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A LIMIT THEOREM FOR A WEISS EPIDEMIC PROCESS
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Abstract

For a Markov two-dimensional death-process of a special class we consider the use
of Fourier methods to obtain an exact solution of the Kolmogorov equations for the
exponential (double) generating function of the transition probabilities. Using special
functions, we obtain an integral representation for the generating function of the transition
probabilities. We state the expression of the expectation and variance of the stochastic
process and establish a limit theorem.
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1. The Markov epidemic process

We consider a time-homogeneous Markov process

ξ(t) = (ξ1(t), ξ2(t)), t ∈ [0, ∞),

on the set of states
N2 = {(α1, α2), α1, α2 = 0, 1, . . .}

with transition probabilities

P
(α1,α2)
(β1,β2)

(t) = P{ξ(t) = (β1, β2) | ξ(0) = (α1, α2)}.
Let us suppose that the transition probabilities have the following form as t → 0+, μ ≥ 0 (see
[3] and [15]),

P
(α1,α2)
(α1,α2−1)(t) = p1α1α2t + o (t), P

(α1,α2)
(α1+1,α2−1)(t) = p2α1α2t + o (t),

P
(α1,α2)
(α1−1,α2)

(t) = μα1t + o (t), P
(α1,α2)
(α1,α2)

(t) = 1 − (α1α2 + μα1)t + o (t),
(1)

where p1 ≥ 0, p2 ≥ 0, p1 + p2 = 1.
Let us introduce the generating functions of the transition probabilities (|s1| ≤ 1, |s2| ≤ 1),

F(α1,α2)(t; s1, s2) =
∞∑

β1,β2=0

P
(α1,α2)
(β1,β2)

(t)s
β1
1 s

β2
2 , (α1, α2) ∈ N2. (2)
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The second (forward) system of the Kolmogorov differential equations for the transition
probabilities of the process ξ(t) is equivalent to the partial differential equation (see [3], [5], [6]),

∂F(α1,α2)

∂t
= (p2s

2
1 + p1s1 − s1s2)

∂2F(α1,α2)

∂s1∂s2
+ μ (1 − s1)

∂F(α1,α2)

∂s1
, (3)

with the initial condition F(α1,α2)(0; s1, s2) = s
α1
1 s

α2
2 .

An event {ξ(t) = (α1, α2)} is interpreted as the existence of a population of α1 particles
of type T1 and α2 particles of type T2 at time t . The following description is customary in
probabilistic models of the spreading of an epidemic [2]. The particles of type T1 are interpreted
as sick individuals and the particles of type T2 as healthy individuals susceptible to the infectious
disease. We can assume that after a random time interval τ 2

(α1,α2)
, P{τ 2

(α1,α2)
≤ t} = 1−e−α1α2t ,

contact is made between a particle of type T1 and a particle of type T2. This pair of particles is
transformed into a particle of type T1 with the probability p1 (the infected individual is removed
from the population) — the process goes to the state (α1, α2 − 1), or is transformed into a pair
of particles of type T1 with the probability p2 (the infected individual is not removed from the
population) — the process goes to the state (α1 + 1, α2 − 1). Besides, after a random time
interval τ 1

(α1,α2)
, P{τ 1

(α1,α2)
≤ t} = 1 − e−μα1t , one of the particles of type T1 dies — the process

goes to the state (α1 −1, α2). The random variables τ 1
(α1,α2)

and τ 2
(α1,α2)

are independent and the
process ξ(t) remains in the state (α1, α2) for a random time τ(α1,α2) = min(τ 1

(α1,α2)
, τ 2

(α1,α2)
).

An example of a realization of the process is shown in Figure 1, case (a).
The process ξ(t) is called a Weiss epidemic process [15] in the p1 = 1 case and a Bartlett–

McKendrick epidemic process [3] in the p2 = 1 case. The process ξ(t) belongs to a special
class of Markov processes introduced by Sevast´yanov [13]. The generalization of such a
process with two kinds of particles T1, T2 and two complexes of interaction is described in [7].
An equation of this type is also the generalization of (3).

