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We derive analytical solutions for hydrodynamic sources and sinks to granular temperature
in moderately dense suspensions of elastic particles at finite Reynolds numbers. Modelling
the neighbour-induced drag disturbances with a Langevin equation allows an exact
solution for the joint fluctuating acceleration–velocity distribution function P(v′, a′; t).
Quadrant-conditioned covariance integrals of P(v′, a′; t) yield the hydrodynamic source
and sink that dictate the evolution of granular temperature that can be used in Eulerian
two-fluid models. Analytical predictions agree with benchmark data from particle-resolved
direct numerical simulations and show promise as a general theory from gas–solid to
bubbly flows.
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1. Introduction

Hydrodynamic interactions between viscous fluids and a disperse phase (particles, droplets
or bubbles) give rise to complex dynamics that are important to many engineering
and environmental applications. From the production of biofuels to post-combustion
carbon capture, multiphase reactors are at the heart of nearly all chemical transformation
processes. Environmental systems such as gravity currents, debris flows and sand dunes
are also of great societal interest. Broadly speaking, the aforementioned examples are
characterized by turbulent fluid flow and moderate to high solids volume fractions.
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The kinetic theory of rapid granular flows is now generally accepted as a valid
description of moderately dense particulate systems. Namely, Enskog theory connects
rigorously the evolution of the single-particle distribution function

∂f
∂t

+ v · ∇xf + ∇v · (ahf ) = Ω (1.1)

to continuum equations for the solids-phase moments, e.g. mass, momentum and kinetic
energy (granular temperature) (Lun et al. 1984; Garzó & Dufty 1999). In (1.1), f is the
average number density of particles at location x with velocity v at time t, subscripts on the
∇ operator denote the sample space variables being differentiated, ah is the acceleration
due to hydrodynamic interactions (other external forces are neglected), and Ω is the
collision operator. For granular flows, one would ignore the term involving ah in (1.1)
and complete a Chapman–Enskog expansion to arrive at macroscopic balance relations
(e.g. granular temperature) and transport coefficients. However, neglecting the presence
of a viscous fluid makes granular kinetic theories incapable of predicting solids motion in
fluidized systems.

To address this deficiency, driven systems with stochastic velocity fluctuations have
been theoretically (Puglisi et al. 1998; Cafiero, Luding & Jürgen Herrmann 2000;
Pagonabarraga et al. 2001; Srebro & Levine 2004) and experimentally (Yu, Schröter &
Sperl 2020) examined and incorporated into Chapman–Enskog expansions (Garzó et al.
2012; Khalil & Garzó 2020). Additionally, closures for hydrodynamic sources and sinks
to granular temperature have been proposed from phenomenological scaling arguments
and multipole simulations (Koch & Sangani 1999). However, fluid-mediated sources of
granular temperature, resulting from a statistical description of hydrodynamic forces,
have not been validated at finite Reynolds numbers and solids volume fraction. We
show, for the first time, consistency between analytical solutions for sources and sinks to
granular temperature and data obtained from particle-resolved direct numerical simulation
(PR–DNS) at finite Reynolds numbers and solids volume fraction.

2. Homogeneous fluidization of spherical particles

In this study, we consider homogeneous fluidization of elastic smooth spheres (see
figure 1). Elastic contacts conserve kinetic energy, thus collisions may redistribute particle
velocity fluctuations v′

p without providing a direct sink to granular temperature, defined as
T = 〈v′

p · v′
p〉/3. Therefore, capturing granular temperature in the present system requires

appropriate specification of the particle acceleration due to hydrodynamic interactions.
Here, angled brackets denote an ensemble average, and a single prime denotes a fluctuation
from the ensemble average. A constant mean pressure gradient is imposed on the fluid to
obtain a uniform slip velocity with mean Reynolds number Rem = (1 − 〈φ〉)ρf dp|〈w〉|/μf ,
which drives the particles to a steady granular temperature, where 〈φ〉 is the mean solids
volume fraction, ρf is the fluid density, dp is the particle diameter, 〈w〉 = 〈uf 〉 − 〈vp〉 is
the mean slip velocity between the fluid 〈uf 〉 and particles 〈vp〉, and μf is the dynamic
viscosity.

The evolution of granular temperature in this system is dictated by the covariance of
fluctuating hydrodynamic acceleration a′

h and particle velocity v′
p:

dT
dt

≡ S − Γ = 2
3

〈a′
h · v′

p〉, (2.1)
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Fluid-mediated sources of granular temperature

Figure 1. PR–DNS of homogeneous fluidization at Rem = 20, ρp/ρf = 1000 and 〈φ〉 = 0.1. Arrows denote
fluid streamlines; velocity magnitude shown in colour.

which contains sources S and sinks Γ (Tenneti, Mehrabadi & Subramaniam 2016).
Therefore, accurate descriptions for a′

h are crucial to capturing T(t) in homogeneous
fluidization of elastic spheres.

For a particle subjected to hydrodynamic forces, its total translational velocity vp =
〈vp〉 + v′

p follows from

mp
dvp

dt
=
∫

∂Ω

τ · n dS, (2.2)

where mp is the particle mass, and surface integration of the fluid stress tensor τ
(comprised of pressure and viscous stress) gives the total hydrodynamic acceleration ah.
A model for ah(t) has been obtained in the limit of an isolated sphere and Stokes flow
by Maxey & Riley (1983); it involves a superposition of forces from the undisturbed
fluid flow, quasi-steady drag, added mass and Basset history. At finite solids volume
fractions and Reynolds numbers, analytical evaluation of the fluid stress integral is
not tractable. Alternatively, correlations are often obtained from PR–DNS by ensemble
averaging the net hydrodynamic force acting on a suspension. However, as shown in
figure 1, particles interact with fluid wakes generated by their neighbours – referred to
as pseudo-turbulent kinetic energy (PTKE) – leading to a distribution of hydrodynamic
forces (Akiki, Jackson & Balachandar 2016) that drive relative motion between particles.
The application of a drag correlation, obtained from ensemble averaging, cannot capture
the distribution in hydrodynamic force. We describe this PTKE-induced drag distribution
as a stochastic process in § 3. The predictive capability of the theory is emphasized in
§ 4 for {Rem ∈ [10, 100]; 〈φ〉 ∈ [0.1, 0.4]; ρp/ρf ∈ [100, 1000]}, where ρp is the particle
density, and considerations are given to low density ratio (bubbly) flows ρp/ρf � 1 in
§ 4.3.
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3. Stochastic process and solutions

