.9), (3.10) and (3.13)i,

+
dt +d, ds

dnt/di) = 0 (z # n), k+(t,t) = aiie
aiit/(l - d,-/^) (t # 1),

and from these equations we may deduce in the usual way

1=2

k+^dnt/dx) = Onle
a»"V(l - d,,/di).

For the j th column of the kernel matrices we have from (3.9) for both fc+ and

while from (3.10) and (3.11) we may deduce

(6-4)

k-(t,dlt/d]) = O

from which we can obtain

*+.(«,dnt/dj) = -anie
a»»V(l - dn/dj) (j ± n),

fc".(t, d^/dj) = aije
a»7(1 - djdj) (j ? 1).

For the last column of the kernel matrices, all elements of k+ are identically
zero while the elements of k~ are nonzero only in the fan contained by s = t and
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3 = dit/dn and from (3.9), (3.10) and (3.13)2 we have

~n(t, dit/dn) = 0 (• # 1), k~n(t, t) = ^ ^ Z X) (* ̂  " ) '

from which we may deduce

- tea"nt V Qn'a'n
n - l (6.7)

(t t) - V Qn'a'n

Finally we observe that corresponding results along nonbounding characteris-
tics can be obtained in terms of Aijk^p(t) defined by (3.15). For a ^ i we have
immediately from (3.16)

(6.8)

while for a = i we have

Ay **(*) = aoe°"V(l - * /d , ) (t ^ / ) . (6.9)

On the other hand if i = j then we have

These results are derived as follows. From (3.9) and (3.15) we have

-a,,-)Afi*£(0 = 0 (f#i) , (6.11)

while if i = j we obtain

and these differential equations can be solved for the discontinuities using the
following argument to obtain a boundary condition at t zero. For i < j , di > d3

and as t tends to zero, k~, jumps from the value zero just above s = dtt/dj to
the value aij/(di/dj — 1) just below this line (but above s = t) so that

dy) - k'(r .d.f/d,-)] = oy/( l - <*,/<*,). (6.13)
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Similarly for i > j , di < dj and as t tends to zero k^ jumps from the value zero
just below a = dit/dj to the value aij/(l -di/dj) just above this line (but below
a = t) so that

} 4,dit/dj)] = ay / ( l - di/dj), (6.14)

and (6.9) evidently follows from (6.11), (6.13) and (6.14). Similarly

Urn Ajjk+jit) = ]im[fc+(*+, t) - * t . ( r ,*)] = lim *+ (t+, t) = 0,
. ~~ (6.15)

Jim Atffc7.(0 = lim[*T.(t+,t) - * - - ( r ,0 ] = - limfc-.(r,t) = 0,

which together with (6.12) readily yields (6.10).

7. Conclusion

For the fundamental problem of uncoupling systems of linear differential equa-
tions we have reviewed the situation relating to known uncoupling transforma-
tions for systems involving two dependent variables only. It appears that those
systems for which uncoupling transformations have been derived are systems
which can be transformed into a coupled system of the form (1.3) involving a sin-
gle linear spatial operator L only, for which the basic formal solution (1.4)-(1.7)
is well established. Further for two dependent variables we have suggested two
important coupled systems (2.19) and (2.20) for which formal solutions would
have many applications. For more than two dependent variables, although the
problem is unsolved, we have nevertheless presented in some detail the struc-
ture of solutions for the kernel matrices k+(t, a) and k~(t, s), and moreover we
have utilised the governing system of partial differential equations to provide an
elementary derivation of special values of the elements of these matrices along
bounding characteristics. We have also indicated that further explicit represen-
tations of these kernel matrices hinges on inverting seemingly simple Laplace
transforms of the form (5.23) for an arbitrary constant matrix A and a diagonal
matrix D.
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