There are numerous publications devoted to explicit solutions of equations for different
Markov epidemic processes (see, for example, [2], [5], [7], the survey [8], [9]–[11], [14],
and [15]). For (3) in the p1 = 1 case the expression for the transition probabilities is well
known [15] (see Remark 1 below). In the p2 = 1 case, Gani [5] found the solution of (3)
by the Laplace transform method and wrote out the transition probabilities. Siskind [14]

Figure 1: Jumps for a Markov process.
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solved (3) by direct recurrent integration and obtained the same equations. A few simpler
series for the solution of (3) were obtained by Sakino [11]. However, all these expressions for
F(α1,α2)(t; s1, s2) have very complicated forms; for instance, the solution obtained in [5] fills
two journal pages. These equations are of little use in the study of asymptotic properties of the
random process ξ(t).

In this paper the construction of the solution for (3) is based on the statements of the theory
of branching processes with independent particles [1], [12].

2. The nonlinear branching property and the solving of problem (3)

Let us consider the quite simple branching process which is the Markov process on the set
of states N2 such that the transition probabilities have the following form as t → 0+, μ1 ≥ 0,
μ2 ≥ 0,

P
(α1,α2)
(α1−1,α2)

(t) = μ1α1t + o (t), P
(α1,α2)
(α1,α2−1)(t) = μ2α2t + o (t),

P
(α1,α2)
(α1,α2)

(t) = 1 − (μ1α1 + μ2α2)t + o (t).

For the generating function of the transition probabilities (2) the partial differential equation
holds (see [1], [12, Section 4.3, Equation (12)]) such that

∂F(α1,α2)

∂t
= μ1(1 − s1)

∂F(α1,α2)

∂s1
+ μ2(1 − s2)

∂F(α1,α2)

∂s2
, (4)

with initial conditions F(α1,α2)(0; s1, s2) = s
α1
1 s

α2
2 .

The state (α1, α2) of the process is interpreted as the existence of α1 particles of type T1 and
α2 particles of type T2. At a random time τ 1

(α1,α2)
, P{τ 1

(α1,α2)
≤ t} = 1 − e−μ1α1t , one of the

particles of type T1 dies and the process passes to the state (α1 −1, α2). Besides, after a random
time τ 2

(α1,α2)
, P{τ 2

(α1,α2)
≤ t} = 1 − e−μ2α2t , one of the particles of type T2 dies and the process

passes to the state (α1, α2−1). The random variables τ 1
(α1,α2)

and τ 2
(α1,α2)

are independent and the
process remains in the state (α1, α2) during the random time τ(α1,α2) = min(τ 1

(α1,α2)
, τ 2

(α1,α2)
).

The example of a realization of the death-process is shown in Figure 1, case (b).
The solution of the first order equation (4) is found by standard methods and it has the

branching property ([12, Section 4.2, Equation (3)])

F(α1,α2)(t; s1, s2) = (1 − e−μ1t + s1e−μ1t )α1(1 − e−μ2t + s2e−μ2t )α2 . (5)

In this paper Theorem 1 establishes the solution of the second order partial differential
equation (3) for the case of the Weiss epidemic process. This solution gives us the general-
ization of (5). We use the method of [8] to obtain such a representation for F(α1,α2)(t; s1, s2).
We consider both the first and the second Kolmogorov equations for the exponential (double)
generating function of the transition probabilities. The solution of the system is obtained in
the form of a series with separating variables. Then we construct an integral representation
for the series which contains special functions. Further manipulation with the explicit solution
provides the form that is analogous to the nonlinear property (5).

Equation (3) in Theorem 1 is solved when p1 = 1, however, the proposed method is
applicable even if p1 < 1 despite the difficulties of the transformation technique.
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3. The closed solution of the Kolmogorov equations

Let us consider the process ξ(t) when p1 = 1. We introduce an exponential generating
function (see [8] and [13])

F (t; z1, z2; s1, s2) =
∞∑

α1,α2=0

z
α1
1 z

α2
2

α1! α2!F(α1,α2)(t; s1, s2)

=
∞∑

α1,α2,β1,β2=0

z
α1
1 z

α2
2

α1! α2!P
(α1,α2)
(β1,β2)

(t)s
β1
1 s

β2
2 . (6)

For the process under consideration, we can write down the first (backward) and the second
(forward) systems of the Kolmogorov differential equations for the transition probabilities
P

(α1,α2)
(β1,β2)

(t) in the form of two equations with partial derivatives of the second order [8], such that

∂F

∂t
= z1z2

(
∂F

∂z1
− ∂2F

∂z1∂z2

)
+ μz1

(
F − ∂F

∂z1

)
, (7)

∂F

∂t
= (s1 − s1s2)

∂2F

∂s1∂s2
+ μ(1 − s1)

∂F

∂s1
, (8)

with the initial condition F (0; z1, z2; s1, s2) = ez1s1+z2s2 .
Furthermore, we need the function, x > 0, y > 0,

H(x, y) =
∫ ∞

0

∫ ∞

0
J0(2

√
ux)J0(2

√
vy)0F2(1, 1; −uv) du dv, (9)

where J0(z) is the Bessel function of order zero and 0F2(1, 1; z) is the generalized hypergeo-
metric function,

J0(z) =
∞∑

k=0

(−1)k(z/2)2k

k! k! , 0F2(1, 1; z) =
∞∑

k=0

zk

(k!)3 .