At the conditions considered here, hydrodynamic disturbances are attributed to PTKE
generated by fluid boundary layers of neighbouring particles (Mehrabadi et al. 2015;
Shallcross, Fox & Capecelatro 2020). Thus the drag force is decomposed into a mean
contribution and a stochastic fluctuation a′′

h according to

ah ≡ 1
mp

∫
∂Ω

τ · n dS = 1
τd

(〈uf 〉 − vp
)+ a′′

h, (3.1)

where τd = τp/F is the hydrodynamic time scale, τp = ρpd2
p/(18μf ) is the Stokes time

scale, and F(〈φ〉, Rem) is a correction to Stokes drag that may be obtained from
PR–DNS. Ensemble averaging (3.1) gives 〈ah〉. Removal of 〈ah〉 yields a reference
frame that moves with the mean particle velocity and a fluctuating acceleration
a′

h = −v′
p/τd + a′′

h , where it is reiterated that single primes denote a fluctuation
from the ensemble average, while double primes denote a stochastic fluctuation.
We describe a′′

h with an appropriate acceleration Langevin equation (Lattanzi et al.
2021):

dv′
p = − 1

τd
v′

p dt + a′′
h dt, (3.2a)

da′′
h = − 1

τa′′
a′′

h dt +
√

2
τa′′

σa′′ dW t, (3.2b)

where τa′′ is the integral time scale of the stochastic acceleration, σa′′ is the standard
deviation, and dW t is a Wiener process increment.

At this point, we consider some subtleties associated with (3.1). When applying drag
correlations to PR–DNS data, Tenneti et al. (2010) showed that incorrect dynamics for
the granular temperature were obtained if the instantaneous particle velocity was utilized.
In the absence of the stochastic fluctuation, a′

h agrees with the observations of Tenneti
et al. (2010) since velocity fluctuations can be dissipated only via −v′

p/τd. However,
Lattanzi et al. (2020) showed that a′′

h leads to a covariance 〈a′′
h · v′

p〉 that acts as a net
source to granular temperature when averaged over all of a′′

h–v′
p phase space. Therefore, the

fluctuating hydrodynamic acceleration a′
h is comprised of a solely dissipative component

−v′
p/τd as well as a contribution from the stochastic process a′′

h , which may act as a
source or sink at the particle level but is overall a source when the entire suspension is
considered.

Tenneti et al. (2010) showed that sources occur when the fluctuating acceleration is
aligned with the fluctuating particle velocity (quadrants 1 and 3 in a′

h–v′
p phase space),

and sinks occur for the converse case (quadrants 2 and 4). To quantify S and Γ , one
must evaluate the quadrant-conditioned acceleration–velocity covariance; see (2.1). Thus
we seek the joint probability distribution resulting from (3.2a) and (3.2b). Considering
isotropic fluctuations and constant coefficients, we derive the acceleration–velocity
distribution in Appendix A. Here, we report the salient result that the probability
P(v′, a′; t) = N (0, Σ̄−1(t)) is a normal distribution with time-dependent covariance
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tensor Σ̄(t) given by

Σ̄(t) =

⎡
⎢⎢⎣

1
τ 2

d
σ 2

v′(t) − 1
τd

σv′a′′(t) + σ 2
a′′ − 1

τd
σ 2

v′(t) + σv′a′′(t)

− 1
τd

σ 2
v′(t) + σv′a′′(t) σ 2

v′(t)

⎤
⎥⎥⎦ ,

σ 2
v′(t) = σ 2

a′′ τ̂+
[
τdE1 + 2τ̂− (E1 − E2) + C0τd (1 − E1) − 2ρ0

√
C0τd

τ̂+ τ̂− (E1 − E2)

]
,

σv′a′′(t) = σ 2
a′′ τ̂+

[
E2 + ρ0

√
C0τd

τ̂+ (1 − E2)

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

where E1 = [1 − exp(−2t/τd)], E2 = [1 − exp(−t/τ̂+)], τ̂+ = τdτa′′/(τd + τa′′), τ̂− =
τdτa′′/(τd − τa′′), ρ0 = σv′a′′,0/(σv′,0 σa′′) is the initial correlation coefficient between the
fluctuating velocity and stochastic acceleration, and C0 � 0 is a proportionality constant
that specifies the initial velocity variance σ 2

v′,0 as a fraction of the steady velocity
variance σ 2

v′,∞ = σ 2
a′′ τ̂+τd. Following Stuart & Ord (2010), we derive relations for the

quadrant-covariance of a joint-normal (see Appendix B):

S(t) = 2
√

Σ11Σ22

π

(
ρ arcsin ρ +

√
1 − ρ2 + π

2
ρ

)
, (3.4a)

Γ (t) = 2
√

Σ11Σ22

π

(
ρ arcsin ρ +

√
1 − ρ2 − π

2
ρ

)
, (3.4b)

where ρ(t) = Σ12/
√

Σ11Σ22 is the correlation coefficient evaluated at time t.
Evaluation of (3.4) requires closure for the stochastic process. We approximate τa′′ with

the mean-free time between successive collisions (Chapman, Cowling & Burnett 1970):

