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OPTIMALITY CONDITIONS FOR
VECTOR OPTIMISATION WITH SET-VALUED MAPS

YONG W E I HUANG

In this paper, we establish a Farkas-Minkowski type alternative theorem under the as-
sumption of nearly semiconvexlike set-valued maps. Based on the alternative theorem
and some other lemmas, we establish necessary optimality conditions and sufficient
optimality conditions for set-valued vector optimisation problems with extended in-
equality constraints in a sense of weak E-minimisers.

1. INTRODUCTION

In recent years, vector optimisation with set-valued maps in infinite dimensional
spaces has been received an increasing amount of attention. See [6, 2, 5, 8, 4, 9]
and references therein, for its extensive applications in many fields such as mathemat-
ical programming, optimal control, management science. Vector optimisation with set-
valued maps, sometimes called set-valued vector optimisation for short, essentially can
be considered as an improvement on single-valued vector optimisation. Amongst re-
search topics in optimisation problems, optimality conditions are especially important.
For vector optimisation with set-valued maps, many authors have published interesting
results on optimality conditions, and most of those results are obtained under different
extended cone-convexity assumptions via alternative theorems. For instance, under the
supposition of convexlikeness, Li and Chen [6] gave multiplier type and saddle point
type optimality conditions for the existence of weak minimisers of set-valued vector op-
timisation with both inequality and equality constraints. Li [5], under the assumption
of cone-subconvexlikeness of set-valued maps, established optimality conditions for set-
valued vector optimisation by using the alternative theorem in ordered linear topological
spaces.

In this paper, based on near cone-convexity, we introduce the notions of nearly
cone-convexlike set-valued maps and nearly cone-semiconvexlike set-valued maps in in-
finite dimensional spaces, investigate the relationships between them, and give some
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318 Y.W. Huang [2]

characterisations of them. Then we establish a Farkas-Minkowski type alternative theo-
rem for set-valued maps under the assumption of near cone-semiconvexlikeness. Finally,
we obtain some necessary and sufficient optimality conditions for the existence of weak
E-minimisers of set-valued vector optimisation with generalised inequality constraints.

The outline of this paper is as follows. In Section 2, some notation and preliminaries
are given. In Section 3, the concepts of nearly cone-convexlike set-valued maps and
nearly cone-semiconvexlike set-valued maps are defined, and a Farkas-Minkowski type
alternative theorem is established under the supposition of nearly cone-semiconvexlike
set-valued maps. In Section 4, weak minimisers for vector optimisation are extended to
weak E-minimisers, and two main results of optimality conditions for vector optimisation
with set-valued maps are obtained in the sense of weak E-minimisers.

2. NOTATIONS AND PRELIMINARIES

Throughout this paper, the scalars of topological vector spaces are always real.
Denote by O the null element of every space. Let Z and W be two topological vector
spaces with pointed convex cones Z+ and W+ respectively. Suppose that intZ+, the
interior of Z+, is nonempty, and let intZ+ ^ Z+. However, the interior of W+ is not
required to be nonempty.

Denote by Z* and W* the dual spaces of Z and W, respectively. The dual cone Z\
of Z+ is defined by Z\ = {z* € Z* \ (z,z*) ^ 0,Vz 6 Z + } , where (z,z*) denotes the
value of the linear continuous functional z* at the point z. We define W+ analoguously.
Clearly, if W+ = {O}, then we have Wl=W.

Let B C Z be a nonempty subset. The closure of B is denoted by cl B. The cone
hull of B is defined by cone(S) = {ab \ a > 0,b £ B}. The relative interior of B is
denned by hB = {y € aff B | 3 a neighbourhood of N of y such that N D aff B C B},
where aff denotes the affine hull operator. We recall the fact that if B is convex, then ri B
is nonempty and int M, the topological interior of B (interior for short), is not necessarily
nonempty.

Denote by R the set of all real numbers. For A C R, b e R, write A ^ 6, if and only
if a ^ b, Va € A. Use <, <, and > similarly.

