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We derive the evolution equation of the average uncertainty energy for periodic/
homogeneous incompressible Navier–Stokes turbulence and show that uncertainty is
increased by strain rate compression and decreased by strain rate stretching. We use
three different direct numerical simulations (DNS) of non-decaying periodic turbulence
and identify a similarity regime where (a) the production and dissipation rates of
uncertainty grow together in time, (b) the parts of the uncertainty production rate
accountable to average strain rate properties on the one hand and fluctuating strain
rate properties on the other also grow together in time, (c) the average uncertainty
energies along the three different strain rate principal axes remain constant as a
ratio of the total average uncertainty energy, (d) the uncertainty energy spectrum’s
evolution is self-similar if normalised by the uncertainty’s average uncertainty energy
and characteristic length and (e) the uncertainty production rate is extremely intermittent
and skewed towards extreme compression events even though the most likely uncertainty
production rate is zero. Properties (a), (b) and (c) imply that the average uncertainty
energy grows exponentially in this similarity time range. The Lyapunov exponent
depends on both the Kolmogorov time scale and the smallest Eulerian time scale,
indicating a dependence on random large-scale sweeping of dissipative eddies. In
the two DNS cases of statistically stationary turbulence, this exponential growth is
followed by an exponential of exponential growth, which is, in turn, followed by a
linear growth in the one DNS case where the Navier–Stokes forcing also produces
uncertainty.
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1. Introduction

It is basic textbook knowledge that turbulent flow realisations are not repeatable
whereas statistics over many realisations of a turbulent flow are (Tennekes & Lumley
1972). This well-known empirical observation suggests the presence of some kind of
chaotic attractor. The pioneering work of Lorenz has shown the presence of chaos and
strange attractors and their resulting high sensitivity to initial conditions in nonlinear
systems with a small number of degrees of freedom (Lorenz 1963; Sparrow 2012).
Deissler (1986) demonstrated that similar extreme sensitivity to initial conditions is
also present in fully developed turbulent solutions of the Navier–Stokes equation
which is a nonlinear system with a very large number of degrees of freedom, in
fact asymptotically infinite with increasing Reynolds number. High sensitivity to initial
conditions is at the root of non-repeatability and therefore uncertainty. Uncertainty is
present in a wide range of nonlinear systems with many degrees of freedom such
as turbulent flows, magnetohydrodynamics (Ho, Armua & Berera 2020) and plasma
physics (Cheung & Wong 1987) and is also at the core of the problem of atmospheric
predictability (Lorenz 1963; Leith 1971). It may not be enough, however, to simply
rely on the general concepts of chaos and strange attractors (and bifurcations) if one
wants to understand uncertainty. This paper’s motivation is to understand uncertainty
and its growth in the case of Navier–Stokes turbulence in some physically concrete
terms.

The solutions of the Navier–Stokes equation are velocity and pressure fields which
evolve in time. The uncertainty of a time-dependent velocity field u(1)(x, t) is measured
by its difference from a velocity field u(2)(x, t) with near-identical initial conditions: the
velocity difference between these two fields at time t is �u ≡ u(2) − u(1). Based on this
velocity-difference field, the average uncertainty in the system is measured in terms of its
kinetic energy as 〈EΔ〉 ≡ 〈|�u|2/2〉, where 〈·〉 represents spatial average (over x). In the
presence of a strange attractor, its chaotic nature is expected to lead to exponential growth
of the difference between two fields initially very close together (Deissler 1986; Ruelle
1981), i.e.

d
dt

〈EΔ〉 = 2λ 〈EΔ〉 , (1.1)

where λ is the maximal Lyapunov exponent.
To evaluate the Lyapunov exponent in the case of statistically stationary homogeneous

turbulence, Ruelle (1979) argued that when the two fields u(1) and u(2) differ initially
only at the very smallest scales, then λ−1 should be the Kolmogorov time scale
τη, i.e. λ−1 ∼ τη ≡ (ν/ε)1/2 where ν is the fluid’s kinematic viscosity and ε is the
turbulence dissipation rate. Kolmogorov equilibrium ε ∼ U3/L for statistically stationary
homogeneous turbulence implies λ ∼ τ−1

η ∼ (L/U)−1Re1/2 in terms of the large eddy
turnover time L/U and the Reynolds number Re = UL/ν where U is the root-mean-square
(r.m.s.) turbulence velocity and L the integral length scale. Intermittency corrections have
been considered in the form λ ∼ (L/U)−1Rea where a = 0.459 instead of 0.5 (Crisanti
et al. (1993) derived this correction on the basis of a multi-fractal model). Whilst this
correction agrees with numerical observations from the shell model (Aurell et al. 1997),
neither a = 0.459 nor a = 0.5 agree with observations from direct numerical simulations
(DNS) of Navier–Stokes statistically stationary homogeneous turbulence (Boffetta &
Musacchio 2017; Berera & Ho 2018). In fact, the DNS results of Mohan, Fitzsimmons
& Moser (2017) suggest that λτη increases with Reynolds number, i.e. a > 0.5, suggesting
that time scales smaller than τη may be at play. Understanding the growth of uncertainty
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Uncertainty in three-dimensional Navier–Stokes turbulence

in some physically concrete terms, as stated previously, must also involve shedding some
light on the scalings of the maximal Lyapunov exponent which clearly remains an open
question. In fact, the question may be even more widely open as a superfast uncertainty
growth may have been observed at very early times in some DNS results (Li et al. 2020).
Such superfast growth is not ruled out by the rigorous constraint on the uncertainty
growth derived from the Navier–Stokes equation by Li (2014): 〈EΔ(t)〉/〈EΔ(0)〉 ≤
exp(σ

√
Re

√
t + σ1t) where σ and σ1 are the coefficients depending on the

perturbations.
The difference between the velocity fields u(1) and u(2) may be expected to grow in

a way that develops differences over length scales l larger than the very smallest scales.
When this happens, one may assume (1.1) to remain valid but with a maximal Lyapunov
exponent which reflects the characteristic time at length scale l, i.e. λ−1 ∼ τl ≡ El/ε where
El is the kinetic energy characterising length scale l (Lorenz 1969). It may then be natural
to expect 〈EΔ〉 ∼ El (Aurell et al. 1997) which leads to a linear growth of 〈EΔ〉 from (1.1)
and λ−1 ∼ El/ε. A linear growth has been widely reported in numerical experiments using
the eddy-damped quasi-normal Markovian (EDQNM) closure (Leith & Kraichnan 1972),
shell models (Aurell et al. 1997) and DNS (Boffetta & Musacchio 2017; Berera & Ho
2018).

There have already been some attempts at understanding uncertainty in physically
concrete terms. Boffetta et al. (1997) investigated the growth of uncertainty in
two-dimensional decaying homogeneous turbulence and found that the uncertainty
growth is ruled by the error located in the positions of vortices. Mohan et al.
(2017) found that much or most of the uncertainty is concentrated near vortex tubes
in three-dimensional statistically stationary homogeneous turbulence and considered
the possibility of local instability mechanisms reminiscent of pairing instabilities of
corotating vortices as in mixing layers. Clark et al. (2021, 2022) investigated the
dependence of uncertainty on spatial dimension (between two and eight) in DNS and
in an EDQNM model of statistically stationary homogeneous turbulence. They found
a critical dimension dc ≈ 5.88 which is close to the dimension of maximum enstrophy
production and above which the turbulence uncertainty is no longer ruled by chaoticity.
From these results, Clark et al. (2022) speculated that vortex stretching and strain
self-amplification, which are responsible for enstrophy generation, may also be important
for uncertainty generation. The present paper is an effort in the direction of understanding
uncertainty growth in terms of vortex stretching and compression dynamics and
statistics.

In the following section we derive, from the Navier–Stokes equations, the evolution
equation for the uncertainty energy 〈EΔ〉 in the case of periodic/homogeneous turbulence.
This uncertainty equation involves three different mechanisms: internal production
resulting from interactions between the strain rate and the velocity-difference field,
dissipation of the velocity-difference field and external force input. We use three different
DNS of forced periodic/homogeneous turbulence to study these mechanisms and in § 3 we
present their numerical set-ups. Our DNS results and their analysis are presented in § 4
and we conclude in § 5.

2. Theoretical analysis of the uncertainty

In the first part of this section we derive the evolution equation for the uncertainty energy
〈EΔ〉 and in the second part we discuss the production of uncertainty energy.
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2.1. Evolution equation of uncertainty
The reference field u(1) and the perturbed field u(2) = u(1) + �u are both governed by the
incompressible Navier–Stokes equations

∂

∂t
u(m)

i + u(m)
j

∂

∂xj
u(m)

i = − ∂

∂xi
p(m) + ν

∂2

∂xj∂xj
u(m)

i + f (m)
i ,

∂

∂xi
u(m)

i = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.1)

where p is the pressure-to-density ratio, f = ( f1, f2, f3) is the force per unit mass
field and the number m = 1 or 2 in the superscript parentheses indicates whether the
velocity/pressure field is the reference or the perturbed one. The equation for �u ≡
u(2) − u(1) follows and is

∂

∂t
�ui + u(1)

j
∂

∂xj
�ui + �uj

∂

∂xj
�ui + �uj

∂

∂xj
u(1)

i = − ∂

∂xi
�p + ν

∂2

∂xj∂xj
�ui + �fi,

∂

∂xi
�ui = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.2)

where �p ≡ p(2) − p(1) and � f ≡ f (2) − f (1) are the pressure and forcing differences,
respectively. The divergence-free property of u(m) implies that �u is also divergence-free.
Multiplying both sides of (2.2) with �ui, summing over i = 1, 2, 3 and using
incompressibility we obtain

∂

∂t
EΔ + ∂

∂xj

(
u(1)

j EΔ

)
+ ∂

∂xj

(
�ujEΔ

) + �ui�uj
∂

∂xj
u(1)

i

= − ∂

∂xi
(�ui�p) + ν

∂

∂xj

(
∂EΔ

∂xj

)
− ν

∂�ui

∂xj

∂�ui

∂xj
+ �fi�ui. (2.3)

The second and third terms on the left-hand side of (2.3), as well as the first and second
terms on the right-hand side, are in flux form. In the case of periodic/homogeneous
turbulence, these four terms average to zero when a spatial average is applied to them,
and therefore (2.3) leads to

d
dt

〈EΔ〉 = 〈PΔ〉 − 〈εΔ〉 + 〈FΔ〉 , (2.4)

where

PΔ = −�uiS
(1)
ij �uj, εΔ = ν

∂�ui

∂xj

∂�ui

∂xj
, FΔ = �fi�ui (2.5a–c)

and S(1)
ij = (∂u(1)

i /∂xj + ∂u(1)
j /∂xi)/2 is the reference field’s strain rate tensor.