τa′′ ≈ τcol = dp

24〈φ〉g0

√
π

T
, (3.5)

where g0 is the radial distribution function at contact (Ma & Ahmadi 1988). Details
regarding motivation for τa′′ ≈ τcol are provided in Lattanzi et al. (2021). Here, we
summarize that the aforementioned study considers the time scale analysis of Wylie, Koch
& Ladd (2003) and Mehrabadi et al. (2015), which characterizes a ratio between the mean
particle response time to hydrodynamic force fluctuations and the mean time between
collisions. For the hydrodynamic conditions emphasized in this study, results presented
in Lattanzi et al. (2021) suggest that the mean collisional time scale is smaller than the
mean hydrodynamic time scale, i.e. the flow is collisionally dominated. Furthermore, the
steady granular temperature solution derived here, and given in (4.7), leads to quantitative
agreement between theory and PR–DNS data for the hydrodynamic time scale (Lattanzi
et al. 2021).

The drag time scale τd(Rem, 〈φ〉) in (3.2a) is given by Tenneti, Garg & Subramaniam
(2011), while the standard deviation σa′′ in (3.2b) is closed with a correlation obtained
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from PR–DNS of freely evolving particle assemblies, given by

σa′′ = β f σF
〈φ〉 fiso

(1 − 〈φ〉) |〈w〉|
τp

, (3.6a)

f σF
〈φ〉 = 5.39〈φ〉 − 4.00〈φ〉2 + 24.93〈φ〉3, (3.6b)

fiso =
(

1 + 0.15 Re0.687
m

)
. (3.6c)

Here, fiso represents the drag correction for an isolated particle using the classical
correlation of Schiller & Naumann (1933). We note that the correlation provided in
(3.6) differs from that of stationary particle assemblies reported in Lattanzi et al. (2021).
Here, the β factor is introduced to account for anisotropy. It is reiterated that stochastic
fluctuations in the present theory are treated as isotropic, and the role of collisions is to
redistribute components of the particle velocity fluctuations. To quantify hydrodynamic
sources and sinks to granular temperature with an isotropic model, we average the force
variance in all three directions. We note that β does not drive anisotropy in the granular
temperature since the model is isotropic; future work along the lines discussed in § 5 will
be needed to capture such phenomena. For conditions considered here, the force variance
extracted from PR–DNS is observed to be ∼3 times larger in the streamwise direction
than the transverse directions (Lattanzi et al. 2021), yielding β = √

5/9 in the present
work. We note that force anisotropy (β < 1) may depend upon Rem or 〈φ〉, and future
efforts to parametrize this quantity would be beneficial.

The present correlation for drag variation is fit to PR–DNS with freely evolving
particles, while the correlation provided in Lattanzi et al. (2021) is fit to PR–DNS with
fixed particles. It has been shown that the variance in hydrodynamic force grows with
ReT = ρf dp

√
T/μf (Huang et al. 2017). To gauge the role of particle mobility on drag

variation, we consider the normalized standard deviation in streamwise hydrodynamic
force for freely evolving and fixed particles (see figure 2). For 〈φ〉 � 0.2, the standard
deviation in drag force is under-predicted by PR–DNS with fixed particles, when compared
to freely evolving suspensions. Thus (3.6) takes the same form as that reported by
Lattanzi et al. (2021), but with an anisotropy factor β and a solids volume fraction
correction f σF

φ that is fit to data from PR–DNS with freely evolving particles. To this end,
quantifying σa′′ over a wide range of conditions would also be of great value to the present
theory.

Examining the theoretical inputs provided in (3.5)–(3.6) shows that σa′′ is constant
for specified {Rem; 〈φ〉; τp}, but τa′′ = f (T) varies in time. To account for the variable
memory time scale, the constant-coefficient solutions in (3.3) are integrated forward in
time by applying them to a time step �t. More specifically, given a specified state at
time s, the state at time s + �t may be obtained by formally replacing t = �t in (3.3).
Repeating the procedure yields Σ̄(t), which may be utilized to compute S(t) and Γ (t) (see
Appendix C).

4. Results

Analytical results are first compared with PR–DNS benchmark data for two canonical
flows at Rem = 20, 〈φ〉 = 0.1 and ρp/ρf = 1000. Namely, homogeneous heating systems
(HHS) and homogeneous cooling systems (HCS) are examined in detail. In the former
systems, particles are given an initial granular temperature T0 = 0, while the latter
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Figure 2. Standard deviation in drag force normalized by the drag force on an isolated sphere, Fsingle =
3πμf dpfiso(1 − 〈φ〉)|〈w〉| (Schiller & Naumann 1933). Symbols denote PR–DNS data with freely evolving
(square) and fixed (circle) particles. The solid line denotes (3.6b), while the dashed line denotes f σF

φ in Lattanzi
et al. (2021); Rem = 10 (red), Rem = 20 (blue), Rem = 50 (green), Rem = 100 (magenta). Freely evolving
PR–DNS data are at ρp/ρf = 100.

is initialized as T0 > T∞, with T∞ the steady granular temperature. Considering
the dimensionless source Ŝ(t) = S(t) τp/((1 − 〈φ〉)2|〈w〉|2) (This normalization is not
appropriate for the case of zero mean slip where the mean hydrodynamic drag is zero
but there is a purely fluctuating part; such systems could be an interesting canonical case
for model development.) and analogous dimensionless sink Γ̂ (t), we observe acceptable
agreement between analytical predictions and PR–DNS data (see figure 3). We note that
T(t) is a result of integrating the difference S(t) − Γ (t). Therefore, adding a constant to
the source and sink at each time t preserves the difference, rendering T(t) invariant. For
this reason, differences between S(t) and Γ (t) from PR–DNS and theory do not yield
significant errors in the granular temperature. Physically speaking, departure between
theory and simulations may be due to underlying assumptions in the model process – e.g.
isotropic and constant σa′′ or the Markovian Ornstein–Uhlenbeck process with exponential
autocorrelation function.

