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On Segre Forms of Positive Vector Bundles

Dincer Guler

Abstract. The goal of this note is to prove that the signed Segre forms of Griffiths’ positive vector

bundles are positive.

1 Introduction

Let E be a Hermitian holomorphic vector bundle over a complex manifold X. Nat-

urally, restrictions on the curvature of E will impose some restrictions on all con-

structions arising from it. The goal of this note is to prove that when E has a met-

ric with positive (Griffiths’) curvature, then certain combinations of Chern forms,

known as signed Segre forms, are positive. This gives evidence for a conjecture of

Griffiths ([2]), which predicts that if E has a positive curvature, then a combination

of Chern forms is positive if and only if it can be written as a nontrivial combination

of Schur polynomials of Chern forms with nonnegative coefficients. We remark that

the signed Segre forms are Schur polynomials of Chern forms.

A very similar problem was considered by Fulton and Lazarsfeld ([1]) who con-

firmed the aforementioned conjecture for Chern classes of an ample vector bundle.

An everywhere closed positive (p, p) form on a projective manifold Xn always gives a

positive (p, p) cohomology class, but for 1 < p < n − 1, the converse is not known.

Before proceeding further we state our main theorem.

Theorem 1.1 (Main Theorem) Let X be a projective manifold and let E be a Grif-

fiths’ positive vector bundle over X. If Sk(E) denote the Segre forms of E, then the form

(−1)kSk(E) is a positive (k, k)-form for any k = 1, . . . , n.

2 Preliminaries

Positive forms. Let Xn be a complex manifold equipped with a Hermitian metric

ω. A smooth (p, p)-form α is said to be strongly positive if in local coordinates there

is a representation α = i pα1 ∧ α1 ∧ α2 ∧ α2 ∧ · · · ∧ αp ∧ αp, where each α j is a

smooth (1, 0) form and α j ’s are linearly independent. A smooth (p, p) form ϕ on X

is said to be positive if in local coordinates we can write ϕ ∧ α = f ωn, where f is a

positive function on X, for any strongly positive form of bidegree (n− p, n− p). This

definition is independent of the choice of the metric.

In fact a (p, p)-form ϕ is positive if and only if ϕ restricts to a volume form on

any p-dimensional subvariety of X or if and only if for any x ∈ X and any linearly
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independent (1, 0) type tangent vectors v1, . . . , vp at x it holds that

(−i)p2

ϕ(v1, . . . , vp, v̄1, . . . , v̄p) > 0.

We finish this paragraph by remarking that if X and Y are complex manifolds and

if f : X → Y is a holomorphic submersion, then for any strongly positive form α on

Y , f ∗α is again a strongly positive form on X.

Griffiths’ positivity, Chern and Segre forms. Let (E, h) be a Hermitian holomor-

phic vector bundle over X. Recall that the curvature matrix of E is given by Θ = (Θi
j),

where each Θi
j is a (1, 1)-form expressed in local coordinates by Θi

j = Ri
jαβdzα∧dz̄β .

For sections u, v in E we define the (1, 1) form Θuv̄ by

Θuv̄ =

r
∑

i, j,k=1

Θ
k
i hk jui v̄ j ,

where u =
∑

uiei and v =
∑

viei under a frame {e1, . . . , er} of E. Then Θuv̄ is a

global (1, 1) form on X independent of the choice of e. The Hermitian bundle E is

said to be positive in the sense of Griffiths, or Griffiths positive if iΘvv̄ is a positive

(1, 1) form for any x ∈ X and any nonzero v ∈ Ex.

Let P(E) denote the projectivized bundle of lines of E∗. Then P(E) is a projective

manifold which carries the so-called tautological line bundle OE(−1) defined by the

short exact sequence

0 −→ OE(−1) −→ π∗E∗ −→ OE(−1) ⊗ TP(E)/X −→ 0.

The Hermitian metric h on E naturally induces a Hermitian metric on OE(−1) and it

is well known that for any p ∈ X and any v 6= 0, v ∈ Ep the curvature of L = OE(−1)

at the point (p, [v]) ∈ P(E) is given by

Θ(L)|(p,[v]) =
1

|v|2
Θ(E∗)vv̄ − ωFS,

where ωFS is the Fubini–Study metric on the fibers. It follows that if E is a Griffiths

positive vector bundle over X, then OE(1) is an ample line bundle over P(E).

Let X be a complex manifold and let (E, h) be a Hermitian vector bundle over X.