Let D be a given nonempty abstract set, and G : D —• 2Z, H : D -> 2W be set-valued
maps such that G(x) ^ 0, H(x) / 0, Vx € D. Let

G(D) = (J G(x),

(G(x), z*) = {(z,z*)\z€G(x)},
(G(D),z')=\J(G(x),z*).

x£D

DEFINITION 1: A subset B in Z is called nearly convex, if there is a € (0,1) such
that for each z\, z-i e B, we have az\ + (1 - a)z2 € B.
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LEMMA 1 . (See [7, Proposition 2.1]) If B C V is a nearly convex set, then the
set Q = {Pe [0,1] | Vyi, 2/2 G B, 0Vl + (1 - p)y2 € B} is dense in [0,1].

PROPOSITION 1 . If B c Z is nearly convex and T\B ^ 0, then for every
t € (0,1), we have

t(nB) + (l-t)B CriB.

P R O O F : Let t € (0,1), ui e r iB, u2 € B. Then by definition there is an open
neighbourhood N of Ui such that N n aff B c B. Set u0 — tui + (1 — i)u2. Since the
map tp : \-* uo/X + u2(l - I/A) is continuous at t, hence noting <p(t) = uu we conclude
from Lemma 1 that there is /? 6 fi \ {0} such that u' := u o /£ + "2(1 - 1//?) € W. We
notice that u' € aff B. Thus u' € B, and hence uQ = /3u' + (1 - /3)u2 € B. Now we show
u0 6 r iB. Define the map r : Z -+ Z by

Since the map r is continuous on Z, then U := r-1(./V) is an open neighbourhood
of u0. Let j / e C/ n aff B. Then we have r{y) € AT, and r(y) e aff B. Hence
y = /?r(y) + (1 - /9)w2 € B. Thus U D aff B C B. Therefore, u0 € ri B. D

Clearly, Proposition 2 and 3 below can be deduced directly by Proposition 1.

PROPOSITION 2 . If B C Z be a nearly convex set, then the set riB is convex.

PROPOSITION 3 . If a nearly convex set B C Z is relatively open, that is r iB
= B, then B is convex.

Proposition 3 given here can be thought of as an extension of [7, Theorem 2.1].

PROPOSITION 4 . Let B C Z be a nearly convex set, and riB ^ 0. Let
y* <=Z*\ {O}. If(u,y*) > 0,Vu € r iB , then (u,y>) ^ 0,Vu € B.

P R O O F : Suppose the contrary. Then there is u0 € B such that (u0, y') < 0. Fix
U\ € r iB. Since the function s(t) = (tui + (1 - t)uo,y*) is continuous on R, there
is a € (0,1) such that s(a) = (crai + (1 — a)uo,y*) = 0. On the other hand, from
Proposition 1, we have aui + (1 — a)u0 E r iB . This gives (aui + (1 — a)uo,y') > 0, a
contradiction. D

We recall that r iB = in tB if and only if in tB is nonempty(for example, see [3,
Theorem 1.2.4]).

LEMMA 2 . If B C Z is a nearly convex set with nonempty interior, then for every

t € (0,1) we have
t(int B) + (1 - t) cl B C int B.

P R O O F : According to assumptions and Proposition 1, we obtain that for all
t e (0,1), t(intB) + (1 — t)B C in tB. Since in tB is nonempty, we suppose b G intB.
Then

O 6 (b - int B), or Vi 6 (0,1), O€t(b- int B).
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Hence for every t € (0,1) we get

cl((l - t)B) C (1 - t)B - t(b - int B) C i(int B) + (1 - t)B - to C (int B) - tb.

It follows that
W € (0,1), to + cl((l - t)B) c int B.

Since to + cl((l - t)B) = tb + (1 — t) cl B, and 6 € int B can be arbitrarily chosen, hence
we have Vt € (0,1), t(intB) + (1 - t)c\B C int 5. D

LEMMA 3 . If B G Z is a nearly convex set, then the set int £ is convex.

The following lemma is the same as Proposition 4 whenever the assumption of
int B ^ 0 is imposed.

LEMMA 4 . Let B xz Z be a nearly convex set, and int B ^ 0. Let y* € Z* \ {O}.
If (u, j/*) > 0, Vu G int £ , then (u, y') ^ 0, Vu € B.