A direct consequence of characterizing accurately S(t) and Γ (t) is that the theory
captures the temporal evolution of ReT (see figure 3c). The ability of (3.3) to capture
the granular temperature dynamics speaks to the statistical equivalence between the
acceleration Langevin model and homogeneous fluidization of elastic particles at finite
Reynolds numbers. To demonstrate equivalence at the level of joint statistics, we
compare the acceleration–velocity probability distribution to scatter plots obtained from
PR–DNS (see figure 4). Again, data extracted from PR–DNS are well characterized by
P(v′, a′; t) obtained from integration of (3.3). In HHS (figures 4a–c), granular temperature
evolution is largely dominated by hydrodynamic sources (quadrants 1 and 3). By contrast,
hydrodynamic sinks (quadrants 2 and 4) are dominant in HCS (figures 4d–f ) since the
systems are initialized with an over-prescribed velocity variance. We emphasize that both
systems must satisfy a fluctuation–dissipation relation and converge to a sustained particle
velocity variance that results from a balance of source and sink.
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Figure 3. Non-dimensional source (red) and sink (blue) in (a) HHS with ρ0 = 1, and (b) HCS with ρ0 =
−0.75, at {Rem = 20; 〈φ〉 = 0.1; ρp/ρf = 1000}. (c) Evolution of non-dimensional granular temperature for
HHS (red) and HCS (blue). Analytic solution obtained from (3.4) (lines), PR–DNS data (symbols); insets
show the same data with linear scaling.
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Figure 4. Joint p.d.f.s of the fluctuating particle acceleration and fluctuating particle velocity for HHS (a–c)
and HCS (d–f ). Analytic solution shown by colour, PR–DNS shown by symbols. The first and third quadrants
correspond to sources of granular temperature, and the second and fourth quadrants correspond to dissipation.

4.1. Reynolds number and solids volume fraction effects
To examine further the scaling and robustness of solutions presented herein, we consider
ReT(t) at Rem ∈ [10, 100] with 〈φ〉 = 0.1 and ρp/ρf = 100 (see figure 5a). For the
conditions considered, the theory predicts granular temperature evolution that is in
accordance with PR–DNS results. However, we note that the Rem = 100 case shows a
noticeable over-prediction for ReT at steady state, with relative error ≈18 %. It should
be noted that the that the anisotropy in fluid phase kinetic energy has an anomalous
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Figure 5. (a) Evolution of non-dimensional granular temperature in HHS for varying Reynolds number
at 〈φ〉 = 0.1, ρp/ρf = 100, with Rem = 10 (red), Rem = 20 (blue), Rem = 50 (green), Rem = 100 (black).
Evolution of non-dimensional granular temperature for varying solids volume fraction at (b) Rem = 20,
ρp/ρf = 100, and (c) ρp/ρf = 1000, with 〈φ〉 = 0.1 (red), 〈φ〉 = 0.2 (blue), 〈φ〉 = 0.3 (green), 〈φ〉 = 0.4
(black). Analytic solution shown by lines, PR–DNS shown by symbols.

dependence at 〈φ〉 = 0.1, when compared to higher solids volume fractions (Mehrabadi
et al. 2015, Tavanashad et al. 2019). The anomalous anisotropy in fluid velocity fluctuations
(see figures 2–3 and discussion in § 4.2 of Tavanashad et al. 2019) may in turn affect ReT
through anisotropy in the force fluctuations, which are not accounted for in the current
model.

Probing the effect of solids volume fraction, we consider ReT(t) at Rem = 20 with
〈φ〉 ∈ [0.1, 0.4] and ρp/ρf = 100 (see figure 5b). Again, we observe reasonable agreement
between theory and PR–DNS. Furthermore, the moderate growth in granular temperature
for 〈φ〉 � 0.2 is replicated appropriately with (3.6b). Repeating the analysis for ρp/ρf =
1000, which yields smaller steady granular temperature, again shows acceptable agreement
with PR–DNS (see figure 5c). Thus the present results motivate further the notion that
accurate and robust descriptions for σa′′ are of significant value to the present theory.

4.2. Comparison with Stokes flow theory
In this section, we consider comparison with the theory of Koch & Sangani (1999)
(KS99), which was developed for inertial particles at moderate solids volume fractions
and low Reynolds numbers (Stokes flow regime). The granular temperature balance for
homogeneous fluidization of elastic particles (see (2.1)) is closed with KS99 theory
according to

dT
dt

≡ S − Γ =
dp|〈w〉|2RsR2

drag

6
√

πτ 2
p

T−1/2 − 2Rdiss

τp
T, (4.1)

where the coefficients appearing in (4.1) are given by

Rs = 1
g0
(
1 + 3.5〈φ〉1/2 + 5.9〈φ〉) , (4.2)

Rdrag = 1 + 3(〈φ〉/2)1/2 + (135/64)〈φ〉 ln〈φ〉 + 17.14〈φ〉
1 + 0.681〈φ〉 − 8.48〈φ〉2 + 8.16〈φ〉3 , (4.3)
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Rdiss = 1 + 3(〈φ〉/2)1/2 + (135/64)〈φ〉 ln〈φ〉 + 11.26〈φ〉
×
(

1 − 5.1〈φ〉 + 16.57〈φ〉2 − 21.77〈φ〉3
)

− 〈φ〉g0 ln εm, (4.4)

where εm = 0.01 is the lubrication breakdown length. For homogeneous fluidization at
a fixed Reynolds number, (4.1) yields a Bernoulli differential equation with constant
coefficients, and may be solved analytically to obtain