In periodic/homogeneous turbulence the average uncertainty energy evolves via (i)
dissipation of uncertainty which always reduces uncertainty because the dissipation rate
εΔ is always positive, (ii) external input/output of uncertainty with rate FΔ which depends
on the force-difference field � f and (iii) internal production of uncertainty via the
production rate PΔ. In the absence of external force difference (i.e. � f = 0), uncertainty
can only grow because of internal production in which case 〈PΔ〉 should be positive and
greater than 〈εΔ〉.
977 A17-4
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Uncertainty in three-dimensional Navier–Stokes turbulence

Note that both fields u(1) and u(2) can be taken as the reference field and we
therefore must have 〈PΔ〉 = −〈�uiS

(1)
ij �uj〉 = −〈�uiS

(2)
ij �uj〉 in periodic/homogeneous

turbulence. Indeed, defining �Sij = (∂�ui/∂xj + ∂�uj/∂xi)/2, we have S(2)
ij = S(1)

ij +
�Sij and 〈PΔ〉 = −〈�uiS

(1)
ij �uj〉 = −〈�uiS

(2)
ij �uj〉 − 〈�ui�Sij�uj〉. Given that �u

is divergence-free, we also have �ui�Sij�uj = 1
2 ((∂/∂xj)(�ujEΔ) + (∂/∂xi)(�uiEΔ))

which implies 〈�ui�Sij�uj〉 = 0 for periodic/homogeneous turbulence. Hence, 〈PΔ〉 =
−〈�uiS

(1)
ij �uj〉 = −〈�uiS

(2)
ij �uj〉.

2.2. Production of uncertainty
To consolidate the interpretation of PΔ as internal production rate of uncertainty, we write

EΔ + Ecorr = Etot, (2.6)

where Etot = E(1) + E(2) = (|u(1)|2 + |u(2)|2)/2 and Ecorr = u(1) · u(2). Here 〈Etot〉
represents the average total kinetic energy of the reference and the perturbed velocity
fields. Its rate of change follows from (2.1) and is

d
dt

〈Etot〉 = −
2∑

m=1

〈
ε(m)

〉
+

2∑
m=1

〈
F(m)

〉
, (2.7)

where

ε(m) ≡ ν
∂u(m)

i
∂xj

∂u(m)
i

∂xj
, F(m) ≡ f (m)

i u(m)
i . (2.8a,b)

If the two velocity fields u(1) and u(2) are so perfectly correlated that they are
identical, then Ecorr = Etot and EΔ = 0. If, however, these two velocity fields are totally
uncorrelated, then 〈Ecorr〉 = 0 and 〈EΔ〉 = 〈Etot〉. The average internal production rate of
uncertainty 〈PΔ〉 is an internal transfer rate between 〈Ecorr〉 and 〈EΔ〉, i.e. a transfer rate
from correlation to decorrelation if it is positive and from decorrelation to correlation if it
is negative. Indeed, from (2.6), (2.7) and (2.4), we have

d
dt

〈Ecorr〉 = − 〈PΔ〉 − 〈εcorr〉 + 〈Fcorr〉 , (2.9)

where

εcorr = ν
∂u(1)

i
∂xj

∂u(2)
i

∂xj
, Fcorr = f (1)

i u(2)
i + f (2)

i u(1)
i , (2.10a,b)

so that 〈PΔ〉 appears with opposite signs in (2.4) and in (2.9) and is absent from (2.7).
If the two flows are identical, i.e. u(1) = u(2), then PΔ = εΔ = FΔ = 0, and if they are
totally uncorrelated, then 〈PΔ〉 = 〈εcorr〉 = 〈Fcorr〉 = 0.

According to (2.4), the evolution of the average uncertainty energy depends on
the reference field via its strain rate tensor in the uncertainty production term. The
incompressible Navier–Stokes evolution of the strain rate tensor is given by

∂

∂t
Sij + uk

∂

∂xk
Sij = −SikSkj − 1

4

(
ωiωj − δij |ω|2 ) − Pij + ν

∂2

∂xj∂xj
Sij + Fij, (2.11)

where ω ≡ ∇ × u is the vorticity, δij is the Kronecker delta, Pij ≡ ∂2p/∂xi∂xj is the
pressure Hessian tensor and Fij ≡ (∂fi/∂xj + ∂fj/∂xi)/2. The first and second terms in
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the right-hand side of (2.11) represent strain self-amplification and vortex-stretching,
respectively. They enhance the flow’s strain rate once and where it is non-negligibly
present, whereas the pressure Hessian induces its initial growth where it is negligibly
small but contributes less to its further development (Paul, Papadakis & Vassilicos
2017). Therefore, the internal production of uncertainty can be related to the strain
self-amplification and vortex-stretching as speculated by Clark et al. (2022) in their
conclusion, but also to the pressure Hessian. In (2.11) Fij represents the influence of the
external forcing on the strain rate tensor. If the external forcing and its spatial gradients
are not zero but there is no force difference in the system, i.e. � f = 0 and, therefore,
FΔ = 0, then there is no direct external generation or depletion of uncertainty in (2.4) but
the external forcing does nevertheless influence the strain rate tensor’s evolution because
of Fij in (2.11) and thereby indirectly influences the evolution of the internal production of
uncertainty in (2.4).

The presence of the strain rate tensor in the internal uncertainty production reveals the
critical and opposing roles of compression and stretching motions in the generation and
reduction of uncertainty. Using the principal axes of S(1)

ij (or S(2)
ij ) as a local orthonormal

reference frame, we can write

PΔ = −
(
Λ

(1)
1 �w2

1 + Λ
(1)
2 �w2

2 + Λ
(1)
3 �w2

3

)
, (2.12)

where Λ
(1)
1 , Λ

(1)
2 and Λ

(1)
3 are the eigenvalues of S(1)

ij and �w1, �w2 and �w3 are the
components of the velocity-difference vector projected on the corresponding principal
axes. Incompressibility forces S(1)

ij to be traceless, i.e. Λ
(1)
1 + Λ

(1)
2 + Λ

(1)
3 = 0. Defining

the order of eigenvalues as Λ
(1)
1 ≤ Λ

(1)
2 ≤ Λ

(1)
3 , we must have Λ

(1)
1 < 0 representing local

compression and Λ
(1)
3 > 0 representing local stretching (Ashurst et al. 1987), while the

sign of intermediate eigenvalue is uncertain but has been found to most likely be positive
in DNS of turbulent flows (Ashurst et al. 1987). The important point which can now be
made on the basis of (2.12) is that uncertainty is always produced in the compressive
direction (Λ(1)

1 < 0) and always attenuated in the stretching direction (Λ(1)
3 > 0). In the

absence of external input of uncertainty, the growth of average uncertainty energy can
only occur through compression events, and only if compression overwhelms stretching in
〈PΔ〉 and determines its sign. Spontaneous decorrelation of a flow from its perturbed flow
in the absence of external inputs of uncertainty can only occur through local compressions.

3. Numerical set-ups

To study the growth of average uncertainty energy in periodic/homogeneous turbulence,
we use a fully de-aliased pseudo-spectral code to perform DNS of forced incompressible
Navier–Stokes turbulence in a periodic box of size L3 = (2π)3. Time advancement is
achieved with a second-order Runge–Kutta scheme. The code strategy is detailed by
Vincent & Meneguzzi (1991). In all our simulations, the number of grid points is N3 =
5123 and the spatial resolution 〈kmaxη〉t (see the definition in the caption of table 1) is
between 1.6 and 1.7. The time step is calculated by the Courant–Friedrichs–Lewy (CFL)
condition and the CFL number is 0.4. We first generate a reference field and copy it but
generate randomly the velocity field in the perturbed wavenumber range to create the
perturbed flow at a time which we refer to as t0 = 0, i.e. u(2)(x, t0). In Fourier space,
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Uncertainty in three-dimensional Navier–Stokes turbulence

Case N3 ν 〈〈ε〉〉t 〈U〉t 〈L〉t 〈T0〉t 〈Re〉t 〈Reλ〉t 〈kmaxη〉t

F1 5123 0.0010 0.0981 0.622 1.101 1.771 684.9 151.6 1.70
F2 5123 0.0010 0.0988 0.622 1.102 1.772 685.4 151.2 1.70
F3 5123 0.0015 0.4096 0.643 0.345 0.537 148.2 63.8 1.62

Table 1. Parameters of the reference flows: 〈·〉 represents the spatial average; 〈·〉t represents the temporal
average; 〈〈·〉〉t represents the average in both space and time; N is the resolution of the simulations, ν is the
kinematic viscosity, ε is the dissipation; U ≡ √

2〈E〉/3 is the r.m.s. velocity; L ≡ (3π/4〈E〉) ∫ k−1Ê(k) dk is
the integral length scale; T0 ≡ L/U is the large eddy turnover time; Re ≡ UL/ν is the Reynolds number; Reλ ≡
Ulλ/ν is the Reynolds number defined by the Taylor length scale lλ ≡ √

10〈E〉ν/〈ε〉; kmax is the maximum
resolvable wavenumber; and η ≡ (ν3/〈ε〉)1/4 is the Kolmogorov scale.

û(2)(k, t0) in each wavevector has six components:

û(2)(k, t0) =

⎛⎜⎜⎝
u(2)

x0 (k)eiφx0 (k)

u(2)
y0 (k)eiφy0 (k)

u(2)
z0 (k)eiφz0 (k)

⎞⎟⎟⎠ , (3.1)

which follow three constraints.

(i) Incompressibility:
ık · û(2)(k, t0) = 0. (3.2)

(ii) The initial energy spectra of the reference flow and the perturbed flow are identical:

Ê(1)(k, t0) =
∫

|k|=k

∣∣û(1)(k, t0)
∣∣2

2
d2k =

∫
|k|=k

∣∣û(2)(k, t0)
∣∣2

2
d2k = Ê(2)(k, t0).

(3.3)

(iii) The difference initially only exists in the smallest scales, i.e. |k| ≥ k0 where k0 =
0.9kmax and kmax = N/3 is the maximum resolvable wavenumber after de-aliasing
(see, however, Appendix A for different perturbed wavenumber ranges):

û(2)(k, t0) =
{

û(1)(k, t0), if |k| < k0,

Randomly generated, if |k| ≥ k0.
(3.4)

For the generation of û(2)(k, t0) in the perturbed wavenumber range, these three
constraints a priori couple all the û(2)(k, t0) on the sphere of Fourier space such
that |k| = k. For simplicity of implementation, we use a version of (3.3) restricted
to each k, such that the sum of the resulting û(2)(k, t0) over |k| = k verifies (3.3).
This means that for each wavevector k we compute six random values, three moduli
and three phases [u(2)

x0 (k), u(2)
y0 (k), u(2)

z0 (k), φx0(k), φy0(k), φz0(k)] ∈ [0,
√

2Ê(1)(k, t0)]3 ×
[0, 2π)3 that follow two constraints coming from the real and imaginary part of the
incompressibility condition (3.2) and one constraint from the spectrum (3.3). This means
that only three independent components have to be drawn and the three others will
follow.