3. NEARLY CONE-SEMICONVEXLIKE SET-VALUED MAPS AND FARKAS-MINKOWSKI

ALTERNATIVE THEOREMS

For simplicity, we put U = Z x W, U+ = Z+ x W+, and J = {G,H) : D ->• 2U.
The notation J(x) = (G, H)(x) is used for G(x) x i/(x) here. One can easily check that
U* = Z' x W, and U*+ = Z*+x W;.

DEFINITION 2: A set-valued map J : D -» 2U is called nearly C/+-convexlike, if
there is an a € (0,1) such that for any xi,x2 6 D, we have

aJ fo ) + (1 - a)J{x2) C J(D) + U+.

DEFINITION 3: A set-valued map J : D —» 2U is called nearly f/+-semiconvexlike,
if there exists u € int Z+, and a € (0,1) such that for any x\, x2 S D, and e > 0, we have

e(u, O) + aJ(xi) + (1 - o) J(x2) C J(I>) + £/+.

Next, we give some important characterisations of nearly cone-semiconvexlike set-
valued maps and nearly cone-convexlike set-valued maps, and state the relationships
between them.

PROPOSITION 5 . Tie set-valued map J : D -> 2U is nearly U+-semiconvexlike,
if and only if M := J(D) + (int Z+) x W+ is a nearly convex set.

PROOF: Sufficiency: Since mtZ+ is nonempty, and M is nearly convex, hence,
3u € int Z+, 3a € (0,1), Vii, x2 € D, Ve > 0, such that

a{J{Xl) + e(u, O)) + (1 - a)(J(x2) + e(u,O)) CMC J(D) + U+.
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Therefore, e{u,O) + aJ{xx) + (1 - a)J(x2) C J{D) + U+, that is, J is nearly U+-
semiconvexlike.

Necessity: Let m1,Tn2 € M; then 3XJ € D, yt € (intZ+) x W+, i = 1,2, such that
77̂  € J(XJ) +2/,-. Since J is nearly l/+-semiconvexlike, there exist u e intZ+, a € (0,1),
for the previous Xi,x2 € £>, Ve > 0, we have

e(u, O) + aJ{xi) + (1 - a)J(x2) C

T h u s e ( u , O ) + a ( m 1 - 2 / 1 ) + ( l -o : ) (m2- t /2) 6 J(.D) + I/+. Because the set (intZ+)xW+
is convex, we have y0 := ay\ + (1 - a)j/2 € ( intZ+) x W+. Thereby,

(1) m = ami + (1 - a )m 2 € a J ( i i ) + (1 - a ) J(x2) + J/o-

Let 2/0 = (2/011J/02) € ( intZ+) x VF+. Since t/Oi € i n t Z + , there is e > 0 such that
j/oi - eu € i n t Z + , Then, y0 - e(u>O) = (2/01 — £u, J/D2) € ( intZ+) x W+. It follows by
(1) that

m e aJ(xi) + (1 - a)7(x2) + e(u, O) + y0 - e(u, O)

C J{D) + U+ + (intZ+) x W+ c J(£>) + (intZ+) *W+ = M.

Therefore M is nearly convex. D

The following corollaries can be shown similarly.

COROLLARY 1 . The set-valued map J : D -> 2U is nearly U+-convexlike, if and
only if M' = J{D) + Z+ x W+ is a nearly convex set.

COROLLARY 2 . If M' = J(D) + Z+ x W+ is nearly convex, then the set
M = J(D) + (int Z+) x W+ is also nearly convex.

It follows by Corollary 2 that nearly cone-convexlike set-valued maps imply nearly
cone-semiconvexlike set-valued maps. However the example below shows that the con-
verse implication is not always true.

EXAMPLE 1. Let D = {0,1}, Z = R2, W = R. Then U = Z x W = R3. Let

Z+ = {(2/1,2/2) € R2 I 2/i ̂  0,y2 > 0} U {(0,0)}, W+ = {0}.

Let
G(x) = (Gi(x), G2(x)) : D -> 2RxR, H(x) :D-+2R.

Define J[x) = (G, H)(x) : D -> 2U by

J{x) = {(Gi(x),G2(x),H(x)) 6 Rx Rx R\Gi(x) = x,G2(x) ^ 0,H{x) = o],Vx 6 D.

It is easy to check that M = J(D) + (int Z+) x W+ is a convex set, so that it is nearly
convex. But the set M' — J(D) + Z+ x W+ is not nearly convex.
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The following corollaries can be deduced directly by definition.