T(t) =
[

a
b

+
(

T3/2
0 − a

b

)
exp

(
−3bt

2

)]2/3

, (4.5)

where a = dp|〈w〉|2RsR2
drag/(6

√
πτ 2

p ) is the source coefficient, and b = 2Rdiss/τp is the
sink coefficient. In the long time limit, (4.5) yields a steady value

T∞ = (|〈w〉|Rdrag
)2
[

Rs

6
√

π St Rdiss

]2/3

, (4.6)

where we emphasize that the Stokes number St = 2τp|〈w〉|Rdrag/dp is computed with the
terminal velocity for an isolated sphere subject to Stokes drag, which is related to the
slip velocity as Ut = |〈w〉|Rdrag. Equation (4.6) reveals that T∞ ∼ (ρp/ρf )

−2/3 with KS99
theory.

Employing (4.5) and (4.1), the evolution of sources, sinks, and dimensionless granular
temperature may be obtained readily for the conditions considered in figure 3 (see figure 6).
Inspection of the source term in (4.1) shows that S ∼ T−1/2 diverges as T → 0. For the
source-dominated heating system, KS99 theory predicts qualitatively incorrect evolutions
for S(t) when compared to PR–DNS (see figure 6a). In fact, the slopes of the lines in
figure 6(a) are given by the T exponent in (4.1) (namely, −1/2, 1) since the plot is in
logarithmic scale. Since the balance in (4.1) may be formulated as an inhomogeneous
first-order differential for U = T3/2, the weakly singular source for T is mapped to a
constant source for U, thereby yielding T(t) that is well-behaved in HHS. Therefore,
KS99 theory predicts reasonable ReT(t) in HHS, but does so by treating the fluid-mediated
source term as a weakly singular impulse, which is physically incorrect. These results show
that the hydrodynamic acceleration vector ah, which plays a role in the Enskog equation
(1.1), is not properly defined with KS99 theory. For HCS, S and Γ behaviour dramatically
improves (see figure 6b); this implies that KS99 theory characterizes the hydrodynamic
sink better than the source. The leading-order approximation to Γ is expected to follow
the mean drag closure (a well-characterized quantity). Since KS99 theory employs a
mean drag closure for Γ , improved predictions for dissipation-dominated flows are to be
expected.

Repeating the parameter sweeps in figure 5 allows us to draw direct comparisons
with KS99 theory over a wide range of conditions (see figure 7). At larger Reynolds
numbers Rem > 20, KS99 theory leads to under-predictions for the steady granular
temperature, which is likely a consequence of extending the theory so far from Stokes
flow (see figure 7a). At Rem = 20, KS99 theory predicts the correct qualitative trends
with increasing solids volume fraction and is in reasonable agreement with the present
theory (see figures 7b,c).
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Figure 6. Same as figure 3, but dashed lines correspond to the theory of Koch & Sangani (1999).
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Figure 7. Same as figure 5, but dashed lines correspond to the theory of Koch & Sangani (1999).

4.3. Density ratio scaling
While the present theory is designed around inertial particles at high density ratios
ρp/ρf 
 1, it is beneficial to consider the behaviour across density ratio. We first note
that previous PR–DNS studies at ρp/ρf � 100 have concluded that T∞ ∼ (ρp/ρf )

−1

(Tang, Peters & Kuipers 2016; Tenneti et al. 2016), while the theory of KS99 predicts
T∞ ∼ (ρp/ρf )

−2/3 for inertial particles subject to Stokes flow. The aforementioned
scalings from PR–DNS and theory will lead to unrealistic granular temperature for low
density particles ρp/ρf � 1. The PR–DNS study of Tavanashad et al. (2019) showed
that T∞ levels off at low density ratio due to the additional dissipation associated with
unsteady hydrodynamic forces (e.g. added mass and Basset history). Furthermore, for
Rem ∈ [10, 100] and 〈φ〉 = 0.1, Tavanashad, Passalacqua & Subramaniam (2021) showed
that the correlation of Tenneti et al. (2011) replicated the mean drag forces obtained
from freely evolving PR–DNS simulations of buoyant particles down to ρp/ρf = 0.01.
Therefore, at Rem = 20, 50, 100 and 〈φ〉 = 0.1, we expect the τd closure employed here
to be reasonably accurate across density ratio. Taking limt→∞ σ 2

v′(t) in (3.3), we obtain
an algebraic relation for the steady granular temperature resulting from the acceleration
Langevin model:

T∞ = σ 2
a′′τ 2

d τa′′(T∞)

τd + τa′′(T∞)
. (4.7)

Solving (4.7) for T∞ allows us to ascertain the behaviour of the present theory across
a wide range of density ratios (see figure 8). Rather than a single power-law scaling,
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Figure 8. Non-dimensional granular temperature at steady state as a function of density ratio at Rem = 20
(red), Rem = 50 (blue), Rem = 100 (black), with 〈φ〉 = 0.1 and ρp/ρf ∈ [0.001, 1000]. Analytical solutions
are shown by solid lines, PR–DNS of Tavanashad et al. (2019) are shown by symbols, and n = −2/3 scaling is
shown by dotted lines.

as deduced from inertial particle systems, the present theory predicts an exponent,
n, that is itself a function of the density ratio, i.e. T∞ ∼ (ρp/ρf )

n(ρp/ρf ). Considering
the asymptotic limit of ρp/ρf → ∞, one may recognize that τd 
 τa′′ , thus T∞ ∼
σ 2

a′′τdτa′′(T∞). Therefore, in the limit of infinitely large density ratio, the present theory
predicts T∞ ∼ (ρp/ρf )