Theorem 1. For the Markov process ξ(t) on the set of states N2 under condition (1) and
p1 = 1, the generating function of the transition probabilities is as follows. Let

F(α1,α2)(t; s1, s2)

=
∫ ∞

0

∫ ∞

0

(
(s1e−(x+μ)t )α1(1 − e−y + s2e−y)α2

+
∫ ∞

0

(
1

2π i

∮
0+

ϕ
α1
1 (t; x, u; s1)ϕ

α2
2 (y, v; s2)e

(u−μ)v du

)
dv

)
H(x, y) dx dy, (10)

where the functions ϕ1(t; x, u; s1) and ϕ2(y, v; s2) are linear with respect to variables s1 and s2,
such that

ϕ1(t; x, u; s1) = μ
1 − e−(x+μ)t

u
+ s1e−(x+μ)t , ϕ2(y, v; s2) = 1 − e−y−v + s2e−y−v.
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Proof. (a) Separating of variables. At the first stage we apply a Fourier method of separating
the variables to the system of linear equations (7) and (8). We look for the solution in a form
of the series

F (t; z1, z2; s1, s2) =
∞∑

α1,α2=0

Aα1α2C̃α1α2(z1, z2)Cα1α2(s1, s2)e
−λα1α2 t . (11)

After substitution of (11) into (7) and (8) we obtain the following equations for the functions
C̃α1α2(z1, z2) and Cα1α2(s1, s2):

z1z2

(
∂C̃α1α2

∂z1
− ∂2C̃α1α2

∂z1∂z2

)
+ μz1

(
C̃α1α2 − ∂C̃α1α2

∂z1

)
+ λα1α2C̃α1α2 = 0; (12)

(s1 − s1s2)
∂2Cα1α2

∂s1∂s2
+ μ(1 − s1)

∂Cα1α2

∂s1
+ λα1α2Cα1α2 = 0, (13)

α1, α2 = 0, 1, . . . . According to the conditions for the jumps of the process, (13) has the
additional boundary condition ‘Cα1α2(s1, s2) is polynomia’ (cf. [8, Section 4.2.1]). Then the
sequence of ‘eigenvalues’ λα1α2 = α1α2 + μα1, α1, α2 = 0, 1, . . . , and each λα1α2 has the
corresponding ‘eigenfunction’

Cα1α2(s1, s2) =
(

s1 − μ

α2 + μ

)α1

(s2 − 1)α2 .

Consequently, (12) has the form

z1z2

(
∂C̃α1α2

∂z1
− ∂2C̃α1α2

∂z1∂z2

)
+ μz1

(
C̃α1α2 − ∂C̃α1α2

∂z1

)
+ (α1α2 + μα1)C̃α1α2 = 0.

According to the conditions for the jumps of the process it follows that we are looking for an
analytic solution, for all z1, z2,

C̃α1α2(z1, z2) = z
α1
1 z

α2
2 ez1μ/(α2+μ)+z2 .

Therefore, the desired series (11) has the form

F (t; z1, z2; s1, s2)

=
∞∑

α1,α2=0

Aα1α2z
α1
1 z

α2
2 ez1μ/(α2+μ)+z2

(
s1 − μ

α2 + μ

)α1

(s2 − 1)α2 e−(α1α2+μα1)t .