(a) In the general case of kx /= 0, ky /= 0 and kz /= 0, two uniform random numbers are
drawn in [0, 1) yielding φx0(k) and φy0(k) after rescaling and one uniform random
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number in [0, 1) yielding u(2)
x0 (k) after rescaling. The moduli u(2)

y0 (k) and u(2)
z0 (k) are

successively computed using (3.3). The sine and the cosine of the phase φz0(k) are
finally computed using the real and imaginary part of the incompressibility condition
(3.2), respectively.

(b) In the case where only one component of the wavevector is equal to zero: the
modulus and the phase in the direction of the zero component of the wavevector
are drawn first uniformly from [0,

√
2Ê(1)(k, t0)] × [0, 2π). The two other moduli

are computed using (3.3), one phase is drawn from [0, 2π) and the other is deduced
from incompressibility.

(c) In the case where two components of the wavevector are equal to zero: the real and
imaginary parts of incompressibility impose that the modulus of the corresponding
component of û(2) is zero, and that the corresponding phase is irrelevant. As a
consequence, out of the four remaining values to be determined, one is constrained
by (3.3). In practice, the two remaining phases are drawn uniformly in [0, 2π)2, one

modulus is drawn uniformly in [0,
√

2Ê(1)(k, t0)] and the other is determined using
(3.3).

In this way, the initial perturbations, defined as �u(x, t0) = u(2)(x, t0) − u(1)(x, t0),
are also incompressible and exist only in the perturbed wavenumber range. Furthermore,
the perturbed flow is generated randomly in its perturbed wavenumber range, hence
the reference flow and the perturbed flow are initially completely decorrelated in this
wavenumber range, which implies

ÊΔ(k, t0) =
∫

|k|=k

∣∣�û(k, t0)
∣∣2

2
d2k =

{
0, if |k| < k0,

Êtot(k, t0), if |k| ≥ k0,
(3.5)

where Êtot(k, t0) = Ê(1)(k, t0) + Ê(2)(k, t0).
Three different cases (F1, F2 and F3) are simulated by applying different external

forcings and initial conditions. In the first case, labelled F1, a negative damping forcing
is applied to both the reference and the perturbed turbulent fields and the force-difference
field does not vanish. The forcing function is divergence-free as it depends on the low
wavenumber modes of the velocity in Fourier space as follows:

f̂ (m) (k, t) =

⎧⎪⎨⎪⎩
ε0

2E(m)
f

û(m) (k, t) , if 0 < |k| ≤ kf ,

0, otherwise,
(3.6)

where f̂ and û are the Fourier transforms of f and u, respectively, ε0 is the preset
average turbulence dissipation rate and Ef is the kinetic energy contained in the forcing
bandwidth 0 < |k| ≤ kf . This forcing has been widely used to simulate statistically steady
homogeneous isotropic turbulence (HIT) on the computer (Boffetta & Musacchio 2017;
Mohan et al. 2017; Berera & Ho 2018; Ho et al. 2020; Clark et al. 2021, 2022). It offers
the advantage of setting the average turbulence dissipation a priori for statistically steady
turbulence. In the present work, we set ε0 = 0.1 and kf = 2.5.

To generate the reference flow we use a von Kármán initial energy spectrum with the
same coefficients as Yoffe (2012) and random initial Fourier phases. We integrate the
reference flow until it reaches a statistically steady state and then seed it with perturbations
to create the perturbed flow at a time which we refer to as t0 = 0. One can see from
(3.6) that the external forcings are determined separately by the two fields and, therefore,
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Uncertainty in three-dimensional Navier–Stokes turbulence

� f /= 0. F1 is the only one of our three cases where FΔ is not identically zero and some
uncertainty is introduced by the forcing in (2.4).

The case F2 is identical to F1 except for the external forcing which is such that FΔ = 0.
The forcing in the perturbed field is determined by the velocity in the reference field as

f̂ (2) (k, t) = f̂ (1) (k, t) =

⎧⎪⎨⎪⎩
ε0

2E(1)
f

û(1) (k, t) , if 0 < |k| ≤ kf ,

0, otherwise,
(3.7)

where ε0 = 0.1 and kf = 2.5. Therefore, there is no forcing difference between the two
fields and all the uncertainty in (2.4) is generated exclusively by the internal production.

The case F3 differs in one essential way from F1 and F2: rather than force the turbulence
into a stationary steady state and then introduce the uncertainty after stationarity has set
in (as in F1 and F2), in F3 we introduce the uncertainty well before stationarity has set
in, i.e. at the very initial time when the initial velocity field has very little energy and
the simulation starts running with a forcing which eventually brings the turbulence into an
energetic stationary state. We chose a forcing for F3 that is independent of the velocity field
to ensure steady buildup of the turbulence during a long yet finite time. The initial velocity
fields are randomly generated with the same energy spectrum Ê(k) = 0.3 × 10−4k−1

for the reference and the perturbed fields and the initial perturbations are seeded in the
high-wavenumber Fourier phases in the exact same way as in F1 and F2. Both flows are
forced by an identical single-mode divergence-free force

f (2) (x, t) = f (1) (x, t) =
⎛⎝cos (k0y) sin (k0z)

cos (k0z) sin (k0x)
cos (k0x) sin (k0y)

⎞⎠ , (3.8)

where k0 = 4. This forcing differs from F1 but is similar to F2 in that FΔ identically
vanishes and there is no uncertainty input from the forcing in (2.4). We repeat, however,
that the main distinguishing feature of F3 compared with F1 and F2 is that, in F3,
the reference and the perturbed fields are statistically non-stationary during their initial
growth (driven by the forcing) and the concurrent initial growth of uncertainty. This
non-stationarity affects (2.4) through the resulting non-stationarity of the strain rate field
in the internal production rate.

In summary, F1 is the case that is widely used in previous works (Boffetta & Musacchio
2017; Mohan et al. 2017; Berera & Ho 2018; Ho et al. 2020; Clark et al. 2021, 2022) and
F2 differs from it only in terms of � f which is zero in F2 and non-zero in F1. In both
F1 and F2 the perturbation is made to a fully developed statistically stationary turbulence
whereas in F3 we follow the evolution of two velocity fields which are initially very weak
in terms of energy and very close to each other, i.e. very highly correlated. Both flows are
progressively intensified by the same spatially sinusoidal time-independent forcing field
and evolve towards statistical stationary fully developed turbulence while, at the same
time, diverging from each other.

The main parameters characterising the reference flows are given in table 1 where 〈·〉
represents the spatial average, 〈·〉t represents the temporal average and 〈〈·〉〉t represents the
average in both space and time. For F1 and F2, this time average is over all time t ≥ 0
when the reference and perturbed fields are statistically stationary in the simulations. For
F3, the time average is over the time when the reference flow’s turbulent kinetic energy
and dissipation rate are statistically stationary, i.e. the standard deviations of 〈E(1)〉(t)
and 〈ε(1)〉(t) are smaller than 8 % of 〈〈E(1)〉〉t and 〈〈ε(1)〉〉t, respectively. This leads to
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τ ≡ t/〈T(1)
0 〉t ∈ [9.4, 30.0]. (Note that the dimensionless time τ ≡ t/〈T(1)

0 〉t is defined for
all three cases F1, F2 and F3.)

4. DNS results

In this section we present our DNS results concerning (2.4), starting in § 4.1 with the time
evolution of 〈EΔ〉 during the decorrelation process and an analysis of the three mechanisms
at play and of the uncertainty’s energy spectrum. In § 4.2 we relate the growth rate of 〈EΔ〉
to detailed properties of the production and dissipation of uncertainty, of the strain rate
eigenvalues and of the distribution of uncertainty energy in the three principal axes of the
strain rate tensor. In particular, we derive the chaotic exponential growth of 〈EΔ〉 from
similarity behaviours of these quantities. In § 4.3 we go beyond the average production of
uncertainty and report probability density functions (p.d.f.s) of PΔ.

4.1. Time evolution of uncertainty

4.1.1. Uncertainty energy
Figure 1 shows the time evolutions of 〈EΔ〉 for each case F1, F2 and F3. The very first
thing that happens immediately after the perturbations are seeded is a decrease of 〈EΔ〉 in
all three cases. This initial correlating action is caused by the concentration of the initial
perturbations at the highest wavenumbers where dissipation is high. The insets of figure 2
show that 〈εΔ〉 is orders of magnitude higher than 〈PΔ〉 at the earliest times in all three
cases. As time proceeds, the uncertainty’s dissipation rate decreases and its production
rate increases until production overtakes dissipation (see figure 2) and 〈EΔ〉 begins to
grow. This initial growth is shown in the insets of figure 1 and it differs for F1 and F2 on
the one hand and F3 on the other. For F1 and F2, 〈EΔ〉 is observed to grow exponentially
in the approximate time range τ ∈ [0.2, 2.9]. Previous DNS studies have already observed
such exponential growth (Boffetta & Musacchio 2017; Berera & Ho 2018). For F3, the
initial growth is from τ ≈ 2.5 to τ ≈ 12.6 and is subdivided in two parts. In the time
range τ ∈ [2.5, 7.5], the turbulence and its strain rate are not statistically stationary and
the time evolution of 〈EΔ〉 is not exponential. Indeed, the plot of the logarithm of 〈EΔ〉 vs
time in the inset of figure 1(c) has a positive curvature in that time range. An exponential
growth of 〈EΔ〉 appears to set in at τ ≈ 7.5 and lasts until about τ ≈ 12.6. It is noteworthy
that an exponential growth of uncertainty also exists in F3 and that it starts a little earlier
than when stationarity sets in. (The exponential regime’s time range is longer for F3 than
for F1 and F2 mainly because of F3’s lower Reynolds number as argued in Appendix B).
The results and analysis in the remainder of this paper confirm these interpretations.

The growths of 〈EΔ〉 are identical in F1 and F2 (see figure 1d) until the time when
〈FΔ〉 becomes significantly non-zero in F1 (see figure 2a). The regime of exponential
growth is followed by what appears to be an exponential of exponential regime from
τ ≈ 2.9 to τ ≈ 6.5. This exponential of exponential growth is the same in F1 and F2
and is highlighted by the fit in the inset of figure 1(d). A similar growth range has been
observed in previous DNS that are similar to F1 and go up to even higher Reynolds
numbers (Boffetta & Musacchio 2017; Berera & Ho 2018). This exponential of exponential
growth is confirmed by our analysis and further DNS results in § 4.2.