COROLLARY 3 . Let J : D ->• 2U be a set-valued map. If we can find a € (0,1)
such that for any xt £ D, y{ £ J(xi), i — 1,2, there is x3 £ D satisfying

aj/1 + (1 - a)y2 € J{x3) + U+.

Then J is nearly U+-convexlike.

COROLLARY 4 . Let J : D ->• 2U be a set-valued map. If we can find u 6 int Z+,
a € (0,1) such that for any xt € D, y{ e J(xi), i - 1,2, any e > 0, tiere is x3 e D
satisfying

e(u, O) + aj/i + (1 - a)y2 € J{x3) + U+.

Then J is nearly U+-semiconvexlike.

Next, we give some technical lemmas which will be used in the proof of the alternative
theorem.

LEMMA 5 . The set int (cone (J(D)) + Z+ x W+) ^ 0, if and only if the set
int (cone (J(D)) + (intZ+) x W+) ^ 0.

P R O O F : Sufficiency is trivial. Suppose that int(cone(J(£>)) + Z+ x W+) ^ 0. Then
there are a ^ 0, X\ € D, z e Z+, w € W+, p € G(xi), g € H(xi), such that ( ap+ ,z,
ag + tu) € int (cone (•/(£>)) + Z+ x W+). Hence, there are 5 and T, neighbourhoods of
the origins in Z and W respectively such that

(ap+z+(intZ+)nS) x(aq+w+T) C (ap+z+S)x(aq+w+T) C cone(J{D))+Z+xW+.

Thus for each s e (int Z+) n 5, each t 6 T, there exist 0 ^ 0,x' e D,z' £ Z+,w' & W+,
such that ap + z + s € 0G(x') + z', and aq + w + t £ 0H{x') + w'. So, ap + z + 2s
€ f5G{x') + z' + s C /3G(i') + int Z+, and ag + to + 1 € /8H(x') + W+. Therefore,

z + 2((intZ+)nS)) x (aq + w + T) C cone(j(D)) + (intZ+) x V7+.

Observing the set in the left-hand side of the inclusion is open, we know that

int (cone (J(D)) + (intZ+) x W+)

is nonempty. D

In a similar way, we can also show the following lemma.

LEMMA 6 . The set int(J(D) + Z+ x W+) ^ 0, if and only if the set
int(J(£>) + (intZ+) x W+) ^ 0.

LEMMA 7 . If u* = {z*,w') e U*+ = Z*+ x W±, with z* ^ O, u = (z,w)

G (intZ+) x W+, then (u,u*> > 0.

https://doi.org/10.1017/S0004972700040168 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040168


[7] Optimality conditions 323

P R O O F : According to definition of U+, we have (u, u*) ^ 0. Assume that there exists
"o = (zo, wo) S (int Z+) x W+ such that (u0, u*) = 0, that is, {z0, z*) + (w0, w*) = 0. Since
z0 € intZ+, then there is a neighbourhood 5 of the origin in Z, such that zo + S C intZ+.
Noting that S is absorbing, we see that for every v € Z, there is e > 0 such that
ZQ ± ev € int Z+. Hence, (z0 ± ev, z*) + (w0, w*) ^ 0, or in other words,

(zo,z*) + (wo,w*) ^ ±e{v,z*).

Thus (v, z*)=0. Therefore z* = O. However, this contradicts the assumption. Thus the
proof is complete. D

In the remainder of this section, we consider the following two systems,

SYSTEM 1. 3x0 e D, such that -G{x0) n intZ+ ^ 0, -H(x0) D W+ ^ 0.

SYSTEM 2. 3u* = (z*,w') eZ*+xW]_\ {(0,0)}, such that

(2) ( )

In what follows, we use the above two systems to describe the Farkas-Minkowski
type alternative theorem under the assumption of nearly cone-semiconvexlike set-valued
maps. The proof of this theorem is based on the separation theorems of convex sets in
topological vector spaces (for instance, see [10, Theorem 3.8]).

