On Segre Forms of Positive Vector Bundles

Dincer Guler

Abstract. The goal of this note is to prove that the signed Segre forms of Griffiths' positive vector bundles are positive.

1 Introduction

Let E be a Hermitian holomorphic vector bundle over a complex manifold X. Naturally, restrictions on the curvature of E will impose some restrictions on all constructions arising from it. The goal of this note is to prove that when E has a metric with positive (Griffiths') curvature, then certain combinations of Chern forms, known as signed Segre forms, are positive. This gives evidence for a conjecture of Griffiths ([2]), which predicts that if E has a positive curvature, then a combination of Chern forms is positive if and only if it can be written as a nontrivial combination of Schur polynomials of Chern forms with nonnegative coefficients. We remark that the signed Segre forms are Schur polynomials of Chern forms.

A very similar problem was considered by Fulton and Lazarsfeld ([1]) who confirmed the aforementioned conjecture for Chern classes of an ample vector bundle. An everywhere closed positive (p, p) form on a projective manifold X^{n} always gives a positive (p, p) cohomology class, but for $1<p<n-1$, the converse is not known. Before proceeding further we state our main theorem.

Theorem 1.1 (Main Theorem) Let X be a projective manifold and let E be a Griffiths' positive vector bundle over X. If $S_{k}(E)$ denote the Segre forms of E, then the form $(-1)^{k} S_{k}(E)$ is a positive (k, k)-form for any $k=1, \ldots, n$.

2 Preliminaries

Positive forms. Let X^{n} be a complex manifold equipped with a Hermitian metric ω. A smooth (p, p)-form α is said to be strongly positive if in local coordinates there is a representation $\alpha=i^{p} \alpha_{1} \wedge \bar{\alpha}_{1} \wedge \alpha_{2} \wedge \bar{\alpha}_{2} \wedge \cdots \wedge \alpha_{p} \wedge \bar{\alpha}_{p}$, where each α_{j} is a smooth $(1,0)$ form and α_{j} 's are linearly independent. A smooth (p, p) form φ on X is said to be positive if in local coordinates we can write $\varphi \wedge \alpha=f \omega^{n}$, where f is a positive function on X, for any strongly positive form of bidegree $(n-p, n-p)$. This definition is independent of the choice of the metric.

In fact a (p, p)-form φ is positive if and only if φ restricts to a volume form on any p-dimensional subvariety of X or if and only if for any $x \in X$ and any linearly

[^0]independent $(1,0)$ type tangent vectors v_{1}, \ldots, v_{p} at x it holds that
$$
(-i)^{p^{2}} \varphi\left(v_{1}, \ldots, v_{p}, \bar{v}_{1}, \ldots, \bar{v}_{p}\right)>0
$$

We finish this paragraph by remarking that if X and Y are complex manifolds and if $f: X \rightarrow Y$ is a holomorphic submersion, then for any strongly positive form α on $Y, f^{*} \alpha$ is again a strongly positive form on X.

Griffiths' positivity, Chern and Segre forms. Let (E, h) be a Hermitian holomorphic vector bundle over X. Recall that the curvature matrix of E is given by $\Theta=\left(\Theta_{j}^{i}\right)$, where each Θ_{j}^{i} is a $(1,1)$-form expressed in local coordinates by $\Theta_{j}^{i}=R_{j \alpha \beta}^{i} d z_{\alpha} \wedge d \bar{z}_{\beta}$. For sections u, v in E we define the $(1,1)$ form $\Theta_{u \bar{v}}$ by

$$
\Theta_{u \bar{v}}=\sum_{i, j, k=1}^{r} \Theta_{i}^{k} h_{k j} u_{i} \bar{v}_{j}
$$

where $u=\sum u_{i} e_{i}$ and $v=\sum v_{i} e_{i}$ under a frame $\left\{e_{1}, \ldots, e_{r}\right\}$ of E. Then $\Theta_{u \bar{v}}$ is a global $(1,1)$ form on X independent of the choice of e. The Hermitian bundle E is said to be positive in the sense of Griffiths, or Griffiths positive if $i \Theta_{v \bar{v}}$ is a positive $(1,1)$ form for any $x \in X$ and any nonzero $v \in E_{x}$.