After time τ = 6.5, the uncertainty growths for F1 and F2 deviate from each other as
shown in figure 1(d) (|〈EΔ〉F1 − 〈EΔ〉F2|/〈EΔ〉F1 > 5 % and growing as τ grows above
6.5) because 〈FΔ〉 starts growing significantly above zero (〈FΔ〉/〈εΔ〉 = 0.06 at τ = 6.5)
in F1 whereas it is identically zero in F2 for all time (see figure 2). The reference and
perturbed fields achieve significant decorrelation after the exponential growth of 〈EΔ〉
977 A17-10
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Figure 1. Time evolutions of average uncertainty energy for different cases: (a) case F1; (b) case F2; (c) case
F3; (d) comparison F1–F2. Inset: the initial time evolution of average uncertainty energy in semilogarithmic
plot. The uncertainty evolutions of F1 and F2 are presented together in (d). Inset: the uncertainty evolutions
during τ ∈ [2.9, 6.5]. The exponential of exponential function fit is indicated by a solid black line.

for both F1 and F2, resulting, in case F1, in non-zero values of 〈FΔ〉 which eventually
grow significantly above the reference field’s turbulence dissipation rate, but only after
τ = 6.5. The additional external decorrelating action of the forcing leads to eventually
fully decorrelated reference and perturbed fields in case F1 as the ratio 〈EΔ〉/〈Etot〉 stops
growing and saturates at 0.97 ± 0.07 after τ = 10.6. In case F2 the identical forcing
in both fields acts as a perpetual partially correlating (rather than decorrelating) action
of the two fields and to a resulting eventual saturation of 〈EΔ〉/〈Etot〉 at 0.59 ± 0.05
for τ ≥ 8.9. In Appendix A we provide evidence showing that the early and mid-time
evolutions (i.e. the exponential regime and the exponential of exponential regime) of the
average uncertainty energy are not very sensitive to the form and amplitude of the initial
perturbations.

For case F3, the growth of 〈EΔ〉 following the exponential regime ending at about τ ≈
12.6 can be seen in figure 1(c) and cannot be fitted by the exponential of exponential
function detected in cases F1 and F2 nor any clear linear or power-law growth functions.
As in F2, the correlating action of the identical external forcing in both the reference and
perturbed fields leads to them remaining partially correlated at all times and to an eventual
saturation of 〈EΔ〉/〈Etot〉 at 0.66 ± 0.01 for τ ≥ 25.3.

We close this subsection by pointing out that the only case of linear growth that we
may have detected in our DNS is for F1 in the time range τ ∈ [6.5, 10.6]. A linear growth
regime has been predicted by Aurell et al. (1997), however our simulations suggest that it
may depend on the type of forcing. Furthermore, the Reynolds number of our DNS may
not be high enough to observe it clearly and the very level of Reynolds number required
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Figure 2. Time evolutions of each term in (2.4) for different cases, where εtot = ε(1) + ε(2) is the total
dissipation of the reference and perturbed fields: (a) case F1; (b) case F2; (c) case F3. Inset: the initial time
evolution of the internal production, dissipation and external input/output in semilogarithmic plot.

may itself depend on the external forcing. We examine this issue again in the following
subsections. The time ranges of the different uncertainty growth regimes in each case F1,
F2 and F3 are summarised in table 2.

4.1.2. Mechanisms of the uncertainty evolution
The time evolutions of each term in (2.4), including the growth rate d〈EΔ〉/dt obtained
directly from the DNS, are shown in figure 2. As can be seen in the figure, we started by
checking that d〈EΔ〉/dt agrees well with its value obtained from (2.4). In all cases F1, F2
and F3, 〈PΔ〉 > 〈εΔ〉 when d〈EΔ〉/dt > 0. In cases F2 and F3 where 〈FΔ〉 = 0 at all times,
the eventual saturation when d〈EΔ〉/dt ≈ 0 is characterised by the balance 〈PΔ〉 ≈ 〈εΔ〉.
This balance reflects the long-time partial correlation between the reference and perturbed
fields and the long-time saturation of 〈EΔ〉/〈Etot〉 at a value smaller than 1 reported in the
previous subsection.

We also observe in figure 2 for all cases F1, F2 and F3 that the long-time saturation
is such that 〈εΔ〉 ≈ 〈εtot〉 ≡ 〈ε(1) + ε(2)〉 which implies 〈εcorr〉 ≈ 0. In cases F2 and
F3, this means that the long-time saturated non-zero steady state of 〈PΔ〉 is such that
〈PΔ〉 ≈ 〈ε(1) + ε(2)〉 ≈ 〈F(1) + F(2)〉 (recall 〈FΔ〉 = 0 and 〈Fcorr〉 = 0 in F2 and F3): the
correlating action by the identical forcing in both statistically stationary reference and
perturbed fields is directly balanced by the decorrelating action of the internal production
of uncertainty.
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Uncertainty in three-dimensional Navier–Stokes turbulence

Case Uncertainty regime Time interval τ

F1

Initial decrease [0, 0.2]
Exponential growth [0.2, 2.9]

Exponential of exponential growth [2.9, 6.5]
Linear growth [6.5, 10.6]

Saturation [10.6, +∞]

F2

Initial decrease [0, 0.2]
Exponential growth [0.2, 2.9]

Exponential of exponential growth [2.9, 6.5]
Transient growth [6.5, 8.9]

Saturation [8.9, +∞]

F3

Initial decrease [0, 2.5]
Unsteady initial growth [2.5, 7.5]

Exponential growth [7.5, 12.6]
Nonlinear growth [12.6, 25.3]

Saturation [25.3, +∞]

Table 2. Time ranges of different uncertainty growth regimes.

The uncertainty dissipation rate 〈εΔ〉 reaches its long-time asymptotic balance with
〈εtot〉, i.e. 〈εΔ〉/〈εtot〉 > 0.95, at about τ = 16.1 for F3 and at about τ = 5.6 for both F1
and F2. This is slightly before but close to the time τ = 6.5 when 〈FΔ〉/〈εΔ〉 = 0.06 stops
being negligible in F1 and the perturbation evolutions start diverging between F1 and F2.
The presence of positive 〈FΔ〉 in F1 delays the decay towards 0 of d〈EΔ〉/dt which is
reached at about τ = 10.6 for F1 but τ = 8.9 for F2. In the case of F1 one might even
argue that an approximate steady state has resulted for d〈EΔ〉/dt between τ = 6.5 and
τ = 10.6, the time range corresponding to the linear growth regime perhaps observed in
figure 1(a) for F1 and also in some previous DNS (Boffetta & Musacchio 2017; Berera
& Ho 2018). After τ = 10.6, 〈PΔ〉 oscillates around zero, corresponding to the saturation
of 〈EΔ〉/〈Etot〉 at a value 0.97 ± 0.07 in figure 1(a). This reflects the total decorrelation
between the F1 reference and perturbed fields and leads to a long-time saturation balance
〈FΔ〉 ≈ 〈εΔ〉 in F1 which is to be contrasted with 〈PΔ〉 ≈ 〈εΔ〉 in F2 and F3. Note that
the long-time saturation is such that 〈Fcorr〉 ≈ 0 and 〈FΔ〉 ≈ 〈F(1) + F(2)〉 in all cases,
including F1. Hence, the long-time saturation balance between 〈FΔ〉 and 〈εΔ〉 in case F1
simply reflects 〈εtot〉 ≈ 〈F(1) + F(2)〉.

In figure 3 we concentrate on the time evolution of the production–dissipation ratio
〈PΔ〉/〈εΔ〉 in all three cases F1, F2 and F3. As highlighted in the insets of this figure’s
plots, there is, in all three cases, a time range when 〈PΔ〉/〈εΔ〉 is about constant, i.e. a
time range when the evolutions of 〈PΔ〉 and 〈εΔ〉 are similar. In all three cases this time
range includes the time range of exponential growth of 〈EΔ〉 identified in the previous
subsection; in fact, in case F3 it more or less exactly coincides with it. To be specific,
〈PΔ〉/〈εΔ〉 = 1.61 ± 0.03 from τ = 0.6 to τ = 2.5 for F1 and F2, and 〈PΔ〉/〈εΔ〉 =
1.61 ± 0.08 from τ = 7.2 to τ = 12.8 for F3. These two values are very close (and the
additional case F4 in Appendix B returns a similar value for 〈PΔ〉/〈εΔ〉 in F4’s similarity
regime), indicating that the similarity value of the production–dissipation ratio 〈PΔ〉/〈εΔ〉
might be universal and independent of Reynolds number, as the presence of a strange
attractor might perhaps imply.
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Figure 3. Time evolutions of ratio 〈PΔ〉/〈εΔ〉 for different cases: (a) case F1; (b) case F2; (c) case F3. Inset:
the evolution of the ratio in the time range of the exponential growth of the average uncertainty.

4.1.3. Uncertainty spectrum
The uncertainty dissipation rate is the integral over all wavenumbers k of k2ÊΔ(k)
where ÊΔ(k) is the uncertainty spectrum, i.e. the energy spectrum of the velocity
difference field. The similarity in the evolutions of uncertainty production and dissipation
rates raises the question whether the uncertainty spectrum evolves in some self-similar
manner over the time range of that similarity. We answer this question in terms of the
integral length scale of the velocity-difference fields considered here which is LΔ =
(3π/4〈EΔ〉) ∫ k−1ÊΔ(k) dk (see Batchelor (1953) for an introduction to this length scale
for any statistically homogeneous/periodic velocity field). Here LΔ is a measure of the
length over which the velocity difference field is correlated, i.e. a characteristic length
scale of uncertainty containing eddies.

Soon after the initial decay of 〈EΔ〉, the uncertainty spectra collapse with 〈EΔ〉(t)
and LΔ(t) at wavenumbers larger than 2/LΔ as shown in figure 4, i.e. ÊΔ(k, t) =
〈EΔ〉LΔ f (kLΔ) for kLΔ ≥ 2, where f is a dimensionless function of dimensionless
wavenumber. At wavenumbers kLΔ < 1 the energy spectra have an approximately
power-law dependence on k but do not collapse until soon after the time when the
exponential growth of 〈EΔ〉(t) and the uncertainty’s production–dissipation similarity
(〈PΔ〉/〈εΔ〉 ≈ 1.6 − 1.7) sets in. Over the time range when 〈PΔ〉/〈εΔ〉 ≈ 1.6 − 1.7, the
uncertainty spectrum is self-similar, i.e. evolves as ÊΔ(k, t) = 〈EΔ〉LΔ f (kLΔ) for all
wavenumbers (see figure 5). The peak of the spectrum is at k ≈ 2/LΔ in all three
cases F1, F2 and F3. At wavenumbers below 2/LΔ the uncertainty spectra have an
approximately k3.3 power law shape, while at wavenumbers above 2/LΔ, they appear to
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Figure 4. Early time evolution of uncertainty energy spectrum for different cases: (a) case F1; (b) case F2;
(c) case F3. The spectra are normalised by 〈EΔ〉 and LΔ.

have an exponential shape. Similar uncertainty spectrum shapes have been found in a
previous DNS study (Berera & Ho 2018).

