

On Segre Forms of Positive Vector Bundles

Dincer Guler

Abstract. The goal of this note is to prove that the signed Segre forms of Griffiths' positive vector bundles are positive.

1 Introduction

Let *E* be a Hermitian holomorphic vector bundle over a complex manifold *X*. Naturally, restrictions on the curvature of *E* will impose some restrictions on all constructions arising from it. The goal of this note is to prove that when *E* has a metric with positive (Griffiths') curvature, then certain combinations of Chern forms, known as signed Segre forms, are positive. This gives evidence for a conjecture of Griffiths ([2]), which predicts that if *E* has a positive curvature, then a combination of Chern forms is positive if and only if it can be written as a nontrivial combination of Schur polynomials of Chern forms with nonnegative coefficients. We remark that the signed Segre forms are Schur polynomials of Chern forms.

A very similar problem was considered by Fulton and Lazarsfeld ([1]) who confirmed the aforementioned conjecture for Chern classes of an ample vector bundle. An everywhere closed positive (p, p) form on a projective manifold X^n always gives a positive (p, p) cohomology class, but for 1 , the converse is not known.Before proceeding further we state our main theorem.

Theorem 1.1 (Main Theorem) Let X be a projective manifold and let E be a Griffiths' positive vector bundle over X. If $S_k(E)$ denote the Segre forms of E, then the form $(-1)^k S_k(E)$ is a positive (k, k)-form for any k = 1, ..., n.

2 Preliminaries

Positive forms. Let X^n be a complex manifold equipped with a Hermitian metric ω . A smooth (p, p)-form α is said to be strongly positive if in local coordinates there is a representation $\alpha = i^p \alpha_1 \wedge \overline{\alpha}_1 \wedge \alpha_2 \wedge \overline{\alpha}_2 \wedge \cdots \wedge \alpha_p \wedge \overline{\alpha}_p$, where each α_j is a smooth (1, 0) form and α_j 's are linearly independent. A smooth (p, p) form φ on X is said to be positive if in local coordinates we can write $\varphi \wedge \alpha = f\omega^n$, where f is a positive function on X, for any strongly positive form of bidegree (n - p, n - p). This definition is independent of the choice of the metric.

In fact a (p, p)-form φ is positive if and only if φ restricts to a volume form on any *p*-dimensional subvariety of *X* or if and only if for any $x \in X$ and any linearly

Received by the editors December 2, 2008; revised July 30, 2009.

Published electronically May 20, 2011.

AMS subject classification: 53C55, 32L05.

independent (1, 0) type tangent vectors v_1, \ldots, v_p at x it holds that

$$(-i)^{p^2}\varphi(v_1,\ldots,v_p,\bar{v}_1,\ldots,\bar{v}_p)>0.$$

We finish this paragraph by remarking that if *X* and *Y* are complex manifolds and if $f: X \to Y$ is a holomorphic submersion, then for any strongly positive form α on *Y*, $f^*\alpha$ is again a strongly positive form on *X*.

Griffiths' positivity, Chern and Segre forms. Let (E, h) be a Hermitian holomorphic vector bundle over X. Recall that the curvature matrix of E is given by $\Theta = (\Theta_j^i)$, where each Θ_j^i is a (1, 1)-form expressed in local coordinates by $\Theta_j^i = R_{j\alpha\beta}^i dz_\alpha \wedge d\bar{z}_\beta$. For sections u, v in E we define the (1, 1) form $\Theta_{u\bar{v}}$ by

$$\Theta_{u\bar{v}} = \sum_{i,j,k=1}^r \Theta_i^k h_{kj} u_i \bar{v}_j,$$

where $u = \sum u_i e_i$ and $v = \sum v_i e_i$ under a frame $\{e_1, \ldots, e_r\}$ of E. Then $\Theta_{u\bar{v}}$ is a global (1, 1) form on X independent of the choice of e. The Hermitian bundle E is said to be positive in the sense of Griffiths, or Griffiths positive if $i\Theta_{v\bar{v}}$ is a positive (1, 1) form for any $x \in X$ and any nonzero $v \in E_x$.