Let $\mathbb{P}(E)$ denote the projectivized bundle of lines of E^{*}. Then $\mathbb{P}(E)$ is a projective manifold which carries the so-called tautological line bundle $\mathcal{O}_{E}(-1)$ defined by the short exact sequence

$$
0 \longrightarrow \mathcal{O}_{E}(-1) \longrightarrow \pi^{*} E^{*} \longrightarrow \mathcal{O}_{E}(-1) \otimes T_{\mathbb{P}(E) / X} \longrightarrow 0
$$

The Hermitian metric h on E naturally induces a Hermitian metric on $\mathcal{O}_{E}(-1)$ and it is well known that for any $p \in X$ and any $v \neq 0, v \in E_{p}$ the curvature of $L=\mathcal{O}_{E}(-1)$ at the point $(p,[v]) \in \mathbb{P}(E)$ is given by

$$
\left.\Theta(L)\right|_{(p,[v])}=\frac{1}{|v|^{2}} \Theta\left(E^{*}\right)_{v \bar{v}}-\omega_{F S}
$$

where $\omega_{F S}$ is the Fubini-Study metric on the fibers. It follows that if E is a Griffiths positive vector bundle over X, then $\mathcal{O}_{E}(1)$ is an ample line bundle over $\mathbb{P}(E)$.

Let X be a complex manifold and let (E, h) be a Hermitian vector bundle over X. The Chern forms $C_{k}(E)$ are defined as $f_{k}\left(\frac{i}{2 \pi} \Theta\right)$, where

$$
\operatorname{det}(P+t I)=f_{n}(P)+f_{n-1}(P) t+\cdots+f_{1}(P) t^{n-1}+t^{n}
$$

and the Segre forms are defined inductively by the relation

$$
S_{k}(E)+C_{1}(E) S_{k-1}(E)+\cdots+C_{k}(E)=0 .
$$

In particular, $S_{1}(E)=-C_{1}(E), S_{2}(E)=C_{1}^{2}(E)-C_{2}(E)$ and so on.
If E is a positive line bundle, then all the forms $C_{1}^{k}(E)$ are positive for k no greater than the dimension of X. For the rest of this paper define $\left.\Phi=C_{1}\left(\mathcal{O}_{\mathbb{P}(E)}\right)(1)\right)$. Then the forms Φ^{k} are positive for $k \leq \operatorname{dim}(X)+\operatorname{rank}(E)-1$.

Push forward of forms. Let M and N be oriented differentiable manifolds of respective dimensions m and n and let $f: M \rightarrow N$ be a proper submersion. That is, f is surjective and has surjective differential everywhere and the fibers are compact and connected. Write $r=m-n$.

For any smooth $(p+r)$-form η on M there exists a unique smooth p-form ξ on N such that the equality

$$
\int_{M} \eta \wedge f^{*} \varphi=\int_{N} \xi \wedge \varphi
$$

holds for any smooth $(n-p)$-form φ on N with compact support. We call this form ξ the push-forward of η and denote it by $f_{*} \eta$.

Lemma 2.1 Let X and Y be compact Kähler manifolds of respective dimensions m and n and let $f: X \rightarrow Y$ be a holomorphic fibration without singular fibers. If η is a positive $(p+r, p+r)$ form on X, then $f_{*} \eta$ is a positive (p, p) form on Y, where $r=m-n$.