It is remarkable that the uncertainty spectrum is self-similar in case F3 in the exact
same way that it is self-similar in cases F1 and F2 over the time range where 〈PΔ〉/〈εΔ〉 is
approximately constant. In fact, the self-similar uncertainty spectrum even seems to be the
same for F3, F1 and F2 as seen by the collapse in figure 5(d), suggesting a universal shape
for the self-similar uncertainty spectrum in HIT. This is remarkable not only because F3
has a very different Reynolds number and forcing than F1 and F2, but more importantly
because the F3 reference field is not statistically stationary in that time range whereas
the F1 and F2 reference fields are. In the F3 case, the uncertainty spectrum reaches its
self-similar state at τ ≈ 5.8 and the reference field becomes statistically stationary at τ =
9.4.

After the time range where 〈PΔ〉/〈εΔ〉 is approximately constant, the uncertainty
spectrum is no longer self-similar (see figure 6). This happens at τ = 3.5 for cases
F1 and F2 and at τ = 12.6 for case F3 when ÊΔ(kmax)/Êtot(kmax) > 0.95. These are
the times when the reference and perturbed fields decorrelate at the largest resolvable
wavenumber (see figure 6). The process of decorrelation between the two fields proceeds
by decorrelating them at progressively smaller wavenumbers, causing the uncertainty
spectrum to collapse with the reference field’s energy spectrum over a progressively wider
range of the higher wavenumbers (see figure 6). This progressive decorrelation process
from high to small wavenumbers and the uncertainty spectrum’s progressive convergence
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Figure 5. Uncertainty energy spectra for cases (a) F1, (b) F2 and (c) F3 in the similarity regime. The spectra
are normalised by 〈EΔ〉 and LΔ. Inset: semilogarithmic plot of the uncertainty spectra in the wavenumber range
higher than 2/LΔ. The collapse of the normalised uncertainty spectra for cases F1, F2 and F3 in the similarity
regime is shown in (d).

towards the reference field’s spectrum prevents the uncertainty spectrum from being
self-similar. For F1, the uncertainty spectrum finally collapses with the reference field’s
energy spectrum at all wavenumbers, indicating that the two fields eventually decorrelate
completely at all wavenumbers (see figure 6a). The same happens for F2 and F3 except
over the wavenumbers acted by the forcing where a gap always remains between the
uncertainty and the reference field spectra, indicating that the two fields retain a degree
of correlation at these large scales (see figures 6b and 6c).

4.1.4. Characteristic length of uncertainty
The growth of LΔ is evident in figure 6. We therefore plot its time evolution in figure 7
and compare it with the integral and Taylor length scales (L and lλ, respectively) of the
reference field for each case F1, F2 and F3. At the very early times when uncertainty
dissipation dominates, the velocity-difference field decays and its integral length scale
normalised by L is, correspondingly, increasing. In the stationary turbulence F1 and F2
cases, this time regime is followed by the chaotic regime where 〈EΔ〉 grows exponentially
and where LΔ/l(1)

λ remains relatively constant at 0.38 ± 0.01. A constant LΔ/l(1)
λ (though

a different constant, LΔ/l(1)
λ = 0.64 ± 0.03) is also observed in the non-stationary F3 case

during the chaotic regime even though l(1)
λ grows in time for some of that regime and

even though this time regime does not follow immediately after the dissipation-dominated
regime. In fact, LΔ decreases between the dissipation-dominated and the chaotic regime
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Figure 6. Uncertainty spectra (dashed lines) for different cases after the times when the reference and
perturbed fields decorrelate at the largest resolvable wavenumber: (a) case F1; (b) case F2; (c) case F3. The
uncertainty spectra are normalised by 〈Etot〉. The dots on the uncertainty spectra represent k = 2/LΔ. The solid
line represents the energy spectrum of the reference field when it is statistically steady. The energy spectrum
is normalised by 〈E(1)〉. The uncertainty spectrum shifts gradually along with the arrows representing the
direction of time advance.

in the F3 case. It is noteworthy that LΔ reaches l(1)
λ at τ = 4.9 for cases F1 and F2 and

at τ = 14.5 for case F3, a little before the average uncertainty dissipation rate reaches
its stationary value in figure 2, i.e. τ ≈ 5.6 for F1 and F2 and τ ≈ 16.1 for F3. The link
between LΔ and the Taylor length of the reference field is potentially interesting as the
Taylor length is the mean distance between stagnation points in a HIT (Goto & Vassilicos
2009) and therefore tends to represent the average size of turbulent eddies which is highly
weighted towards the more numerous smallest ones.

Following the exponential growth of 〈EΔ〉, three consecutive time regimes follow for
F1 and F2. First, one observes an approximately power-law growth of LΔ, identical for
both F1 and F2 as shown in figure 7(d), more or less coinciding with the exponential of
exponential growth of 〈EΔ〉 until τ = 6.5. In this time regime, LΔ ∼ t3/2 is a good fit. This
fit is reminiscent of the power-law growth of the predictability scale k−1

E ∼ t3/2 obtained
in previous numerical simulations (Leith & Kraichnan 1972; Boffetta & Musacchio 2017)
and theoretical arguments (Lorenz 1969; Frisch 1995; Boffetta & Musacchio 2017), as
a companion conclusion to the linear growth of 〈EΔ〉. However, LΔ and k−1

E are not
equivalent: the predictability scale is defined as the inverse of the minimum wavenumber
kE such that ÊΔ(kE)/Êtot(kE) = 1, and k−1

E ∼ t3/2 is obtained on the assumption that the
decorrelation process happens in the inertial range. Here LΔ ∼ t3/2 is observed without
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Figure 7. Time evolution of LΔ/l(1)
λ for different cases: (a) case F1; (b) case F2; (c) case F3. Inset: time

evolution of LΔ/L(1). The time evolutions of LΔ/l(1)
λ in cases F1 and F2 are plotted together in (d).

concurrent linear growth of 〈EΔ〉 but a concurrent exponential of exponential 〈EΔ〉 growth
instead.

The second consecutive regime which follows for F1 and F2 is an apparently linear
growth of LΔ that lasts until the time when LΔ saturates to a constant. The third and final
regime is this approximately constant LΔ regime where LΔ ≈ L(1) for F1 (see figure 7a) in
agreement with the eventual complete decorrelation of the reference and perturbed fields
and where LΔ ≈ (0.70 ± 0.06)L(1) (smaller than L(1)) for F2 (see figure 7b) in agreement
with the eventual partial correlation between these two fields in this case.

In the F3 case, the chaotic regime where 〈EΔ〉 grows exponentially and LΔ/l(1)
λ =

0.64 ± 0.03 is followed by an intermediate regime where LΔ grows to eventually reach
the final constant regime where LΔ = (0.81 ± 0.03)L(1) (smaller than L(1)) characterising
the final saturation (see figure 7c). As for F2, the fact that LΔ is significantly lower than L
in the eventual saturation regime reflects the partial long-time correlation imposed by the
identical forcing in the reference and perturbed fields.

4.2. Quantitative analysis of the uncertainty growth

4.2.1. From similarity to exponential growth
When 〈FΔ〉 is identically zero (as in F2 and F3) or negligibly small compared with 〈PΔ〉
and 〈εΔ〉 (as in F1 for τ smaller than about 6.5) the evolution equation for 〈EΔ〉 becomes

d
dt

〈EΔ〉 = 〈PΔ〉 − 〈εΔ〉 . (4.1)
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Figure 8. Time evolution of 〈PΔ〉 and its decomposition into average and fluctuation parts for different cases:
(a) case F1; (b) case F2; (c) case F3. Inset: the early time evolution of the ratio of average term/total production
and fluctuation term/total production.

To estimate 〈PΔ〉 in terms of 〈EΔ〉 and obtain an equation of the same form as (1.1), we
apply a Reynolds decomposition to (2.12) and write

〈PΔ〉 = −
3∑

i=1

〈
Λ

(1)
i �w2

i

〉
= −

3∑
i=1

〈
Λ

(1)
i

〉 〈
�w2

i

〉
︸ ︷︷ ︸

〈PΔ〉Ave

−
3∑

i=1

〈
Λ

(1)′
i �w2

i
′〉

︸ ︷︷ ︸
〈PΔ〉Fluc

, (4.2)

where Λ
(1)′
i ≡ Λ

(1)
i − 〈Λ(1)

i 〉 and �w2
i
′ ≡ �w2

i − 〈�w2
i 〉. In all cases F1, F2 and F3, and

at times after the similarity regime, the first term on the right-hand side of (4.2) dominates
over the second term and contributes the most to 〈PΔ〉 (see figure 8). During the part of
the similarity regime when 〈EΔ〉 grows exponentially, β ≡ 〈PΔ〉Ave/〈PΔ〉 is constant in
time and so is 1 − β = 〈PΔ〉Fluc/〈PΔ〉 (see the insets of figure 8): β is a constant equal
to 0.53 ± 0.02 for F1 and F2 and equal to a slightly different value 0.66 ± 0.02 for F3
where the Taylor length-based Reynolds number is significantly lower than for F1 and F2.
One may indeed expect the fluctuation contribution 〈PΔ〉Fluc to increase in magnitude with
increasing Reynolds number relative to the mean contribution 〈PΔ〉Ave in (4.2), and β to
therefore be a decreasing function of Reynolds number.
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Figure 9. Time evolution of 〈γi〉 in the reference flows for different cases: (a) case F1; (b) case F2;
(c) case F3.

Defining γ
(1)
i ≡ Λ

(1)
i /

√
〈|S(1)

ij |2〉 (where |Sij| ≡ √
SijSij) and θi ≡ �w2

i /2〈EΔ〉, and
using β ≡ 〈PΔ〉Ave/〈PΔ〉, we have

〈PΔ〉 = −2

3∑
i=1

〈
γ

(1)
i

〉
〈θi〉

β

√〈∣∣∣S(1)
ij

∣∣∣2〉 〈EΔ〉 . (4.3)

We now examine the behaviours of 〈γ (1)
i 〉 and 〈θi〉.

We start with 〈γ (1)
i 〉 which, unlike β and 〈θi〉, are properties of the reference field and not

of the velocity-difference field: 〈γ (1)
i 〉 are the average strain rates along the principal axes

of the reference field’s strain rate tensor and they are plotted vs time in figure 9. Note the
constraints

∑3
i=1〈γ (1)

i 〉 = 0 and
∑3

i=1〈γ (1)2
i 〉 = 1. In cases F1 and F2, where the reference

flow is statistically stationary, 〈γ (1)
i 〉 are constant in time and 〈γ (1)

1 〉 : 〈γ (1)
2 〉 : 〈γ (1)

3 〉 ≈
−0.65 : 0.12 : 0.53 in agreement with Betchov (1956)’s theoretical demonstration that
there must be one principal axis direction which is compressive on average and two which
are on average stretching. In case F3, the reference flow is not statistically stationary
until about τ = 9.4 but 〈γ (1)

i 〉 acquire a stable value before that and are already constant
during the similarity period τ ≈ 5.8 to τ ≈ 12.60 (see figure 9c). In case F3, we observe
〈γ (1)

1 〉 : 〈γ (1)
2 〉 : 〈γ (1)

3 〉 ≈ −0.68 : 0.13 : 0.55, which is very close to F1 and F2, also in
agreement with the prediction of Betchov (1956).