Let $\mathbb{P}(E)$ denote the projectivized bundle of lines of E^* . Then $\mathbb{P}(E)$ is a projective manifold which carries the so-called tautological line bundle $\mathcal{O}_E(-1)$ defined by the short exact sequence

$$0 \longrightarrow \mathcal{O}_E(-1) \longrightarrow \pi^* E^* \longrightarrow \mathcal{O}_E(-1) \otimes T_{\mathbb{P}(E)/X} \longrightarrow 0.$$

The Hermitian metric *h* on *E* naturally induces a Hermitian metric on $\mathcal{O}_E(-1)$ and it is well known that for any $p \in X$ and any $v \neq 0$, $v \in E_p$ the curvature of $L = \mathcal{O}_E(-1)$ at the point $(p, [v]) \in \mathbb{P}(E)$ is given by

$$\Theta(L)|_{(p,[\nu])} = \frac{1}{|\nu|^2} \Theta(E^*)_{\nu\bar{\nu}} - \omega_{FS},$$

where ω_{FS} is the Fubini–Study metric on the fibers. It follows that if *E* is a Griffiths positive vector bundle over *X*, then $\mathcal{O}_E(1)$ is an ample line bundle over $\mathbb{P}(E)$.

Let *X* be a complex manifold and let (E, h) be a Hermitian vector bundle over *X*. The Chern forms $C_k(E)$ are defined as $f_k(\frac{i}{2\pi}\Theta)$, where

$$\det(P + tI) = f_n(P) + f_{n-1}(P)t + \dots + f_1(P)t^{n-1} + t^n$$

and the Segre forms are defined inductively by the relation

$$S_k(E) + C_1(E)S_{k-1}(E) + \dots + C_k(E) = 0.$$

In particular, $S_1(E) = -C_1(E)$, $S_2(E) = C_1^2(E) - C_2(E)$ and so on.

If *E* is a positive line bundle, then all the forms $C_1^k(E)$ are positive for *k* no greater than the dimension of *X*. For the rest of this paper define $\Phi = C_1(\mathcal{O}_{\mathbb{P}(E)}(1))$. Then the forms Φ^k are positive for $k \leq \dim(X) + \operatorname{rank}(E) - 1$.

On Segre Forms of Positive Vector Bundles

Push forward of forms. Let *M* and *N* be oriented differentiable manifolds of respective dimensions *m* and *n* and let $f: M \to N$ be a proper submersion. That is, *f* is surjective and has surjective differential everywhere and the fibers are compact and connected. Write r = m - n.

For any smooth (p + r)-form η on M there exists a unique smooth p-form ξ on N such that the equality

$$\int_M \eta \wedge f^* \varphi = \int_N \xi \wedge \varphi$$

holds for any smooth (n - p)-form φ on N with compact support. We call this form ξ the push-forward of η and denote it by $f_*\eta$.

Lemma 2.1 Let X and Y be compact Kähler manifolds of respective dimensions m and n and let $f: X \to Y$ be a holomorphic fibration without singular fibers. If η is a positive (p + r, p + r) form on X, then $f_*\eta$ is a positive (p, p) form on Y, where r = m - n.

Proof First let η be a top degree positive form. Denote the volume form of *Y* by dV_Y and let ω be the Kähler form on *X*. Since *f* is of maximum rank everywhere, the form $\omega^r \wedge f^*(dV_Y)$ is a positive (m, m)-form on *X*. So we can write $\eta = g(x)\omega^r \wedge f^*(dV_Y)$ for some positive function *g* on *X*. But then

$$f_*\eta = \left(\int_F g(x)\omega^r\right) dV_Y$$

is a positive form, since $(\int_F g(x)\omega^r)$ is a positive function on *Y*, where *F* denotes a fiber of *f*.

Now let η be a positive form of degree (p + r, p + r) on X and let τ be a strongly positive form on Y with complementary degree to $f_*\eta$. Then $f^*\tau$ is strongly positive on X, so $\eta \wedge f^*\tau$ is a positive top degree form on X. By the argument above,

$$f_*(\eta \wedge f^*\tau) = (f_*\eta) \wedge \tau$$

is positive. Thus the push forward $f_*\eta$ is positive.

3 Proof of the Main Theorem

Our main theorem follows from the next proposition and the previous lemma.

Proposition 3.1 Let X be a projective manifold and (E, h) a Hermitian vector bundle over X of rank r. Let $\pi \colon \mathbb{P}(E) \to X$ be the projectivization of E. Then the push forward form $\pi_*(\Phi^{k+r-1})$ is exactly equal to the signed Segre form $(-1)^k S_k(E)$ on X for any $1 \le k \le n$.