Comparing the initial conditions of F (0; z1, z2; s1, s2) = ez1s1+z2s2 and the exponent
expanding

ez1s1+z2s2 = ez1s1+z2

∞∑
α2=0

z
α2
2

α2! (s2 − 1)α2

= ez2

∞∑
α2=0

z
α2
2

α2! (s2 − 1)α2 ez1μ/(α2+μ)ez1(s1−μ/(α2+μ))

= ez2

∞∑
α2=0

z
α2
2

α2! (s2 − 1)α2 ez1μ/(α2+μ)
∞∑

α1=0

z
α1
1

α1!
(

s1 − μ

α2 + μ

)α1

,
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we find the values for Aα1α2 . We obtain Aα1α2 = 1/(α1! α2!) and

F (t; z1, z2; s1, s2)

=
∞∑

α1,α2=0

z
α1
1 z

α2
2

α1! α2!ez1μ/(α2+μ)+z2

(
s1 − μ

α2 + μ

)α1

(s2 − 1)α2 e−(α1α2+μα1)t . (14)

Absolute convergence of the series (14) for all z1, z2, s1, s2 and t ∈ [0, ∞) is obvious.
(b) The integral representation. We use the following representation of the exponent

([4, Part 2, relation (3.5) and Part 1, Chapter 2, Section 12])

e−α1α2t =
∫ ∞

0

∫ ∞

0
e−α1tx−α2yH(x, y) dx dy,

where the function H(x, y) is defined by (9). Substituting into (14) and changing the order of
summing (its correctness is implied by absolute convergence), we obtain

F (t; z1, z2; s1, s2)

=
∞∑

α1,α2=0

z
α1
1 z

α2
2

α1! α2!ez1μ/(α2+μ)+z2

(
s1 − μ

α2 + μ

)α1

(s2 − 1)α2 e−μα1t

×
∫ ∞

0

∫ ∞

0
e−α1tx−α2yH(x, y) dx dy

=
∫ ∞

0

∫ ∞

0
ez2

{ ∞∑
α2=0

z
α2
2

α2!ez1μ/(α2+μ)[(s2 − 1)e−y]α2

×
{ ∞∑

α1=0

z
α1
1

α1!
[(

s1 − μ

α2 + μ

)
e−(x+μ)t

]α1
}}

H(x, y) dx dy

=
∫ ∞

0

∫ ∞

0
ez1s1e−(x+μ)t+z2

×
{ ∞∑

α2=0

[z2(s2 − 1)e−y]α2

α2! ez1μ(1−e−(x+μ)t )/(α2+μ)

}
H(x, y) dx dy. (15)

For summing the series in brackets we use the equation
∞∑

α=0

bα

α! (α + μ)k
= 1

(k − 1)!
∫ ∞

0
vk−1e−μv+be−v

dv, k = 1, 2, . . . ,

and the modified Bessel function

I1(z) =
∞∑

k=0

(z/2)2k+1

k! (k + 1)!
(substituting a = z1μ(1 − e−(x+μ)t ), b = z2(s2 − 1)e−y), to obtain

∞∑
α2=0

bα2

α2! ea/(α2+μ) =
∞∑

α2=0

bα2

α2!
∞∑

k=0

ak

k! (α2 + μ)k

=
∞∑

k=0

ak

k!
∞∑

α2=0

bα2

α2! (α2 + μ)k
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= eb +
∞∑

k=1

ak

k! (k − 1)!
∫ ∞

0
vk−1e−μv+be−v

dv

= eb +
∫ ∞

0

√
a

v
I1(2

√
av)e−μv+be−v

dv. (16)

Using the well-known representation for the Bessel function,

I1(z) = I−1(z) = 1

2π i

∮
0+

e(z/2)(u+1/u) du

it is easy to obtain √
a

v
I1(2

√
av) = 1

2π i

∮
0+

evu+a/u du. (17)

Substituting (17) into (16) and then (16) into (15), we have, finally,

F (t; z1, z2; s1, s2)

=
∫ ∞

0

∫ ∞

0
exp(z1s1e−(x+μ)t + z2)

×
(

exp(z2(s2 − 1)e−y) +
∫ ∞

0

(
1

2π i

∮
0+

exp

(
z1μ

1 − e−(x+μ)t

u

+ z2(s2 − 1)e−y−v + (u − μ)v

)
du

)
dv

)
H(x, y) dx dy. (18)

Combining the definition of the double generating function (6), (18), and using an exponent
that expands

ez1s1+z2s2 =
∞∑

α1,α2=0

z
α1
1 z

α2
2

α1! α2! s
α1
1 s

α2
2 ,

we obtain the integral representation (10). Theorem 1 is proved.