−2/3, which agrees with KS99. Furthermore, it is stressed that
the n = −2/3 scaling replicates PR–DNS data for ρp/ρf ∈ [10, 1000] better than the
correlation of Tenneti et al. (2016) with n = −1 scaling. Examining figure 7 in Tenneti
et al. (2016), one may also observe the departure from n = −1 scaling out to ρp/ρf =
2000. For the asymptotic limit of ρp/ρf → 0, one may recognize that τd � τa′′ , thus
T∞ ∼ σ 2

a′′τ 2
d . Therefore, in the limit of infinitely small density ratio, the present theory

predicts T∞ ∼ (ρp/ρf )
0, which agrees with the PR–DNS of Tavanashad et al. (2019). In

summary, the theory described herein exhibits correct scaling for the granular temperature
dependence upon density ratio in the asymptotically inertial and buoyant particle limits,
and captures qualitatively the magnitude of the steady granular temperature across the
range of density ratios considered.

5. Conclusion

Analytical solutions for fluid-mediated sources of granular temperature were derived
from an acceleration Langevin equation, which models drag disturbances in moderately
dense suspensions of elastic particles at finite Reynolds numbers. Quadrant-conditioned
covariance integrals of the joint fluctuating acceleration–velocity distribution function
P(v′, a′; t) yield directly the hydrodynamic source and sink. Analytical predictions for the
evolution of source, sink and granular temperature are in agreement with data obtained
from PR–DNS. Furthermore, the derived P(v′, a′; t) agrees with acceleration–velocity
scatter plots obtained from PR–DNS, and the theory predicts qualitatively correct steady
granular temperature scaling for inertial and buoyant particles.

A variety of approaches may be taken when combining the present work with kinetic
theory. The first, and most rigorous, approach would be to follow Garzó et al. (2012) and
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start off with the Enskog equation in (1.1). The closure for hydrodynamic acceleration
then has implications on the equilibrium distribution, the solids transport coefficients
and the granular temperature balance (inclusion of S − Γ ). We also emphasize that
anisotropic drag forces (observed here) may then lead to an equilibrium distribution that
is an anisotropic Gaussian (Vié, Doisneau & Massot 2015), where anisotropy in the
particle Reynolds stresses becomes a consequence of drag anisotropy and collisions. A
deep dive into this first approach is of great value but beyond the scope of the present
work. A second, and far simpler, approach is to append the granular temperature balance
to include S − Γ . Since acceleration–velocity covariances are not transported quantities
in standard two-fluid models, evaluation of ρ0 in the present theory poses a challenge
for inhomogeneous flows. We consider a local equilibrium approximation for this term in
Appendix C.

While results presented here at low density ratio are incipient, the modelling paradigm
shows promise as a viable starting place for developing a theory across particle density
ratio. In this spirit, improved σa′′ correlations may be obtained and utilized alongside drag
correlations that are valid across density ratio (Tavanashad et al. 2021). These efforts may
allow extension of the present theory beyond inertial particles, i.e. a general description
for fluid-mediated sources to granular temperature that is valid from gas–solid to bubbly
flows appears possible.

Finally, it is noted that the present theory is built upon the assumption that hydrodynamic
forces within a suspension are normally distributed. While normal distributions have
been observed by the authors at many of the considered conditions {Rem; 〈φ〉; ρp/ρf },
as well as by others at similar conditions (Huang et al. 2017; Esteghamatian et al. 2018;
Balachandar 2020), the mechanism(s) leading to normally distributed drag fluctuations
pose an outstanding question. Future work that expounds upon the normal drag distribution
would provide valuable insight into the regions of validity for the present theory.
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Appendix A. The joint acceleration–velocity distribution

A.1. Fokker–Planck solution
The system of stochastic differential equations in (3.2a) and (3.2b) may be solved in a weak
(distributional) sense by considering the constant-coefficient Fokker–Planck equation in
one dimension:

∂P
∂t

+ ∂

∂v′

[(
a′′ − 1

τd
v′
)

P
]

− 1
τa′′

∂

∂a′′ (a
′′P) = σ 2

a′′

τa′′

∂2P

∂a′′2 , (A1)
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where P(v′, a′′; t | u′, b′′; s) is the transition probability density function. Applying a
Fourier transform to (A1), F [P(x; t)] = P(k; t), we obtain

∂P
∂t

+ kv′

τd

∂P
∂kv′

+
[

ka′′

τa′′
− kv′

]
∂P
∂ka′′

= −k2
a′′σ 2

a′′

τa′′
P . (A2)

Employing the method of characteristics (MOC), we seek a parametrization variable s
such that

dP(t(s), kv′(s), ka′′(s))
ds

= ∂P
∂t

dt
ds

+ ∂P
∂kv′

dkv′

ds
+ ∂P

∂ka′′

dka′′

ds
, (A3)

and match the coefficients of (A3) with (A2) to yield a system of equations

dt
ds

= 1, (A4a)

dkv′

ds
= kv′

τd
, (A4b)

dka′′

ds
= ka′′

τa′′
− kv′, (A4c)

dP
ds

= −k2
a′′σ 2

a′′

τa′′
P . (A4d)

Integrating the system of equations gives

t = s + C0, (A5a)

kv′ = C1 exp
(

s
τd

)
, (A5b)

ka′′ = C1τ̂
− exp

(
s
τd

)
+ C2 exp

(
s

τa′′

)
, (A5c)

P = C3 exp

(
−σ 2

a′′

2

[(
C1τ̂

−)2 τd

τa′′
exp

(
2s
τd

)
+ C2

2 exp
(

2s
τa′′

)

+ 4C1C2
τ̂−τ̂+

τa′′
exp

( s
τ̂+

)])
, (A5d)

where τ̂− = τdτa′′/(τd − τa′′) and τ̂+ = τdτa′′/(τd + τa′′). Taking C0 = 0, we show that
the MOC solution is invertible:

s = t, (A6a)