Proof Recall that $\Phi = C_1(\mathcal{O}_{\mathbb{P}(E)}(1)) = \frac{i}{2\pi}\Theta(\mathcal{O}_{\mathbb{P}(E)}(1))$ is a global (1, 1)-form on $\mathbb{P}(E)$ and at $p = (x, [v]) \in \mathbb{P}(E)$, where $v \in E^*$, we have

$$\Phi = rac{i}{2\pi} \Big(-rac{1}{|
u|^2} \Theta_{
uar{
u}} + \omega_{FS} \Big) \, ,$$

where Θ is the curvature form of E^* and ω_{FS} is the Fubini–Study metric on the fiber $\pi^{-1}(x) = \mathbb{P}(E_x^*) \cong \mathbb{P}^{r-1}$ induced from the metric on E_x^* (see [3] or [4]).

Since $\omega_{FS}^k = 0$ for $k \ge r$ we have by the binomial formula that for any $1 \le k \le n$,

$$\Phi^{k+r-1} = \left(\frac{i}{2\pi}\right)^{k+r-1} \sum_{j=k}^{k+r-1} (-1)^j \binom{k+r-1}{j} \left(\frac{1}{|\nu|^2} \Theta_{\nu\bar{\nu}}\right)^j \wedge \omega_{FS}^{k+r-1-j}.$$

When we push forward this form, we are integrating over the fibers of $\pi \colon \mathbb{P}(E) \to X$, so only the first term in the right-hand side survives:

$$\pi_* \Phi^{k+r-1} = \left(\frac{i}{2\pi}\right)^{k+r-1} (-1)^k \binom{k+r-1}{k} \int_{[\nu] \in \mathbb{P}(E_x^*)} \left(\frac{1}{|\nu|^2} \Theta_{\nu \bar{\nu}}\right)^k \wedge \omega_{FS}^{r-1}.$$

Fix a point $x \in X$ and let $\{e_1, \ldots, e_r\}$ be a local unitary frame of E^* near x. For $v = \sum_{i=1}^{r} v_i e_i$ write $U = \{ [v] \in \mathbb{P}(E_x^*) : v_r \neq 0 \}$ and $t_i = v_i/v_r$, $1 \le i \le r$. Then $U \cong \mathbb{C}^{r-1}$ is an open subset of the fiber $\mathbb{P}(E_x^*)$ and (t_1, \ldots, t_{r-1}) are its coordinates. On this fiber we have

$$\left(\frac{1}{|\nu|^2}\Theta_{\nu\bar{\nu}}\right)^k \wedge \omega_{FS}^{r-1} = \left(\sum_{i,j=1}^r \Theta_j^i t_i \bar{t}_j\right)^k \frac{dt \wedge d\bar{t}}{(1+|t|^2)^{k+r}}$$

where $|t|^2 = |t_1|^2 + \cdots + |t_{r-1}|^2$, $dt = dt_1 \wedge \cdots \wedge dt_{r-1}$ and we wrote for convenience $t_r = 1$. Plug in this expression for $\pi_* \Phi^{k+r-1}$ and we get that at $x \in X$,

$$\pi_* \Phi^{k+r-1} = (-1)^k \binom{k+r-1}{k} \sum_{i_1,\dots,i_k,j_1,\dots,j_k}^r B_{IJ} \Theta^{i_1}_{j_1} \dots \Theta^{i_k}_{j_k},$$

where

$$B_{IJ} = \left(\frac{i}{2\pi}\right)^{k+r-1} \int_{t\in\mathbb{C}^{r-1}} \frac{t_{i_1}\cdots t_{i_k}\overline{t}_{j_1}\cdots \overline{t}_{j_k}}{(1+|t|^2)^{k+r}} dt \wedge d\overline{t},$$

and $I = (i_1, \ldots, i_k)$, $J = (j_1, \ldots, j_k)$ are multi-indices, namely, they both belong to the set $\{1, ..., r\}^k$.