Proof First let η be a top degree positive form. Denote the volume form of Y by $d V_{Y}$ and let ω be the Kähler form on X. Since f is of maximum rank everywhere, the form $\omega^{r} \wedge f^{*}\left(d V_{Y}\right)$ is a positive (m, m)-form on X. So we can write $\eta=g(x) \omega^{r} \wedge f^{*}\left(d V_{Y}\right)$ for some positive function g on X. But then

$$
f_{*} \eta=\left(\int_{F} g(x) \omega^{r}\right) d V_{Y}
$$

is a positive form, since $\left(\int_{F} g(x) \omega^{r}\right)$ is a positive function on Y, where F denotes a fiber of f.

Now let η be a positive form of degree ($p+r, p+r$) on X and let τ be a strongly positive form on Y with complementary degree to $f_{*} \eta$. Then $f^{*} \tau$ is strongly positive on X, so $\eta \wedge f^{*} \tau$ is a positive top degree form on X. By the argument above,

$$
f_{*}\left(\eta \wedge f^{*} \tau\right)=\left(f_{*} \eta\right) \wedge \tau
$$

is positive. Thus the push forward $f_{*} \eta$ is positive.

3 Proof of the Main Theorem

Our main theorem follows from the next proposition and the previous lemma.
Proposition 3.1 Let X be a projective manifold and (E, h) a Hermitian vector bundle over X of rank r. Let $\pi: \mathbb{P}(E) \rightarrow X$ be the projectivization of E. Then the push forward form $\pi_{*}\left(\Phi^{k+r-1}\right)$ is exactly equal to the signed Segre form $(-1)^{k} S_{k}(E)$ on X for any $1 \leq k \leq n$.

Proof Recall that $\Phi=C_{1}\left(\mathcal{O}_{\mathbb{P}(E)}(1)\right)=\frac{i}{2 \pi} \Theta\left(\mathcal{O}_{\mathbb{P}(E)}(1)\right)$ is a global (1,1)-form on $\mathbb{P}(E)$ and at $p=(x,[v]) \in \mathbb{P}(E)$, where $v \in E^{*}$, we have

$$
\Phi=\frac{i}{2 \pi}\left(-\frac{1}{|v|^{2}} \Theta_{v \bar{v}}+\omega_{F S}\right)
$$

where Θ is the curvature form of E^{*} and $\omega_{F S}$ is the Fubini-Study metric on the fiber $\pi^{-1}(x)=\mathbb{P}\left(E_{x}^{*}\right) \cong \mathbb{P}^{r-1}$ induced from the metric on E_{x}^{*} (see [3] or [4]).

Since $\omega_{F S}^{k}=0$ for $k \geq r$ we have by the binomial formula that for any $1 \leq k \leq n$,

$$
\Phi^{k+r-1}=\left(\frac{i}{2 \pi}\right)^{k+r-1} \sum_{j=k}^{k+r-1}(-1)^{j}\binom{k+r-1}{j}\left(\frac{1}{|v|^{2}} \Theta_{v \bar{v}}\right)^{j} \wedge \omega_{F S}^{k+r-1-j}
$$

When we push forward this form, we are integrating over the fibers of $\pi: \mathbb{P}(E) \rightarrow X$, so only the first term in the right-hand side survives:

$$
\pi_{*} \Phi^{k+r-1}=\left(\frac{i}{2 \pi}\right)^{k+r-1}(-1)^{k}\binom{k+r-1}{k} \int_{[v] \in \mathbb{P}\left(E_{x}^{*}\right)}\left(\frac{1}{|v|^{2}} \Theta_{v \bar{v}}\right)^{k} \wedge \omega_{F S}^{r-1}
$$

Fix a point $x \in X$ and let $\left\{e_{1}, \ldots, e_{r}\right\}$ be a local unitary frame of E^{*} near x. For $v=\sum_{i=1}^{r} v_{i} e_{i}$ write $U=\left\{[v] \in \mathbb{P}\left(E_{x}^{*}\right): v_{r} \neq 0\right\}$ and $t_{i}=v_{i} / v_{r}, 1 \leq i \leq r$. Then $U \cong \mathbb{C}^{r-1}$ is an open subset of the fiber $\mathbb{P}\left(E_{x}^{*}\right)$ and $\left(t_{1}, \ldots, t_{r-1}\right)$ are its coordinates.