The Chern forms Ck(E) are defined as fk( i
2π Θ), where

det(P + tI) = fn(P) + fn−1(P)t + · · · + f1(P)tn−1 + tn

and the Segre forms are defined inductively by the relation

Sk(E) + C1(E)Sk−1(E) + · · · + Ck(E) = 0.

In particular, S1(E) = −C1(E), S2(E) = C2
1(E) −C2(E) and so on.

If E is a positive line bundle, then all the forms Ck
1(E) are positive for k no greater

than the dimension of X. For the rest of this paper define Φ = C1(OP(E)(1)). Then

the forms Φk are positive for k ≤ dim(X) + rank(E) − 1.
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Push forward of forms. Let M and N be oriented differentiable manifolds of re-

spective dimensions m and n and let f : M → N be a proper submersion. That is, f

is surjective and has surjective differential everywhere and the fibers are compact and

connected. Write r = m − n.

For any smooth (p + r)-form η on M there exists a unique smooth p-form ξ on N

such that the equality
∫

M

η ∧ f ∗ϕ =

∫

N

ξ ∧ ϕ

holds for any smooth (n − p)-form ϕ on N with compact support. We call this form

ξ the push-forward of η and denote it by f∗η.

Lemma 2.1 Let X and Y be compact Kähler manifolds of respective dimensions m and

n and let f : X → Y be a holomorphic fibration without singular fibers. If η is a positive

(p + r, p + r) form on X, then f∗η is a positive (p, p) form on Y , where r = m − n.

Proof First let η be a top degree positive form. Denote the volume form of Y by dVY

and let ω be the Kähler form on X. Since f is of maximum rank everywhere, the form

ωr ∧ f ∗(dVY ) is a positive (m, m)-form on X. So we can write η = g(x)ωr ∧ f ∗(dVY )

for some positive function g on X. But then

f∗η =

(

∫

F

g(x)ωr
)

dVY

is a positive form, since (
∫

F
g(x)ωr) is a positive function on Y , where F denotes a

fiber of f .

Now let η be a positive form of degree (p + r, p + r) on X and let τ be a strongly

positive form on Y with complementary degree to f∗η. Then f ∗τ is strongly positive

on X, so η ∧ f ∗τ is a positive top degree form on X. By the argument above,

f∗(η ∧ f ∗τ ) = ( f∗η) ∧ τ

is positive. Thus the push forward f∗η is positive.

3 Proof of the Main Theorem

Our main theorem follows from the next proposition and the previous lemma.

Proposition 3.1 Let X be a projective manifold and (E, h) a Hermitian vector bundle

over X of rank r. Let π : P(E) → X be the projectivization of E. Then the push forward

form π∗(Φk+r−1) is exactly equal to the signed Segre form (−1)kSk(E) on X for any

1 ≤ k ≤ n.

Proof Recall that Φ = C1(OP(E)(1)) =
i

2π Θ(OP(E)(1)) is a global (1, 1)-form on

P(E) and at p = (x, [v]) ∈ P(E), where v ∈ E∗, we have

Φ =
i

2π

(

−
1

|v|2
Θvv̄ + ωFS

)

,
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where Θ is the curvature form of E∗ and ωFS is the Fubini–Study metric on the fiber

π−1(x) = P(E∗
x ) ∼= Pr−1 induced from the metric on E∗

x (see [3] or [4]).

Since ωk
FS = 0 for k ≥ r we have by the binomial formula that for any 1 ≤ k ≤ n,

Φ
k+r−1

=

( i

2π

) k+r−1
k+r−1
∑

j=k

(−1) j

(

k + r − 1

j

)

( 1

|v|2
Θvv̄

) j

∧ ω
k+r−1− j
FS .

When we push forward this form, we are integrating over the fibers of π : P(E) → X,

so only the first term in the right-hand side survives:

π∗Φ
k+r−1

=

( i

2π

) k+r−1

(−1)k

(

k + r − 1

k

)
∫

[v]∈P(E∗

x )

( 1

|v|2
Θvv̄

) k

∧ ωr−1
FS .

Fix a point x ∈ X and let {e1, . . . , er} be a local unitary frame of E∗ near x. For

v =
∑r

i=1 viei write U = {[v] ∈ P(E∗
x ) : vr 6= 0} and ti = vi/vr, 1 ≤ i ≤ r. Then

U ∼= Cr−1 is an open subset of the fiber P(E∗
x ) and (t1, . . . , tr−1) are its coordinates.