Remark 1. We reduce the series (14) to the form

F (t; z1, z2; s1, s2)

=
∞∑

α2=0

z
α2
2

α2!ez1μ/(α2+μ)+z2(s2 − 1)α2

∞∑
α1=0

z
α1
1

α1!
(

s1 − μ

α2 + μ

)α1

(e−(α2+μ)t )α1

=
∞∑

α2=0

z
α2
2 (s2 − 1)α2

α2!
∞∑

n=0

zn
2

n! exp

(
z1

[
μ

α2 + μ
+

(
s1 − μ

α2 + μ

)
e−(α2+μ)t

])

=
∞∑

α2=0

z
α2
2

α2∑
k=0

(s2 − 1)k

k! (α2 − k)!
∞∑

α1=0

z
α1
1

α1!
(

s1e−(k+μ)t + μ

k + μ
(1 − e−(k+μ)t )

)α1

. (19)

In the resulting series (19) and the series (6), equating the coefficients of the identical powers
of z

α1
1 z

α2
2 , we obtain the representation (cf. [15])

F(α1,α2)(t; s1, s2) =
α2∑

k=0

Ck
α2

(
s1e−(k+μ)t + μ

k + μ
(1 − e−(k+μ)t )

)α1

(s2 − 1)k. (20)
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Remark 2. Wishing to obtain a closed solution to (3) by the method of separating variables,
one can encounter a difficult problem if p1 < 1. We can assume that the first and the second
Kolmogorov equation for the generating function could be solved by it. The jumps of the
Markov process (ξ1(t), ξ2(t)) are aimed in one direction, i.e. our process is ‘a death process’
(see Figure 1, case (a)). Therefore, in the p1 < 1 case the series (11) exists. Also, we know
that the generating function F(α1,α2)(t; s1, s2) can be obtained in the form of a finite series in
the p1 = 0 case [5].

4. Some consequences

The initial conditions α1, α2 and the variables s1, s2 are involved in the integral equation (10)
for the function F(α1,α2)(t; s1, s2) as a simple arithmetic expression. This provides us with the
standard methods for obtaining the following corollaries.

The moments of the Markov process (ξ1(t), ξ2(t)) can be found from [1] and [12]. Thus,

Ai(t) = E ξi(t) = ∂F(α1,α2)

∂si

∣∣∣∣
s1=1,s2=1

,

Bi(t) = E ξi(t)(ξi(t) − 1) = ∂2F(α1,α2)

∂s2
i

∣∣∣∣
s1=1,s2=1

,

Di(t) = Dξi(t) = Bi(t) + Ai(t) − A2
i (t), i = 1, 2,

where E is the expectation and D is the variance.

Corollary 1. For a Weiss epidemic process the expectations and variances are as follows:

A1(t) = α1e−μt , A2(t) = α2

(
μ

μ + 1
+ 1

μ + 1
e−(μ+1)t

)α1

;
D1(t) = α1(e

−μt − e−2μt ),

D2(t) = α2(α2 − 1)

(
μ

μ + 2
+ 2

μ + 2
e−(μ+2)t

)α1

+ α2

(
μ

μ + 1
+ 1

μ + 1
e−(μ+1)t

)α1

− α2
2

(
μ

μ + 1
+ 1

μ + 1
e−(μ+1)t

)2α1

.

Proof. Let us calculate A2(t). Let

A2(t) = ∂F(α1,α2)

∂s2

∣∣∣∣
s1=1,s2=1

=
∫ ∞

0

∫ ∞

0

(
e−α1(x+μ)tα2e−y

+
∫ ∞

0

(
1

2π i

∮
0+

(
μ

u
(1 − e−(x+μ)t ) + e−(x+μ)t

)α1

× α2e−y−ve(u−μ)v du

)
dv

)
H(x, y) dx dy
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= α2e−α1(μ+1)t