On this fiber we have

$$
\left(\frac{1}{|v|^{2}} \Theta_{v \bar{v}}\right)^{k} \wedge \omega_{F S}^{r-1}=\left(\sum_{i, j=1}^{r} \Theta_{j}^{i} t_{i} \bar{t}_{j}\right)^{k} \frac{d t \wedge d \bar{t}}{\left(1+|t|^{2}\right)^{k+r}}
$$

where $|t|^{2}=\left|t_{1}\right|^{2}+\cdots+\left|t_{r-1}\right|^{2}, d t=d t_{1} \wedge \cdots \wedge d t_{r-1}$ and we wrote for convenience $t_{r}=1$. Plug in this expression for $\pi_{*} \Phi^{k+r-1}$ and we get that at $x \in X$,

$$
\pi_{*} \Phi^{k+r-1}=(-1)^{k}\binom{k+r-1}{k} \sum_{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k}}^{r} B_{I J} \Theta_{j_{1}}^{i_{1}} \ldots \Theta_{j_{k}}^{i_{k}}
$$

where

$$
B_{I J}=\left(\frac{i}{2 \pi}\right)^{k+r-1} \int_{t \in \mathbb{C}^{r-1}} \frac{t_{i_{1}} \cdots t_{i_{k}} \bar{t}_{j_{1}} \cdots \bar{t}_{j_{k}}}{\left(1+|t|^{2}\right)^{k+r}} d t \wedge d \bar{t}
$$

and $I=\left(i_{1}, \ldots, i_{k}\right), J=\left(j_{1}, \ldots, j_{k}\right)$ are multi-indices, namely, they both belong to the set $\{1, \ldots, r\}^{k}$.

Let us denote for the moment $I=J$ if I and J are equal as sets with multiplicities. If $I \neq J$, then in the expression of $B_{I J}$ there will be terms of the form $e^{ \pm i \theta}$ and since $\int_{0}^{2 \pi} e^{ \pm i \theta} d \theta=0$, we observe that $B_{I J}=0$ for $I \neq J$. If $I=J$, then using the wellknown formula

$$
\left(\frac{i}{2 \pi}\right)^{r-1} \int_{\mathbb{P} r-1} \frac{\left|t_{1}\right|^{2 m_{1}} \cdots\left|t_{r-1}\right|^{2 m_{r-1}}}{\left(1+|t|^{2}\right)^{k+r}} d t \wedge d \bar{t}=\frac{(r-1)!\prod m_{i}!}{(r-1+k)!}
$$

where $\sum m_{i}=k$ we obtain that $B_{I J}=(i / 2 \pi)^{k} \beta$ for some $\beta \in(\mathbb{O}$. Therefore,

$$
\pi_{*} \Phi^{k+r-1}=P\left(\frac{i}{2 \pi} \Theta\right)
$$

becomes a homogeneous polynomial of degree k in the entries of the curvature $\frac{i}{2 \pi} \Theta$ of E^{*} with coefficients in $\left(\mathbb{O}\right.$. On the other hand, the push forward $\pi_{*} \Phi^{k+r-1}$ is a global (k, k)-form on X independent of the choice of local frames of E^{*}. That is, the polynomial P is invariant under the change $A \mapsto A \Theta A^{-1}$ for any $A \in \mathrm{GL}(r, C)$. Therefore, it must be a polynomial of Chern forms $\pi_{*} \Phi^{k+r-1}=f_{1}\left(C_{1}, \ldots, C_{r}\right)$, where f_{1} is a weighted homogeneous polynomial of the Chern forms of E with rational coefficients. Of course, $(-1)^{k} S_{k}(E)=f_{2}\left(C_{1}, \ldots, C_{n}\right)$ is also a weighted homogeneous polynomial of the Chern classes of E.