On this fiber we have

( 1

|v|2
Θvv̄

) k

∧ ωr−1
FS =

(

r
∑

i, j=1

Θ
i
jti t̄ j

) k dt ∧ dt̄

(1 + |t|2)k+r
,

where |t|2 = |t1|
2 + · · ·+ |tr−1|

2, dt = dt1 ∧ · · · ∧ dtr−1 and we wrote for convenience

tr = 1. Plug in this expression for π∗Φ
k+r−1 and we get that at x ∈ X,

π∗Φ
k+r−1

= (−1)k

(

k + r − 1

k

) r
∑

i1,...,ik, j1,..., jk

BI JΘ
i1

j1
. . .Θik

jk
,

where

BI J =

( i

2π

) k+r−1
∫

t∈Cr−1

ti1
· · · tik

t̄ j1
· · · t̄ jk

(1 + |t|2)k+r
dt ∧ dt̄,

and I = (i1, . . . , ik), J = ( j1, . . . , jk) are multi-indices, namely, they both belong to

the set {1, . . . , r}k.

Let us denote for the moment I = J if I and J are equal as sets with multiplicities.

If I 6= J, then in the expression of BI J there will be terms of the form e±iθ and since
∫ 2π

0
e±iθ dθ = 0, we observe that BI J = 0 for I 6= J. If I = J, then using the well-

known formula

( i

2π

) r−1
∫

Pr−1

|t1|
2m1 · · · |tr−1|

2mr−1

(1 + |t|2)k+r
dt ∧ dt̄ =

(r − 1)!
∏

mi !

(r − 1 + k)!
,

where
∑

mi = k we obtain that BI J = (i/2π)kβ for some β ∈ Q . Therefore,

π∗Φ
k+r−1

= P
( i

2π
Θ

)
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becomes a homogeneous polynomial of degree k in the entries of the curvature i
2π Θ

of E∗ with coefficients in Q . On the other hand, the push forward π∗Φ
k+r−1 is a global

(k, k)-form on X independent of the choice of local frames of E∗. That is, the polyno-

mial P is invariant under the change A 7→ AΘA−1 for any A ∈ GL(r, C). Therefore,

it must be a polynomial of Chern forms π∗Φ
k+r−1 = f1(C1, . . . ,Cr), where f1 is

a weighted homogeneous polynomial of the Chern forms of E with rational coef-

ficients. Of course, (−1)kSk(E) = f2(C1, . . . ,Cn) is also a weighted homogeneous

polynomial of the Chern classes of E.

Let [A] denote the cohomology class of a given form A. From the theory of Chern

classes we know that π∗[Φk+r−1] = [(−1)kSk(E)] = (−1)ksk(E), where sk(E) is the

k-th Segre class of E. Moreover the push forward commutes with the d-operator,

hence [π∗Φ
k+r−1] = π∗[Φk+r−1]. It follows that the difference f = f1 − f2 is a closed

global (k, k)-form on X which represents the trivial cohomology class.

Note that f (C1, . . . ,Cr) is the same weighted homogeneous polynomial of Chern

forms and [ f ] = 0 regardless of what vector bundle we begin with. More precisely, if

Jk denote the set of all r-tuples of positive integers ( j1, . . . , jr) such that

j1 + 2 j2 + · · · + r jr = k

and if for J ∈ Jk we define C J = C
j1

1 ∧ · · · ∧C
jr
r , then we have

f (C1, . . . ,Cr) =

∑

J

a JC J,

where the coefficients a J are independent of E.

In particular if we choose E = Hx1 ⊕ · · · ⊕ Hxr , where H is an ample line bundle

on X and x1, . . . , xr are positive integers, we obtain that f is a polynomial in xi ’s with

coefficients a J . On the other hand,

f (C1(E), . . . ,Cr(E)) = h(x1, . . . , xr)C1(H)k

and

[ f ] = h(x1, . . . , xr)c1(H)k
= 0 in H2k(X)

for some homogeneous polynomial h of degree k with rational coefficients. It follows

that h(x1, . . . , xr) = 0 for any positive integers x1, . . . , xr and by the homogenity of h

we get that h ≡ 0. This implies that all the coefficients a J ≡ 0, so that f1 = f2. This

establishes the fact that π∗Φ
k+r−1 = (−1)kSk(E) for any 1 ≤ k ≤ n.

Combining the above proposition with Lemma 2.1, we obtain that the signed

Segre forms (−1)kSk(E) are positive for all 1 ≤ k ≤ n.
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