Let us denote for the moment I = J if I and J are equal as sets with multiplicities. If $I \neq J$, then in the expression of B_{IJ} there will be terms of the form $e^{\pm i\theta}$ and since $\int_0^{2\pi} e^{\pm i\theta} d\theta = 0$, we observe that $B_{II} = 0$ for $I \neq J$. If I = J, then using the wellknown formula

$$\left(\frac{i}{2\pi}\right)^{r-1} \int_{\mathbb{P}^{r-1}} \frac{|t_1|^{2m_1} \cdots |t_{r-1}|^{2m_{r-1}}}{(1+|t|^2)^{k+r}} \, dt \wedge d\bar{t} = \frac{(r-1)! \prod m_i!}{(r-1+k)!},$$

where $\sum m_i = k$ we obtain that $B_{II} = (i/2\pi)^k \beta$ for some $\beta \in \mathbb{Q}$. Therefore,

$$\pi_* \Phi^{k+r-1} = P\left(\frac{i}{2\pi}\Theta\right)$$

becomes a homogeneous polynomial of degree k in the entries of the curvature $\frac{i}{2\pi}\Theta$ of E^* with coefficients in \mathbb{Q} . On the other hand, the push forward $\pi_*\Phi^{k+r-1}$ is a global (k, k)-form on X independent of the choice of local frames of E^* . That is, the polynomial P is invariant under the change $A \mapsto A\Theta A^{-1}$ for any $A \in GL(r, \mathbb{C})$. Therefore, it must be a polynomial of Chern forms $\pi_*\Phi^{k+r-1} = f_1(C_1, \ldots, C_r)$, where f_1 is a weighted homogeneous polynomial of the Chern forms of E with rational coefficients. Of course, $(-1)^k S_k(E) = f_2(C_1, \ldots, C_n)$ is also a weighted homogeneous polynomial of the Chern classes of E.

Let [*A*] denote the cohomology class of a given form *A*. From the theory of Chern classes we know that $\pi_*[\Phi^{k+r-1}] = [(-1)^k S_k(E)] = (-1)^k s_k(E)$, where $s_k(E)$ is the *k*-th Segre class of *E*. Moreover the push forward commutes with the *d*-operator, hence $[\pi_*\Phi^{k+r-1}] = \pi_*[\Phi^{k+r-1}]$. It follows that the difference $f = f_1 - f_2$ is a closed global (k, k)-form on *X* which represents the trivial cohomology class.

Note that $f(C_1, \ldots, C_r)$ is the same weighted homogeneous polynomial of Chern forms and [f] = 0 regardless of what vector bundle we begin with. More precisely, if \mathcal{J}_k denote the set of all *r*-tuples of positive integers (j_1, \ldots, j_r) such that

$$j_1 + 2j_2 + \cdots + rj_r = k$$

and if for $J \in \mathcal{J}_k$ we define $C_J = C_1^{j_1} \wedge \cdots \wedge C_r^{j_r}$, then we have

$$f(C_1,\ldots,C_r)=\sum_J a_J C_J,$$

where the coefficients a_I are independent of *E*.

In particular if we choose $E = H^{x_1} \oplus \cdots \oplus H^{x_r}$, where *H* is an ample line bundle on *X* and x_1, \ldots, x_r are positive integers, we obtain that *f* is a polynomial in x_i 's with coefficients a_J . On the other hand,

$$f(C_1(E), \ldots, C_r(E)) = h(x_1, \ldots, x_r)C_1(H)^k$$

and

$$[f] = h(x_1, \dots, x_r)c_1(H)^k = 0 \text{ in } H^{2k}(X)$$

for some homogeneous polynomial *h* of degree *k* with rational coefficients. It follows that $h(x_1, ..., x_r) = 0$ for any positive integers $x_1, ..., x_r$ and by the homogenity of *h* we get that $h \equiv 0$. This implies that all the coefficients $a_J \equiv 0$, so that $f_1 = f_2$. This establishes the fact that $\pi_* \Phi^{k+r-1} = (-1)^k S_k(E)$ for any $1 \le k \le n$.

Combining the above proposition with Lemma 2.1, we obtain that the signed Segre forms $(-1)^k S_k(E)$ are positive for all $1 \le k \le n$.

Acknowledgements The author would like to thank Fangyang Zheng for invaluable discussions during the preparation of this paper. He is also very grateful to the referee for his/her kind comments and suggestions which definitely made this paper more readable.

D. Guler

References

- [1] W. Fulton and R. Lazarsfeld, Positive polynomials for ample vector bundles. Ann. of Math. 118(1983), no. 1, 35-60. doi:10.2307/2006953
- [2] P. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis, University of Tokyo Press, Tokyo, 1969, pp. 85–251.
- [3] S. T. Yau, and F. Zheng, On a borderline class of non-positively curved compact Kähler manifolds. [4] F. Zheng, Complex Differential Geometry. AMS/IP Studies in Advanced Mathematics 18, American
- Mathematical Society, Providence, RI 2000.

Department of Mathematics, Park University, Parkville, MO, USA e-mail: dincer.guler@park.edu

6