THEOREM 1 . Suppose that the set-valued map J = (G, H) : D -* 2U is nearly
U+-semiconvexlike on D. Suppose that the interior of the set J(D) + U+ is nonempty,
Then,

(i) If System 2 has a solution (z*,w*) € Z\ x W\, with z* jt O, then System

1 has no solution.

(ii) If System 1 has no solution, then System 2 has a solution (z*, w*).

PROOF: (i) Assume that System 2 admits a solution (z*,w*) € Z*+ x W+, with
z* ^ O. If System 1 admits a solution x0 € D, then there are p 6 G(xo), q € H(x0)
such that -p G intZ+, -q € W+. It follows by Lemma 7 that (p, z*) + (q,w') < 0. This
contradicts (2).

(ii) Set M = J(D) + (int Z+) x W+. According to Lemma 6 and the assumption of
int(J(D) + Z+ x W+) ^ 0, we have intM ^ 0. Since J is nearly l/+-semiconvexlike on
D, hence M is nearly convex. It follows by Lemma 3 that int M is convex.

Since System 1 has no solution, then O £ M so that O $. intM. As a matter of
fact, assume that O 6 M; there are a ^ 0 and x' e D such that O € aG(x') + intZ+,
and O € aH(x') + W+. Since O £ intZ+, hence a > 0. therefore -G(x') n intZ+ ^ 0,
—H(x') n W+ 7̂  0. This is impossible since System 1 admits no solution.

Now using the separation theorem for convex sets in topological vector spaces, we
know that there is a hyperplane H properly separating {0} and int M, that is,

3u* = (z',w') eZ*xW
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a G R, such that

(3) (u,u*)^a^ 0, Vu G int M,

where the hyperplane function can be written as H = {y G U \ (y,u*) = a}.

In the following, we shall prove that

(4) (u,u') >0,VuGintM.

There are two cases to be considered. The first case is a > 0. But this is simple
because it follows by (3) that the inequality (4) holds.

The second case is a = 0. Here it follows again by (3) that

(5) («,«*) 5s0,Vu€intM.

Comparing (4) with (5), we can see that it is sufficient to show (u, u*) ^ 0, Vu e intM.
Suppose the contrary; there is u0 G int M such that (u0, u') = 0. Let v G int M be given
arbitrarily. Thus there is e > 0 such that u0 — ev € int M. Hence it follows by (5) that
(UQ — ev,u*) ^ 0, that is, (uo,u*) ^ £(v,u*). So, (v,u*) < 0. On the other hand, also by
(5), we get (v,u*) ^ 0. Therefore,

{v,u*) =0,Wv e intM.

This illustrates that the hyperplane H does not separate {0} and int M properly. Then
a contradiction is introduced.

Thus the proof that the inequality (4) holds is complete.

It follows by Lemma 4 that

(6) (u , i t ' )>0,Vu£M.

Next, we check u* — (z*, u*) € Z\ x W+; indeed, assume z* £ Z\. Then there exists
zx € 2+ such that {zx,z*) < 0. Thus, \{zuz") = (\zi,z*) < 0, VA > 0. According to (6),
for each x € D, each z' e intZ+, and each w' € W+, we have (p+z',z*) + (q+w', w*) ^ 0,
Vp 6 G(x), Vq 6 H(x). Since \zx e Z+, Xzi + z' € intZ+. Again by (6), we have
(p + Xzi + z', z*) + (q + w', w*) ^ 0, that is,

(7) X(z1>z') + (p + z',z') + (q + w',w') > 0,VA > 0.

However, (7) does not hold when A is too large. Hence we have z* 6 Z*+. We can
analogously show w* G W±. Thus, 3u* = {z',w') € Z% x W± \ {{O,O)}, such that
(u, u*> ^ 0, Vu G M, that is,

(J(x) + t,um) ^ 0,Vx 6 D,Vt e (intZ+) x W+.
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Take t0 € (intZ+) x W+, and An > 0 such that Xn -t 0(n -> oo); then we have (j(x)

+ \nto, u') ?z 0, Vx € D, n = 1,2,.... Letting n —> oo, we obtain

(G{x),z*) + (H(x),w*) ^O.VieD.

The proof is thus complete. D

In particular, if we set W+ = {O}, the following result is derived directly by Theo-
rem 1.