C1 = kv′ exp
(

− t
τd

)
, (A6b)

C2 = [
ka′′ − kv′ τ̂−] exp

(
− t

τa′′

)
. (A6c)
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A.2. Arbitrarily correlated initial condition
We consider particles with specified initial velocity variance σ 2

v′,0 and initial
acceleration–velocity covariance σv′a′′,0 = ρ0σa′′σv′,0. The initial condition allows us to
consider general fluidization, which will encompass the cooling and heating systems
probed by PR–DNS studies (Tenneti et al. 2010, 2016; Tavanashad et al. 2019). The
correlated initial condition yields

F
[
N (Σ̄−1)

]
= exp

(
−k2

a′′σ 2
a′′

2
− k2

v′σ 2
v′,0

2
− ka′′kv′σv′a′′,0

)
, (A7)

where N (Σ̄−1) is the normal distribution with covariance matrix Σ̄ . Evaluating (A7) at
ki(0) gives the initial condition

P(0) = exp

(
−σ 2

a′′

2

[(
C1τ̂

−)2+C2
2+2C1C2τ̂

−
]

− σ 2
v′,0
2

C2
1 − σv′a′′,0

[
C2

1 τ̂
− + C1C2

])
,

(A8)
which allows the C3 constant in (A5d) to be obtained:

C3 = exp

(
σ 2

a′′

2

[(
C1τ̂

−)2
(

τd

τa′′
− 1

)
+ 4C1C2

τ̂−τ̂+

τa′′
− 2C1C2τ̂

−
])

× exp

(
−σ 2

v′,0
2

C2
1 − σv′a′′,0

[
C2

1 τ̂
− + C1C2

])
. (A9)

After inverting the constants (C1; C2), and a considerable amount of algebra, the joint
distribution solution in wave space is obtained:

P(kv′, ka′′ ; t) = exp

(
−k2

a′′

2
σ 2

a′′ − k2
v′

2
σ 2

v′(t) − ka′′kv′σv′a′′(t)

)
, (A10a)

σ 2
v′(t) = σ 2

a′′ τ̂+
[
τdE2 + 2τ̂− (E2 − E3) + C0τd (1 − E2) − 2ρ0

√
C0τd

τ̂+ τ̂− (E2 − E3)

]
,

(A10b)

σv′a′′(t) = σ 2
a′′ τ̂+

[
E3 + ρ0

√
C0τd

τ̂+ (1 − E3)

]
, (A10c)

E2 =
{

1 − exp
(

− 2t
τd

)}
, (A10d)

E3 =
{

1 − exp
(
− t

τ̂+
)}

. (A10e)

Here, C0 � 0 is a proportionality constant that specifies the initial velocity variance σ 2
v′,0

as a fraction of the steady velocity variance σ 2
v′,∞ = σ 2

a′′ τ̂+τd. Similarly, ρ0 ∈ [−1, 1]
is the initial correlation coefficient that specifies the initial covariance σv′a′′,0. Since
(A10a) is joint-normal in wave space, it will also be joint-normal in physical space.
Furthermore, taking lim C0 → 0 and lim ρ0 → 0 shows that the velocity variance σ 2

v′(t)
and acceleration–velocity covariance σv′a′′(t) match the solutions provided in Lattanzi
et al. (2020).
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A.3. Total acceleration distribution
The total fluctuating hydrodynamic acceleration a′

h (see right-hand side of (3.2a)) includes
contributions from deterministic drag and stochastic fluctuations:

a′
h = − 1

τd
v′

p + a′′
h. (A11)

To compare with PR–DNS, we require P(v′, a′; t) rather than P(v′, a′′; t). Thus we seek to
characterize the variances and covariances of total fluctuating hydrodynamic acceleration.
The covariance tensors are given by

〈
a′

h ⊗ a′
h
〉 = 1

τ 2
d

〈
v′

p ⊗ v′
p

〉
− 1

τd

〈
v′

p ⊗ a′′
h

〉
+ 〈

a′′
h ⊗ a′′

h
〉
, (A12a)

〈
v′

p ⊗ a′
h

〉
= − 1

τd

〈
v′

p ⊗ v′
p

〉
+
〈
v′

p ⊗ a′′
h

〉
. (A12b)

Substituting results from (A10b) and (A10c), we then obtain

σ 2
a′ = 1

τ 2
d

σ 2
v′ − 1

τd
σv′a′′ + σ 2

a′′, (A13a)

σv′a′ = − 1
τd

σ 2
v′ + σv′a′′ . (A13b)

Therefore, the fluctuating acceleration–velocity distribution P(v′, a′; t) is a normal
distribution N (Σ̄−1) with time-dependent covariance tensor given by

Σ̄ =
[

σ 2
a′(t) σv′a′(t)

σv′a′(t) σ 2
v′(t)

]
. (A14)

Appendix B. Evaluation of quadrant-covariance integrals

To quantify the sources and sinks produced by the acceleration Langevin model, the
quadrant-conditioned covariances must be computed:

2〈v′a′〉 ≡ S − Γ = 4
∫ ∞

0

∫ ∞

0
v′a′ N (Σ̄−1) da′ dv′

− 4
∫ 0

−∞

∫ ∞

0
v′a′ N (Σ̄−1) da′ dv′, (B1)

where N (Σ̄−1) is the derived normal probability distribution with covariance matrix
given in (A14). To evaluate the integrals given in (B1), we proceed similarly to the
derivation provided in Stuart & Ord (2010). For the source integral, substituting the Fourier
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transform of the characteristic function in place of the normal distribution function yields