977 A17-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

96
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.967


Uncertainty in three-dimensional Navier–Stokes turbulence

0.8
(a)

(c)

(b)

〈θ1〉 〈θ2〉 〈θ3〉
0.7 0.6

0.4

0.2

0.6

0.4

0.2

0.6

0.4

0.2

6 8 10 12

0 2 4 0 1 2 3 4

0.6

0.5

0.4

0.3

0.2

0.1
0 2 4 6 8

τ
10 12 14 16 0 2 4 6 8

τ
10 12 14 16

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
0 5 10 15

τ
20 25 30

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 10. Time evolution of 〈θi〉 for different cases: (a) case F1; (b) case F2; (c) case F3. Inset: the time
evolution of 〈θi〉 during the similarity regime.

The average uncertainty energy 〈EΔ〉 consists of three average uncertainty
energies 〈�w2

i /2〉 in the principal axes of the reference field’s strain rate tensor:
〈EΔ〉 = ∑3

i=1〈�w2
i /2〉. The ratios 〈θi〉 represent the proportion of average uncertainty

energy in each principal direction and they of course sum up to 1. Their time evolution
is shown in figure 10. Most of the uncertainty energy is concentrated in the compressive
direction until τ ≈ 8 − 9 in cases F1 and F2 and for all time in case F3, in agreement with
our observation at the end of § 2.2 that the production of uncertainty occurs by compressive
motions. At saturation times there is a tendency for equipartition of average uncertainty
energy in the three principal directions, in particular for F1 where the reference and
principal fields completely decorrelate in the long term. The tendency remains for F2 and
F3 but the average uncertainty energy in the most stretching direction remains significantly
below the average uncertainty energy in the other two directions thereby ensuring that
〈PΔ〉 remains positive and the reference and perturbation fields remain partially correlated
during eventual saturation.

In all three cases F1, F2 and F3, 〈θi〉 are approximately constant during the similarity
regime where β is also constant in time. During the similarity regime, the 〈θi〉 values are
〈θ1〉 : 〈θ2〉 : 〈θ3〉 ≈ 0.58 : 0.19 : 0.23 for cases F1 and F2 and 〈θ1〉 : 〈θ2〉 : 〈θ3〉 ≈ 0.59 :
0.18 : 0.23 for case F3. The values of 〈θi〉 appear to be universal during the similarity
regime whereas β seems to be dependent on Reynolds number.
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Figure 11. Time evolution of 1/Reλ in case F3.

Finally, we discuss the relation between 〈εΔ〉 and 〈PΔ〉. The self-similar uncertainty
spectrum ÊΔ(k, t) = 〈EΔ〉LΔ f (kLΔ) implies that the uncertainty dissipation is

〈εΔ〉 = 2ν

∫
k2ÊΔ(k) dk = 2ν 〈EΔ〉 LΔ

∫
k2f (kLΔ) dk = 2ν

〈EΔ〉
L2

Δ

∫
x2f (x) dx, (4.4)

where
∫

x2f (x) dx is a time constant. Defining α ≡ 〈εΔ〉/〈PΔ〉, we obtain, from (4.3) and
(4.4)

α = −

⎡⎢⎢⎢⎢⎢⎣
β
∫ ∞

0 x2f (x) dx
3∑

i=1

〈
γ

(1)
i

〉
〈θi〉

⎤⎥⎥⎥⎥⎥⎦
ν

L2
Δ

√〈∣∣∣S(1)
ij

∣∣∣2〉 . (4.5)

As shown previously in this subsection, the term in square brackets in (4.5) is constant in
time. Figure 7(a) suggests that LΔ and l(1)

λ have the same dependence on time but not the

same dependence on viscosity. Therefore, the time dependence of (L2
Δ

√
〈|S(1)

ij |2〉) is the

same as the time dependence of ((η(1))2(τ
(1)
η )−1Re(1)

λ ) ∼ Re(1)
λ . For cases F1 and F2, the

reference field, and therefore Re(1)
λ , are statistically steady and it therefore follows from

(4.5) that α is constant in time during the similarity regime. For the same reason, α is
constant in time after τ = 9.4 in the similarity regime of case F3 because this is when the
reference flow reaches the statistically steady state. During τ ∈ [7.5, 9.4] for F3, 1/Re(1)

λ
decreases monotonically from 0.0187 to 0.0156 as shown in figure 11. This 20 % decrease
is small compared with the variations of 1/Re(1)

λ at normalised times τ smaller than 7.5
and results in a small decrease of α in the corresponding time period (i.e. a slow increase
of 1/α, as shown in figure 3). Therefore, α can be considered to be approximately constant
in the similarity period τ ∈ [7.5, 12.5] of F3.

We have seen at the end of § 4.1.2 and figure 3 that α = 〈PΔ〉/〈εΔ〉 seems to be
independent of viscosity but we also noted two paragraphs above that β is not. The

dependencies on viscosity of βν and (L2
Δ

√
〈|S(1)

ij |2〉) in (4.5) must therefore be the same
and cancel each other.
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Substituting (4.3) and (4.5) into (4.1), we obtain

d
dt

〈EΔ〉 = Γ

√〈∣∣∣S(1)
ij

∣∣∣2〉 〈EΔ〉 , (4.6)

where

Γ = −2
1 − α

β

3∑
i=1

〈
γ

(1)
i

〉
〈θi〉 . (4.7)

This is a general rewriting of (4.1) with particularly interesting consequences for the
similarity regime when α, β, 〈γ (1)

i 〉 and 〈θi〉 are constant in time. The dimensionless
coefficient Γ defined by (4.7) is therefore constant in time during the similarity regime
but may depend on Reynolds number (i.e. viscosity) via the dependence of β on Reynolds
number.

Looking at (4.6), an exponential growth of 〈EΔ〉 with a well-defined Lyapunov exponent
λ can be derived during the similarity regime because Γ is constant in time:

2λ = Γ

√〈∣∣∣S(1)
ij

∣∣∣2〉 = 1√
2
Γ τ−1

η . (4.8)

The exponential growth of average uncertainty energy is, therefore, a consequence of
similarity. How similarity (time-independent α, β, 〈θi〉 and self-similar evolution of the
uncertainty spectrum in terms of 〈EΔ〉 and LΔ) may be a consequence of the presence of a
strange attractor is, however, beyond this paper’s scope but the question is now posed for
future investigations.

The dimensionless coefficient Γ obtained from (4.7) and the Lyapunov exponent
directly obtained from (1.1) are plotted in figure 12: for all cases F1, F2 and F3, Γ is
about constant in the time range where exponential growth is present. The actual value
of Γ in this time range is the same for F1 and F2 but it is different for F3 which has a
lower Reynolds number. The scaling λτη ∼ Γ (Re) suggests that the Lyapunov exponent
may not scale with the Kolmogorov time τη (as claimed by Ruelle 1979) if Γ depends on
Reynolds number, which it may do on account of a Reynolds number dependence of β. The
coefficient Γ , as well as the Lyapunov exponent, are also plotted in figure 13 to compare
with previous data by Mohan et al. (2017). The ratio of Γ values in the F1 and F3 cases
is ΓF1/ΓF3 = 1.29 during the exponential growth time range, whereas βF3/βF1 = 1.25 in
the same regime. The data of Mohan et al. (2017) lead to ΓF1/ΓF3 ≈ 1.30 purely on the
basis of the Reynolds numbers of F1 and F3 (see figure 13). This confirms the hypothesis
that the different values of Γ in F1 and F2 on the one hand and F3 on the other are caused
by the difference in Reynolds number and nothing else.

The regime of approximate constancy of Γ is followed by a time range τ ∈ [2.9, 6.5]
where Γ appears to decay exponentially in the F1 and F2 cases (it is not clear whether
such a range does or does not exist in the F3 case), see figure 12. Specifically, the
exponential curve fit gives Γ = 0.73 exp(−1.26(τ − 2.9)). Using 〈Etot〉 and 〈T(1)〉t to
non-dimensionalise equation (4.6), we write

d
dτ

〈EΔ〉
〈Etot〉 = Γ

〈
T(1)

〉
t

√〈∣∣∣S(1)
ij

∣∣∣2〉 〈EΔ〉
〈Etot〉 . (4.9)

For statistically stationary cases F1 and F2 we find 〈T(1)〉t

√
〈|S(1)

ij |2〉 = 12.77 ±
0.56 in the time range τ ∈ [2.9, 6.5]. Therefore, (4.9) and our fitting of Γ imply
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Figure 12. Time evolution of Γ and 2
√

2λτη for different cases: (a) case F1; (b) case F2; (c) case F3. Inset:
the time evolution of Γ during the similarity regime in semilogarithmic plot. The exponential function fit is
indicated by a dash-dotted line for F1 and F2.

2 × 10–1

Mohan et al. (2017)

Γ/2�2
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1/2

Figure 13. Schematic log–log plot of λτη with the Taylor length-based Reynolds number Reλ according to the
numerical results (in blue) and models calibrated with Bayesian inference (in red) of Mohan et al. (2017). The
Lyapunov exponents and the coefficient Γ obtained in the present work (in green crosses and red points) are
also plotted.
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〈EΔ〉/〈Etot〉 ∼ exp(−9.32 exp(−1.26(τ − 2.9))), which is approximately consistent with
the direct curve fitting in the inset of figure 1(d). Eventually Γ tends to 0 and the average
uncertainty energy stops growing in all cases F1, F2 and F3.