COROLLARY 5 . Suppose that the set-valued map J : D -> 2U is nearly
U+-semiconvexlike on D. Suppose that the interior of the set J(D) + U+ is nonempty.
If there is no x € D such that -G{x) n intZ+ ^ 0, O € H{x). Then 3u* = (z*,w*)
ZZ'+xW*\{(O,O)}, such that

{G(x),z') + (H(x),w*) > 0,Vz e D.

4. WEAK E-MINIMISERS AND OPTIMALITY CONDITIONS

Let Y be a topological vector space with pointed convex cone Y+ with a nonempty
interior. Let F : D -»• 2Y be a set-valued map such that F(x) ^ 0,Vx e D. Let E c V
be a nonempty subset, and let e € Y+, O € E.

We consider the following set-valued vector optimisation (P),

minF(x),

such that - G(x) n Z+ ^ <D,

- H{x) r\W+^iD.

Whenever we set W+ = {O}, (P) reduces to (P'),

minF(a;),

such that - G(x) C\Z+^%,

O € H{x).

In this section, we work at the optimality conditions for (P). The feasible set of (P)
is defined by K = {x € D | -G{x) n Z+ # 0, - f f ( i ) n f f + / 8 } .

DEFINITION 4:

(i) x0 S ^ is called a weakly efficient solution of (P), if there is y0 € F(x0)
such that (y0 - F(K)) D mtY+ = 0. The pair (xo,yo) is called a weak
minimiser of (P).

(ii) x0 € K is called a weakly e-efficient solution of (P), if there is y0 £ F(x0)

such that (?/o — F(K) — e) D intK+ = 0. The pair (xo,yo) is called a weak
e-minimiser of (P).
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In [1], the authors defined an H near the minimum solution of vector optimisation.
In this section, we use their idea to define weakly E-efficient solutions of set-valued vector
optimisation, and then discuss the existence of weakly E-efficient solutions and weak E-
minimisers of set-valued vector optimisation.

DEFINITION 5: A point x0 G K is called a weakly E-efficient solution of (P), if and
only if 3y0 G F(x0) such that (y0 - F(K) - E) n int Y+ = 0. The pair (x0, yo) is called a
weak E-minimiser of (P).

It is clear that the set of weakly efficient solutions contains the set of weakly e-
efficient solutions, or the set of E-efficient solutions. Now we investigate the relationships
between weakly e-efficient solutions and weakly E-efficient solutions.

THEOREM 2 .

(i) If E = {e}, then weakly E-efficient solutions are equivalent to weakly s-

efiicient solutions.

(ii) If there is e' G E such that e - e' G Y+, then weakly E-efficient solutions

imply e-efficient solutions.

(iii) If E — e C Y+, then weakly e-efficient solutions imply weakly E-efficient
solutions.

PROOF: We only show (ii) as (iii) can be proved similarly. Assume there is e' G E
such that e-e' G Y+. Thus, we have e+int Y+ C e'+Y++intY+ C e'+int Y+ C E+intY+.
Suppose that XQ G K is a weakly E-efficient solution. Then (yo—F(K))n(E+\nt Y+) = 0.
Hence, (yo-F(K)) n(e + int Y+) = 0. Therefore x0 is also a weakly e-efficient solution. D

Set I{x) = F{x) x G(x) x H(x) = (F, G,H)(x),Vx € D,V = Y x Z xW. Hence we
have V+ = Y+ x Z+ x W+, V* = V x Z* x W, and V; = Y* x Z\ x W'+. The definition
below coincides with Definition 3 when we consider V as the product of (Y x Z) and W.

DEFINITION 6: The set-valued map / = (F,G,H) : D -> 2V is called nearly V+-

semiconvexlike on D, if and only if 3t G intY+, 3u G intZ+, 3a G (0,1) such that
\/xi,x2 G D, Ve > 0, we have e(t, u, O) + a / fo) + (1 - a)I{x2) C /(£>) + V+.

In view of Proposition 5, we can find that the set-valued map / : D -4 2V is nearly
y+-semiconvexlike on D if and only if the set I(D) + (intY+ x intZ+) x W+ is nearly
convex.