+ α2

∫ ∞

0

∫ ∞

0

∫ ∞

0

(
1

2π i

∮
0+

α1∑
k=0

Ck
α1

μk

uk
(1 − e−(x+μ)t )k

× (e−(x+μ)t )α1−keuv−(μ+1)v−y du

)
H(x, y) dv dx dy

= α2e−α1(μ+1)t

+ α2

∫ ∞

0

∫ ∞

0

∫ ∞

0

α1∑
k=1

Ck
α1

μkvk−1

(k − 1)! (1 − e−(x+μ)t )k

× (e−(x+μ)t )α1−ke−(μ+1)v−yH(x, y) dv dx dy

= α2e−α1(μ+1)t

+ α2

∫ ∞

0

∫ ∞

0

α1∑
k=1

Ck
α1

(
μ

μ + 1

)k k∑
l=0

Cl
k(−1)l(e−(x+μ)t )l

× (e−(x+μ)t )α1−ke−yH(x, y) dx dy

= α2e−α1(μ+1)t + α2

α1∑
k=1

Ck
α1

(
μ

μ + 1

)k k∑
l=0

Cl
k(−1)le−lμte−(α1−k)μte−(l+α1−k)t

= α2(e
−(μ+1)t )α1 + α2

α1∑
k=1

Ck
α1

(
μ

μ + 1

)k

(1 − e−(μ+1)t )k(e−(μ+1)t )α1−k

= α2

(
μ

μ + 1
+ 1

μ + 1
e−(μ+1)t

)α1

.

We can calculate A1(t), B1(t), and B2(t) in the same way. Corollary 1 is proved.

The states {(0, γ2), γ2 = 0, 1, 2, . . .} for the Markov process ξ(t) are absorbing. For the
final probabilities

q
(α1,α2)
(0,γ2)

= lim
t→∞ P

(α1,α2)
(0,γ2)

(t).

We introduce the generating function

�(α1,α2)(s2) =
∞∑

γ2=0

q
(α1,α2)
(0,γ2)

s
γ2
2 = lim

t→∞ F(α1,α2)(t; s1, s2).

Passing to the limit in (10) we obtain the integral expression which was obtained in [7] by direct
solution of the stationary first Kolmogorov equation.

Corollary 2. The generating function of the final probabilities is as follows, μ > 0, α1 =
1, 2, . . . ,

�(α1,α2)(s2) = μα1

(α1 − 1)!
∫ ∞

0
vα1−1(1 − e−v + s2e−v)α2 e−μv dv.
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Let us assume that at the initial moment the number, α1, of infected individuals is small
and the number, α2, of susceptible individuals is large, which is the most interesting case for
applications [2]. Using the explicit expression (10) for the probability distribution on N2, and
applying the characteristic functions method in a standard way (see [1] and [12]), we obtain
the following corollary.

Corollary 3. Let us denote ξ2(t) as a number of particles of type T2 at the moment t for the
Weiss epidemic process. We assume that there was α1 particles of type T1 and α2 particles of
type T2, μ > 0, α1 = 1, 2, . . . , at the moment t = 0. Then, for the fixed t > 0, we have

lim
α2→∞ P

{
ξ2(t)

α2
≤ x

}
= Fα1(t; x), (21)

where Fα1(t; x) is the distribution function, in which its characteristic function is equal to

ϕα1(t; λ) =
∫ ∞

−∞
eiλx dFα1(t; x)

= e−α1μteiλe−α1t +
α1∑

k=1

Ck
α1

μk

(k − 1)!
k∑

l=0

Cl
k(−1)l

×
∫ e−(α1−k+l)t

0
eiλxxμ−1(− ln x − (α1 − k + l)t)k−1 dx. (22)

From (22) we can find the distribution function expression

Fα1(t; x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < e−α1t ;
e−α1μt +

∫ x

e−α1t
fα1(t; y) dy, e−α1t ≤ x < 1;

1, 1 ≤ x,

where the piecewise-continuous function fα1(t; x) at each interval (e−(α1−n)t , e−(α1−n−1)t ),
n = 0, . . . , α1 − 1, is defined as

fα1(t; x) = xμ−1
α1∑

k=n+1

Ck
α1

μk

(k − 1)!
k−n−1∑

l=0

Cl
k(−1)l(− ln x − (α1 − k + l)t)k−1.

In particular,

F1(t; x) =

⎧⎪⎨
⎪⎩

0, x < e−t ;
xμ, e−t ≤ x < 1;
1, 1 ≤ x,

F2(t; x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < e−2t ;
xμ(1 + μ ln x + 2μt), e−2t ≤ x < e−t ;
xμ(1 − μ ln x), e−t ≤ x < 1;
1, 1 ≤ x.

Note that deducing the limit theorem (21) from the representation (20) is challenging, but
deducing (21) from (10) is simple and consists of using the limit limn→∞(1 + 1/n)n = e.
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The main result of this paper is the limit theorem (21). It is the statement of a ‘threshold
theorem’ type [2]. As stated above the asymptotic properties of the component ξ2(t) of the
process as α2 → ∞ are interesting for practical use. Theorems of such kind are used to check
the threshold number of infected individuals and when this number has been exceeded it means
that the epidemic has begun.
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