4.2.2. Scaling of the Lyapunov exponent during similarity
Our analysis in § 4.2.1 and the data of (Mohan et al. 2017) presented in figure 13
question the view that λ scales with τη (Ruelle 1979). If λ does not scale with τη

which is the smallest Lagrangian time scale of the turbulence, it may scale with τE =
η/U, the shortest Eulerian time scale of the turbulence (Tennekes 1975), in which
case λτη ∼ τη/τE ∼ Re1/2

λ . The data of Mohan et al. (2017) in figure 13 suggests that
λ grows faster than τ−1

η but slower than τ−1
E as Reynolds number increases, perhaps

λ ∼ τ
−(1−c)/2
η τ

−(1+c)/2
E , i.e. λτη ∼ Re(1+c)/4

λ , where c ∈ (−1, 1]. In fact, the results of
Mohan et al. (2017) suggest that λτη ∼ Re(1+c)/4

λ where the most likely values of c are
between 0 and 1/3. The large scale random sweeping of the smallest eddies represented
in the Eulerian time scale τE appears to influence the growth of uncertainty even
though the uncertainty exists only at the smallest scales during the chaotic exponential
growth. Interestingly, this large-scale random-sweeping effect is reflected in the decreasing
dependence of β on Reynolds number (see (4.7) and (4.8)) which implies that 〈PΔ〉
should be increasingly dominated by 〈PΔ〉Fluc rather than 〈PΔ〉Ave in (4.2) as Reynolds
number increases. There seems to be a relation between large-scale random sweeping
and uncertainty production, and in particular between random sweeping and the way
that compression and stretching affect average uncertainty production either through
average compression/stretching rates or through the correlations of their fluctuations
with uncertainty energy fluctuations in specific stretching/compressive directions.
A Lagrangian or some combined Eulerian–Lagrangian description of uncertainty (see,
e.g., Boffetta et al. 1997) as advocated by Leith & Kraichnan (1972) in their introduction
might have advantages over the present purely Eulerian approach as it may naturally
account for the large-scale sweeping’s effect on uncertainty and thereby return a reduced
average uncertainty production. The large-scale sweeping’s effect on uncertainty might
also have some relation with the error in positions of local flow structures that Boffetta
et al. (1997) identified.

4.3. The probability distribution of the uncertainty production
Even though the average uncertainty production rate is positive, the most likely value
of PΔ is zero at all times. In figures 14 and 15 we plot instantaneous p.d.f.s of PΔ

sampled through all space and we examine how these p.d.f.s evolve with time. An
immediate observation is that the p.d.f.s of PΔ do not seem to match a well-known standard
distribution (e.g. Gaussian, exponential, power-law) at any time and for any case F1, F2
and F3. Another immediate observation is that the early time p.d.f.s of PΔ for F3 differ
from those for F1 and F2 as their tails on the negative side are much shorter than on the
positive side. These are times when the F3 reference flow is not statistically stationary.

Given that the most likely value of PΔ is PΔ = 0, the non-zero values of 〈PΔ〉 result
from the positive skewnesses and the heavy tails of these p.d.f.s (see figures 14 and 15).
The positive skewness and heavy tails, i.e. high kurtosis, set in from very early times
and reveal an intermittent spatial distribution of coexisting uncertainty generation and
depletion events where high generation events are more intense than high depletion events.
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Figure 14. Early-time evolution of p.d.f.s of PΔ for different cases: (a) case F1; (b) case F2; (c) case F3.
P.d.f.s are plotted vs PΔ/σPΔ where σPΔ is the standard deviation of PΔ, defined as σ 2

PΔ
≡ ∫ PΔmax

PΔmin
(PΔ −

〈PΔ〉)2P(PΔ) dPΔ.

This spatial intermittency becomes increasingly acute and increasingly favourable to
uncertainty generation rather than depletion events as the skewness and the kurtosis grow
to extremely high positive values which fluctuate around a constant during the chaotic
exponential growth in all F1, F2 and F3 cases (see figure 16). This happens within
the similarity regime where α, β and θi are constant and the uncertainty spectrum is
self-similar if scaled with 〈EΔ〉 and LΔ. In fact, as shown in figure 14, the p.d.f.s of
PΔ also approximately collapse during the time range of extreme skewness and kurtosis
if normalised by the p.d.f.’s maximum value and standard deviation. During this time
range where similarity and exponential uncertainty growth coexist, the kurtosis and the
skewness fluctuate around 105 and 200 respectively, suggesting that 〈PΔ〉 is predominantly
determined by rare yet powerful events of uncertainty generation and depletion.

After the similarity and chaotic growth stage, both the skewness and the kurtosis of the
p.d.f.s continuously decrease with time indicating that more points in the flow participate
in the uncertainty generation and depletion and in the overall value of 〈PΔ〉. The way these
p.d.f.s lead to the average values of PΔ is subtle. The long time saturation value of 〈PΔ〉 is
zero for F1 and non-zero for F2, yet the long time p.d.f.s of PΔ are similar in both cases,
as are the long time values of kurtosis and skewness.
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Figure 15. Evolution of p.d.f.s of PΔ after the similarity regime for different cases: (a) case F1; (b) case F2;
(c) case F3. P.d.f.s are plotted vs PΔ/σPΔ where σPΔ is the standard deviation of PΔ.

5. Conclusion

In the present work, we obtained the evolution equation (2.4) for the average uncertainty
energy 〈EΔ〉(t) in three-dimensional, incompressible and periodic/homogeneous
Navier–Stokes turbulence. The average uncertainty energy evolves because of internal
production, dissipation and external input/output of uncertainty. The internal production
of uncertainty is a transfer from the correlation between the reference and perturbed fields
to the average uncertainty energy and is determined by the eigenvalues of reference field’s
strain rate tensor and the distribution of uncertainty energy along its three eigenvectors.
As shown by (2.12), stretching events decrease uncertainty while the compression events
increase uncertainty.

We used DNS of periodic Navier–Stokes turbulence to study the gradual decorrelation
process of two initially highly correlated flows. Three different DNS were run, F1, F2
and F3: two where the perturbation is seeded to a statistically stationary turbulence
and where the forcing does (F1) or does not (F2) contribute directly to the progressive
decorrelation between the reference and perturbed fields; and one (F3) where the reference
and perturbed fields are both initially very weak and grow together to eventually become
statistically stationary without the external forcing contributing directly to their gradual
decorrelation. In all three cases and at times when 〈EΔ〉(t) is still small, a similarity time
range was found where the growth of the uncertainty spectrum is self-similar if scaled
by 〈EΔ〉(t) and the characteristic length LΔ(t) of uncertainty, and where all the following
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Figure 16. Time evolution of the sample kurtosis and skewness of p.d.f.s for different cases, which is defined
as K = (

∫ PΔmax
PΔmin

(PΔ − 〈PΔ〉)4P(PΔ) dPΔ)/σ 4
PΔ

and S = (
∫ PΔmax

PΔmin
(PΔ − 〈PΔ〉)3P(PΔ) dPΔ)/σ 3

PΔ
: (a) case F1;

(b) case F2; (c) case F3.

quantities are constant in time: (i) the ratio α of average uncertainty dissipation to average
uncertainty production; (ii) the ratio β characterising how much of the average uncertainty
production rate is accountable to the average around which it fluctuates in space; and (iii)
the distribution of uncertainty energy in the three eigendirections of the reference field’s
strain rate tensor. These three similarity constancies and the constancy in time of the three
average eigenvalues of the reference field’s strain rate tensor imply an exponential growth
in time for 〈EΔ〉 with Lyapunov exponent λ ∼ Γ τ−1

η . The dimensionless coefficient Γ

is given by (4.7) and grows with Reynolds number because β decreases with Reynolds
number. This exponential growth for 〈EΔ〉 is observed in the earlier part of the time range
of the similarity regime when the p.d.f. of PΔ collapses for different times if scaled by its
maximum value and standard deviation. As a result, the kurtosis and skewness of this p.d.f.
are about constant in this time range. In fact, the value of this constant kurtosis is extremely
large indicating extreme intermittency of PΔ. The value of the constant skewness is also
large and positive indicating that rare high uncertainty generation events are more intense
than rare high uncertainty depletion events. The average value of PΔ is controlled by this
intermittency in this time range. Note that the most probable value of PΔ is zero at all
times.

During the chaotic exponential growth regime, the ratio of LΔ to lλ of the reference field
is roughly constant. In agreement with previous observations (Mohan et al. 2017), the
Lyapunov exponent does not scale with the Kolmogorov time τη, but it also does not scale
with the smallest Eulerian time scale τE (Tennekes 1975). It appears to depend on both
as λ ∼ τ

−(1−c)/2
η τ

−(1+c)/2
E with c between 0 and 1/3, implying that large-scale random
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sweeping of the smallest length scales influences the growth of uncertainty even though
uncertainty only exists in the smallest eddies in the time range of chaotic exponential
growth.

The chaotic growth time range is followed by a time range in the F1 and F2 cases
where Γ decays exponentially and 〈EΔ〉 grows as an exponential of an exponential. In
turn, this exponential of exponential time range may be followed by a linear time range in
the F1 case consistently with previous DNS studies (Boffetta & Musacchio 2017; Berera &
Ho 2018), but not in the F2 case, at least for our present DNS Reynolds numbers. The linear
growth of uncertainty seems to be sensitive to the direct presence (F1) or absence (F2) of
external forcing in the evolution of 〈EΔ〉. We did not detect a linear time growth of 〈EΔ〉
in F3 either, however the F3 Reynolds number is even lower.

Finally, the exponential growth of 〈EΔ〉 is usually attributed to the presence of a strange
attractor whereas it has been obtained here from similarity. Future research should attempt
to shed light on the relations between similarity and strange attractors, and on how
similarity may be a consequence of the presence of a such an attractor and underlying
chaos. Future research may also consider how this paper’s approach to uncertainty in
homogeneous turbulence can be extended to a wider range of turbulent flows. In general,
the governing equation for Navier–Stokes uncertainty is (2.3) rather than (2.4). Hence,
turbulent as well as viscous diffusion and also pressure effects will need to be taken
into account explicitly in the evolution of uncertainty. Various boundary conditions and
errors on boundary conditions in the case of complex turbulent flows will also be an
issue, not to mention various body forces and the presence in many turbulent flows
of turbulent/non-turbulent or turbulent/turbulent or other (e.g. density) interfaces. The
identification of local compression and stretching events as key to the development of
uncertainty means that future prediction methods may benefit from strategies for early
detection of such events so as to concentrate maximum accuracy on the compression
events and less accuracy on the stretching events. However, the roles of all the other
aforementioned effects should not be underestimated and future research is needed to show
whether they are subdominant or not and in which flows.
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Appendix A. Sensitivity of the uncertainty energy to the initial perturbation

To investigate the sensitivity of the evolution of average uncertainty energy to the initial
perturbation, a series of simulations have been executed, of which the configurations are
presented in table 3. By checking the evolution of the average uncertainty energy, the
influence of the perturbed range (cases ‘standard’, ‘K07K08’ and ‘K08K09’) and of the
amplitude (cases ‘standard’ and ‘Amp01’) of the initial perturbation is investigated. During
the similarity period, the changes in the amplitude and the perturbed range have very little
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Case 〈EΔ(t0)〉/〈Etot(t0)〉 Perturbed range

Standard (F1 or F2) 8.077 × 10−6 [0.9kmax, 1.0kmax]
K08K09 8.077 × 10−6 [0.8kmax, 0.9kmax]
K07K08 8.077 × 10−6 [0.7kmax, 0.8kmax]
Amp01 8.077 × 10−7 [0.9kmax, 1.0kmax]

Table 3. Numerical configurations for different cases. The two standard cases correspond to F1 and F2. There
are two cases K08K09, one for F1 and one for F2, and similarly for cases K07K08 and Amp01. For the standard
F1 and F2 cases, the initial perturbations are generated randomly under constraints (i), (ii) and (iii) mentioned
in § 3, but for the other six cases the initial perturbations are generated partially randomly under constraints (i)
and (ii) in order to precisely control the initial uncertainty energy.
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Figure 17. Time evolution of average uncertainty energy with different perturbed wavenumber range: (a) case
F1; (b) case F2. Inset: the initial time evolution of average uncertainty energy in semilogarithmic plot.

effect on the evolution of the average uncertainty energy, other than giving the evolution
an offset (explained in the following). At late times, the difference between average
uncertainty energies induced by different initial perturbations becomes more obvious for
F1 where the external forcing causes an eventual decorrelation between the perturbed and
the unperturbed velocity fields.