A set-valued Lagrangian function L : D x Y+ x Z\ x W+ -> 2R for (P) is defined as,

Hx,y\z\w*) = (F(x),y*)+(G(x),z-)+(H(x),w'), (x,y',x',w*) G

We consider the following unconstrained scalar optimisation problem (UP) with set-
valued functions induced by (P),

mmL{x,y\z\w*), {y\z\w*) G Y+* x Z\ x W*.
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DEFINITION 7: A point x0 S D is called (E, y')-optimal solution of (UP), if and
only if 3r0 € L(x0, y*,z',w*) such that r0 ^ L(x,y',z',w') + (E,y*), Vx e D. The pair
(xo,ro) is called an (E, y*)-optimiser of (UP).

Now, we establish the optimality conditions in terms of (P) and (UP). For the
simplicity, we suppose that the set E, satisfying O € E C Y, is convex. It is easy to
verify that if the set-valued map H is nearly V^-semiconvexlike on D, y0 € Y, then
(F(x) + E — yo) x G(x) x H(x) is also nearly V^-semiconvexlike on D.

THEOREM 3 . Let (xo, yo) be a weak E-minimiser of (P); assume that

(i) I(x) = F(x) x G(x) x H(x) is nearly V+-semiconvexlike on D;

(ii) 320 € Y, such that (z0,O,0) € int(J(D) + V+).

Then 3(y',2*,iy*) 6 K+ x Z% x W%, with y* ^ O such that (x0, (yo,y*)) is an (E,y'}-
optimiser of (UP), and inf(G(xo),2*) = 0.

PROOF: Let P(x) = (F(x) + E -y0) x G{x) x H(x). It follows by assumption (i)
that P(x) is also nearly V+-semiconvexlike on D. Since (xo,yo) is a weak E-minimiser
of (P), we have -(F{K) - y0 + E) n intF+ = 0. It is obvious that -(G(x) x H{x))
n (int Z+) xW+ = <t),Vx£D\K. Thus

-P(x) n ((intF+) x (intZ+) x W+) =0, Vi€ D.

Since {z0,O,O) 6 int(/(D) + V+), hence 3x' e D such that z0 6 int(F(x') + Y+),

{O, O) 6 int(G(x') x H(x') + Z+x W+). Thus zo-y + Ec-y + E + int(F(x') + Y+)

C int(F(x') - y + E + Y+). So, int(P(£>) + V+) ± 0.
By applying (ii) in Theorem 1, we have that 3(y',z',w*) € Y{ x Z+ x W+\

{(0,0 ,0)} , such that (P(x),(y*,z*,w')) > 0, x € D. That is

(8) (E,y*) + (F{x), y') + (G(x), z") + (H(x), w') > (y0, y'), Vz € D.

Next, we show y* ̂  O. Assume the contrary. Then (z*,w*) ^ (0,0), and (8) can
be rewritten as

(9) (G(x),z') + (H(x),w')>O,\/x(ED.

Hence

(10) (G{x) + Z+, z') + (H{x) + W+, w') ^ 0, Vx e D.

We have two cases to be discussed. One case is z* / O. Since (0,0) € int(G(x')
x H(x') + Z+ x W+), then we can take xx e D arbitrarily, and for any v\ € G(x{),
v2 e H(xi), k\ € in tZ + , k2 € W+, satisfying (v\ + ki,v2 + k2) € Z x W, there is e > 0
such that ±e(vi + kuv2 + k2) e int(G(x') x H(x') + Z+x W+). It follows by (10) that
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(vi + ki, z") + (v2 + k2, w*) = 0. Observing (9), we obtain <Arx, z*) + {k2, w*) ^ 0. This is
in contradiction to Lemma 7.

The other case is z* = O. Then (10) can be rewritten as (H(x) + W+,w') > 0,
Vz £ D. Because of O e int(H(x') + W+), we have that for each v eW, there is e0 > 0
such that ±eov e int(H(x') + W+). Thus, eo{v, w') =0,\/v£ W, which implies w* = O.
This is also a contradiction.

Thus the proof of y* ^ O is complete.

Observing O € E, we rewrite (8) as

(11) (F{x),y*) + (G(x),z*) + (H{x),w*) > (y0,y*),Vx 6 D.

Since x0 e K, there are p e G(x0), q £ H(x0) such that p € -Z+ , —g € W+. It
follows that (p, z*) + (q, w*) ^ 0. On the other hand, setting x = XQ in (11), we get

<Vo, 1/') + <P, ^*) + (9, W) ^ (tto, y*>.