Let $[A]$ denote the cohomology class of a given form A. From the theory of Chern classes we know that $\pi_{*}\left[\Phi^{k+r-1}\right]=\left[(-1)^{k} S_{k}(E)\right]=(-1)^{k} s_{k}(E)$, where $s_{k}(E)$ is the k-th Segre class of E. Moreover the push forward commutes with the d-operator, hence $\left[\pi_{*} \Phi^{k+r-1}\right]=\pi_{*}\left[\Phi^{k+r-1}\right]$. It follows that the difference $f=f_{1}-f_{2}$ is a closed global (k, k)-form on X which represents the trivial cohomology class.

Note that $f\left(C_{1}, \ldots, C_{r}\right)$ is the same weighted homogeneous polynomial of Chern forms and $[f]=0$ regardless of what vector bundle we begin with. More precisely, if ∂_{k} denote the set of all r-tuples of positive integers $\left(j_{1}, \ldots, j_{r}\right)$ such that

$$
j_{1}+2 j_{2}+\cdots+r j_{r}=k
$$

and if for $J \in \mathcal{J}_{k}$ we define $C_{J}=C_{1}^{j_{1}} \wedge \cdots \wedge C_{r}^{j_{r}}$, then we have

$$
f\left(C_{1}, \ldots, C_{r}\right)=\sum_{J} a_{J} C_{J},
$$

where the coefficients a_{J} are independent of E.
In particular if we choose $E=H^{x_{1}} \oplus \cdots \oplus H^{x_{r}}$, where H is an ample line bundle on X and x_{1}, \ldots, x_{r} are positive integers, we obtain that f is a polynomial in x_{i} 's with coefficients a_{J}. On the other hand,

$$
f\left(C_{1}(E), \ldots, C_{r}(E)\right)=h\left(x_{1}, \ldots, x_{r}\right) C_{1}(H)^{k}
$$

and

$$
[f]=h\left(x_{1}, \ldots, x_{r}\right) c_{1}(H)^{k}=0 \text { in } H^{2 k}(X)
$$

for some homogeneous polynomial h of degree k with rational coefficients. It follows that $h\left(x_{1}, \ldots, x_{r}\right)=0$ for any positive integers x_{1}, \ldots, x_{r} and by the homogenity of h we get that $h \equiv 0$. This implies that all the coefficients $a_{J} \equiv 0$, so that $f_{1}=f_{2}$. This establishes the fact that $\pi_{*} \Phi^{k+r-1}=(-1)^{k} S_{k}(E)$ for any $1 \leq k \leq n$.

Combining the above proposition with Lemma 2.1, we obtain that the signed Segre forms $(-1)^{k} S_{k}(E)$ are positive for all $1 \leq k \leq n$.

Acknowledgements The author would like to thank Fangyang Zheng for invaluable discussions during the preparation of this paper. He is also very grateful to the referee for his/her kind comments and suggestions which definitely made this paper more readable.

References

[1] W. Fulton and R. Lazarsfeld, Positive polynomials for ample vector bundles. Ann. of Math. 118(1983), no. 1, 35-60. doi:10.2307/2006953
[2] P. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis, University of Tokyo Press, Tokyo, 1969, pp. 85-251.
[3] S. T. Yau, and F. Zheng, On a borderline class of non-positively curved compact Kähler manifolds. Math. Z. 212(1993), no. 4, 587-599. doi:10.1007/BF02571678
[4] F. Zheng, Complex Differential Geometry. AMS/IP Studies in Advanced Mathematics 18, American Mathematical Society, Providence, RI 2000.

Department of Mathematics, Park University, Parkville, MO, USA
e-mail: dincer.guler@park.edu

[^0]: Received by the editors December 2, 2008; revised July 30, 2009.
 Published electronically May 20, 2011.
 AMS subject classification: 53C55, 32L05.