Figure 17 presents the time evolutions of the average uncertainty energy for different
perturbed wavenumber ranges. A higher wavenumber perturbed range implies higher
uncertainty dissipation rate for the seeded uncertainty at the earliest times, which causes
lower value of 〈EΔ〉/〈Etot〉 at very early times and during the similarity period. The effect
appears in the log-linear inset of figure 17 as a vertical offset of the curves for the different
cases. The average uncertainty energy grows exponentially in all three cases with the same
Lyapunov exponent. These different vertical offsets lead to slightly different exit times
from the similarity regime. The regime of exponential growth is followed by what appears
to be an exponential of exponential regime, where the difference of wavenumber perturbed
range has little influence on the evolution of average uncertainty energy since the lines in
figure 17 are very close to each other albeit with a persisting small offset.

Figure 18 presents the time evolution of the average uncertainty energy for the different
initial uncertainty energy levels. As can be seen in the figure, the change in the amplitude
of initial perturbation has the same effect as the change in the perturbed wavenumber
range, i.e. no significant influence on the evolution of uncertainty energy other than
creating an offset.
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Figure 18. Time evolution of average uncertainty energy with different initial uncertainty energy: (a) case
F1; (b) case F2. Inset: the initial time evolution of average uncertainty energy in semilogarithmic plot.
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Figure 19. Uncertainty energy spectra in the similarity regime: (a) case F1; (b) case F2. The spectra are
normalised by 〈EΔ〉 and LΔ.

We also checked the uncertainty spectra in the self-similar regime for our various cases
with different initial perturbations, as shown in figure 19. All the self-similar spectra with
different initial perturbations collapse together.

As an overall conclusion, the early and mid-time evolutions of the average uncertainty
energy are not very sensitive to the form and amplitude of the initial perturbations, other
than giving the evolution an offset.

Appendix B. Reynolds-number dependence of the time range of the exponential
regime

To investigate the relation between the time range of the exponential regime and the
Reynolds number, we have run another simulation which has the same external forcing as
F2 with initial perturbations which, like standard F1, F2 and F3, obey the three constraints
mentioned in § 3. Table 4 presents the main parameters of this extra case F4, as well as
cases F2/F3 discussed in the main text. As indicated by tables 1 and 4, the Taylor Reynolds
number of case F4 is close to that of case F3. Figure 20 presents the growths of average
uncertainty in a semilogarithmic plot. In figure 20(a) we compare the evolution in cases
F2 and F4. As can be seen in the figure, the exponential regime in F4 is longer than in F2,
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Case N3 ν 〈〈ε〉〉t 〈U〉t 〈L〉t 〈T0〉t 〈Re〉t 〈Reλ〉t 〈kmaxη〉t

F4 1283 0.0060 0.0996 0.598 1.197 2.003 119.2 56.7 1.61

Table 4. Parameters of the reference flows for case F4.
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Figure 20. Time evolution of average uncertainty energy in semilogarithmic plot: (a) case F2–case F4;
(b) case F3–case F4. In the inset of (b), we plot (〈EΔ〉/〈Etot〉)1.17 for F4 and (〈EΔ〉/〈Etot〉) for F3 translated in
the horizontal axis by 2.7 τ -units to the left.

and also has a slower growth rate than F2, which is (see (4.9))

Γ
〈
T(1)

〉
t

√〈∣∣∣S(1)
ij

∣∣∣2〉 ∼ Γ (Reλ) × Reλ. (B1)

The lower Reynolds number case has a lower growth rate. Furthermore, as shown
in figure 6, the exit time from the similarity regime corresponds to the moment
when the velocities at the largest wavenumbers become completely decorrelated,
i.e. ÊΔ(kmax) = Êtot(kmax). Therefore, as the Reynolds number increases, the energy
spectrum’s inertial range also increases towards smaller scales, causing a decreasing
threshold value 〈EΔ〉/〈Etot〉 that needs to be overcome for the exit time from the
exponential growth regime. As a result, the lower-Reynolds-number case has a longer time
range of exponential growth.

In figure 20(b) we compare the exponential growths in cases F3 and F4. It is observed
that cases F3 and F4 have similar exponential growth rates. The slight difference in
exponential growth rates is caused by the small difference in Reynolds numbers. To
verify this point, (B1) is applied, along with the observation of Mohan et al. (2017) that
Γ (Reλ) ∼ Re1/3

λ . Therefore, we predict that the ratio of exponential growth rates of F3 and
F4 is (63.8/56.7)4/3 = 1.17, which is verified by our simulations as shown in the inset of
figure 20(b). Although cases F3 and F4 have similar exponential growth rates, case F4 has
a longer exponential regime. This may have something to do with the fact that F3 is not
statistically stationary until τ = 9.3 whereas F4 is statistically stationary from the start of
the perturbation.

977 A17-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

96
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.967


Uncertainty in three-dimensional Navier–Stokes turbulence

REFERENCES

ASHURST, W.T., KERSTEIN, A.R., KERR, R.M. & GIBSON, C.H. 1987 Alignment of vorticity and scalar
gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30 (8), 2343–2353.

AURELL, E., BOFFETTA, G., CRISANTI, A., PALADIN, G. & VULPIANI, A. 1997 Predictability in the large:
an extension of the concept of Lyapunov exponent. J. Phys. A: Math. Theor. 30 (1), 1.

BATCHELOR, G.K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
BERERA, A. & HO, R.D.J.G. 2018 Chaotic properties of a turbulent isotropic fluid. Phys. Rev. Lett. 120 (2),

024101.
BETCHOV, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech.

1 (5), 497–504.
BOFFETTA, G., CELANI, A., CRISANTI, A. & VULPIANI, A. 1997 Predictability in two-dimensional

decaying turbulence. Phys. Fluids 9 (3), 724–734.
BOFFETTA, G. & MUSACCHIO, S. 2017 Chaos and predictability of homogeneous-isotropic turbulence. Phys.

Rev. Lett. 119 (5), 054102.
CHEUNG, P.Y. & WONG, A.Y. 1987 Chaotic behavior and period doubling in plasmas. Phys. Rev. Lett.

59 (5), 551–554.
CLARK, D., ARMUA, A., FREEMAN, C., BRENER, D.J. & BERERA, A. 2021 Chaotic measure of the

transition between two-and three-dimensional turbulence. Phys. Rev. Fluids 6 (5), 054612.
CLARK, D., ARMUA, A., HO, R.D.J.G. & BERERA, A. 2022 Critical transition to a non-chaotic regime in

isotropic turbulence. J. Fluid Mech. 930, A17.
CRISANTI, A., JENSEN, M.H., VULPIANI, A. & PALADIN, G. 1993 Intermittency and predictability in

turbulence. Phys. Rev. Lett. 70 (2), 166–169.
DEISSLER, R.G. 1986 Is Navier–Stokes turbulence chaotic? Phys. Fluids 29 (5), 1453–1457.
FRISCH, U. 1995 Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press.
GOTO, S. & VASSILICOS, J.C. 2009 The dissipation rate coefficient of turbulence is not universal and depends

on the internal stagnation point structure. Phys. Fluids 21 (3), 035104.
HO, R.D.J.G., ARMUA, A. & BERERA, A. 2020 Fluctuations of Lyapunov exponents in homogeneous and

isotropic turbulence. Phys. Rev. Fluids 5 (2), 024602.
LEITH, C.E. 1971 Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci. 28 (2), 145–161.
LEITH, C.E. & KRAICHNAN, R.H. 1972 Predictability of turbulent flows. J. Atmos. Sci. 29 (6), 1041–1058.
LI, Y.C. 2014 The distinction of turbulence from chaos – rough dependence on initial data. Electron. J. Differ.

Equ. 2014 (104), 1–8.
LI, Y.C., HO, R.D.J.G., BERERA, A. & FENG, Z.C. 2020 Superfast amplification and superfast nonlinear

saturation of perturbations as a mechanism of turbulence. J. Fluid Mech. 904, A27.
LORENZ, E.N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20 (2), 130–141.
LORENZ, E.N. 1969 The predictability of a flow which possesses many scales of motion. Tellus 21 (3),

289–307.
MOHAN, P., FITZSIMMONS, N. & MOSER, R.D. 2017 Scaling of Lyapunov exponents in homogeneous

isotropic turbulence. Phys. Rev. Fluids 2 (11), 114606.
PAUL, I., PAPADAKIS, G. & VASSILICOS, J.C. 2017 Genesis and evolution of velocity gradients in near-field

spatially developing turbulence. J. Fluid Mech. 815, 295–332.
RUELLE, D. 1979 Microscopic fluctuations and turbulence. Phys. lett. A 72 (2), 81–82.
RUELLE, D. 1981 Small random perturbations of dynamical systems and the definition of attractors. Commun.

Math. Phys. 82, 137–151.
SPARROW, C. 2012 The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, vol. 41. Springer

Science & Business Media.
TENNEKES, H. 1975 Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67 (3),

561–567.
TENNEKES, H. & LUMLEY, J.L. 1972 A First Course in Turbulence. MIT.
VINCENT, A. & MENEGUZZI, M. 1991 The spatial structure and statistical properties of homogeneous

turbulence. J. Fluid Mech. 225, 1–20.
YOFFE, S.R. 2012 Investigation of the transfer and dissipation of energy in isotropic turbulence. PhD thesis,

University of Edinburgh.

977 A17-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

96
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.967

	1 Introduction
	2 Theoretical analysis of the uncertainty
	2.1 Evolution equation of uncertainty
	2.2 Production of uncertainty

	3 Numerical set-ups
	4 DNS results
	4.1 Time evolution of uncertainty
	4.1.1 Uncertainty energy
	4.1.2 Mechanisms of the uncertainty evolution
	4.1.3 Uncertainty spectrum
	4.1.4 Characteristic length of uncertainty

	4.2 Quantitative analysis of the uncertainty growth
	4.2.1 From similarity to exponential growth
	4.2.2 Scaling of the Lyapunov exponent during similarity

	4.3 The probability distribution of the uncertainty production

	5 Conclusion
	Appendix A. Sensitivity of the uncertainty energy to the initial perturbation
	Appendix B. Reynolds-number dependence of the time range of the exponential regime
	References