That is (p, 2') + (9, w*) ^ 0. Thus

(12) <p, z') + {q, w*) = 0.

Hence (yo,2/*) € (F(xo),y*) + (G(xo),z*)+(H{xo),w*) = L(xo,y*,z*,w*). Observing
(8), we know that (x0, (yo,y*)) is an (E,?/*)-optimiser of (UP).

Because of p & —Z+, and q € — W+, we get (p, z*) ^ 0, and (q,w*) ^ 0. Noticing
(12), we have (p,z*) = (?,«;*) = 0.

Take x = x0 in (11) again. We obtain

(vo,V*) + (G(xo),z') + (q,w') > (yo,y*)-

That is (G(xo),z*) ^ 0. Due to 0 = (q,z*) e (G(xo),z'), consequently, we have

in{(G(xo),z')=O- D

COROLLARY 6 . Let (io, j/o) be a weak E-minimiser of (P); assume that

(i) /(x) = F(x) x G(x) x H(x) is neariy V+-semiconvexlike on D;

(ii) 3a;' G D, such that -G(a;') n int Z+ ^ 0, - int H(i ' ) n W+ ^ 0.

Then 3(y*,z*,io') 6 y ; x Z\ x W;, with y* ^ O such that (x0, (yo,y*)) is an (E,y')~
optimiser of (UP), and inf (G(a;o),2*) = 0.

In practice, from assumption (ii) in Corollary 6, one can readily deduce condition (ii)
in Theorem 3, thus the proof of Corollary 6 is similar to that of Theorem 3. In the rest
of this section, we give some sufficient optimality conditions for Problem (P) under the
supposition of generalised constraint qualifications, without any convexity assumptions.

THEOREM 4 . Let x0 e K; assume that,

https://doi.org/10.1017/S0004972700040168 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040168


[13] Optimality conditions 329

(i) 3y0 € F{x0), 3(y*,zm,wm) G Y; X Z% X W'+ \ {(O,O,O)} such that

{y0, y');

(ii) -int(H{D)) nW+^ 0; 3x' e D, such that - G ( i ' ) n in tZ+ ^ 0, - if(x ')

n W+ / 0.

Then (xo, yo) is a weaJc E-minimiser of (P).

PROOF: According to assumption (i), we have

(13) (F{x) - 2/0,2/*) + (G(x),z*) + (H(x),w*) > 0,Vx G D.

We show y* ̂  O below. Suppose that y* — O. Then

(14)

In order to derive a contradiction, we consider the following two cases respectively. One
case is z* ̂  O. By assumption (ii), there are x' € D, U\ € G(x'), u-i € H(x') such that
—Ui € intZ+, - u 2 E VK+. Hence («i,z*) + (u2,iy*) < 0. This contradicts (14).

The other case is z* = O. It follows by assumption (i) that w* ^ O. From assumption
(ii), there is y' S W+ such that — y' € intH(D). For each v € W, it is not difficult to
check (v,w*) = 0. This implies w* = O, which is exactly in contradiction.

Therefore the proof of y* ^ O is complete.

Next we show (xo,2/o) is a weak E-minimiser of (P). Otherwise, there are Xi € K,
t £ F(xi), e € E such that yo — t — e G intV+. By [5, Lemma 1.1], we have

(15) (t-yo + e,y*)<O.

Since xx € K, there are p € G(xi), q e H(xx) such that - p e Z+, -q € W+. Taking (15)
into account, we obtain (t - y0 + e, y') + (p, z*) + {q, w*) < 0. Seeing the fact (e, y*) ^ 0,
we again obtain

(t-yo,y') + (p,z') + (q,w'}<O.

This conflicts with (13). Thus (xo,y0) is a weak E-minimiser of (P). D

The following corollary is very natural.

COROLLARY 7 . Let x0 e K; assume that there are y0 € F(x0), (y*,z',w')
6 Y± x Z*+ x WX \ {(O,O,O)}, with y* / O, such that

mm((F(x),y') + (G(x),z') + (H(x),w')) > (yo,y*).

Then (x0,2/o) is a weak E-minimiser of (P).
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