S = 4
(2π)2

∫ ∞

0

∫ ∞

0
x1x2

∫ ∞

−∞

∫ ∞

−∞
exp

(
−ikTx − 1

2
kTΣ̄k

)
dk dx, (B2)

where x = [v′ a′]T and k = [kv′ ka′]T. Exchanging the order of integration and employing
the identity

xj exp(−ikjxj) = i
∂

∂kj

(
exp(−ikjxj)

)
, (B3)

where no summation over j is implied, leads to

S = 1
π2

∫ ∞

−∞

∫ ∞

−∞
exp

(
−1

2
kTΣ̄k

) 2∏
j=1

(
i

∂

∂kj

)∫ ∞

0

∫ ∞

0
exp(−ikTx) dx dk. (B4)

The innermost integrals over x may be interpreted as the Fourier transforms of
the Heaviside function, which have principal values

∏
j(ikj)

−1. After evaluating the
derivatives, one obtains

S = 1
π2

∫ ∞

−∞

∫ ∞

−∞
exp

(
−1

2
kTΣ̄k

)
1

k2
v′k2

a′
dk. (B5)

The exponential in (B5) will contain a covariance term −ρσv′σa′kv′ka′ , where ρ is the
correlation coefficient. Differentiating both sides twice with respect to ρ yields

d2S
dρ2 = σ 2

v′σ 2
a′

π2

∫ ∞

−∞

∫ ∞

−∞
exp

(
−1

2
kTΣ̄k

)
dk. (B6)

The above integral will yield the reciprocal of the normalization constant for a bi-normal
distribution:

d2S
dρ2 ≡ σ 2

v′σ 2
a′

π2 2π
∣∣Σ̄∣∣−1/2 = 2σv′σa′

π

1√
1 − ρ2

. (B7)

Integrating twice and determining the constants – e.g. for sources S = 0, ρ = −1 and
S = 2σv′σa′ , ρ = 1 – yields

S = 2σv′σa′

π

(
ρ arcsin ρ +

√
1 − ρ2 + π

2
ρ

)
, (B8)

Γ = 2σv′σa′

π

(
ρ arcsin ρ +

√
1 − ρ2 − π

2
ρ

)
. (B9)

Appendix C. Model implementation

C.1. Integration of the constant-coefficient solution
To compute T(t), S(t) and Γ (t) from the constant-coefficient solution in (3.3) and
covariance integrals in (3.4), we consider an implicit Euler discretization of the granular
temperature balance

Tn+1 = Tn + �t(Sn+1 − Γ n+1), (C1)

where n is the previous time step. When evaluating Sn+1 and Γ n+1, we hold the
coefficients in (3.3) fixed and apply the solution to a time step �t (consistent with the
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non-anticipating nature of Itô integrals):

Σ̄
n+1 =

⎡
⎢⎢⎣

1
τ 2

d
σ 2

v′(�t) − 1
τd

σv′a′′(�t) + σ 2
a′′ − 1

τd
σ 2

v′(�t) + σv′a′′(�t)

− 1
τd

σ 2
v′(�t) + σv′a′′(�t) σ 2

v′(�t)

⎤
⎥⎥⎦ . (C2)

For completeness, we consider the computation of σv′a′′(�t) as an example and note that
the other terms in (C2) will follow the same form:

σ n+1
v′a′′ = σ 2

a′′ τ̂+ n

[
�E2 + ρn

0

√
C

n
0τd

τ̂+ n (1 − �E2)

]
, (C3)

where �E1 = [1 − exp(−2�t/τd)], �E2 = [1 − exp(−�t/τ̂+)], and all coefficients on
the right-hand side are evaluated at the previous time step n. As noted in the main text, σ 2

a′′
and τd are constants in homogeneous fluidization that depend only upon {Rem; 〈φ〉; τp}.
Therefore, τa′′ , C0 and ρ0 are the base quantities that must be updated at each time step.
Evaluation of these terms at the previous time step n may be completed as follows:

τ n
a′′ = dp

24〈φ〉g0

√
π

Tn , (C4)

C
n
0 = Tn

σ 2
a′′τd τ̂+ n

, (C5)

ρn
0 = σ n

v′a′′√
σ 2

a′′Tn
, (C6)

where we note that T → 0 leads to τa′′ → ∞ and τ̂± → ±τd. That is, the mean-free time
diverges as the granular temperature tends to zero, but all coefficients in the solution

remain bounded. Given initial conditions T0 = σ 2
v′,0 and ρ0 = σv′a′′,0/

(√
T0 σ 2

a′′
)

, the

coefficients at the previous time step n may be computed readily and utilized to obtain

the covariance matrix at the current time step, Σ̄
n+1. The source and sink terms then

become

Sn+1 =
2
√

Σn+1
11 Σn+1

22

π

(
ρn+1 arcsin ρn+1 +

√
1 − (

ρn+1
)2 + π

2
ρn+1

)
, (C7a)

Γ n+1 =
2
√

Σn+1
11 Σn+1

22

π

(
ρn+1 arcsin ρn+1 +

√
1 − (

ρn+1
)2 − π

2
ρn+1

)
, (C7b)

where ρn+1 = Σn+1
12 /

√
Σn+1

11 Σn+1
22 . Repeating the process yields the reported evolution

curves.

C.2. Approximations for inelastic particles and inhomogeneous flows
While the present study does not aim to tackle the general problem of inhomogeneous
flows with inelastic particles, some ad hoc extensions of the current theory may be deduced
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Figure 9. Same conditions as figure 3, with e = 0.5 in the present theory (solid lines) and KS99 (dashed
lines). PR–DNS markers employ e = 1 and are shown just for reference.
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Figure 10. Same conditions as figure 3, with the approximation given in (C10).

readily. For homogeneous fluidization, explicitly including the collisional dissipation from
KS99 into (C1) leads to

Tn+1 = Tn + �t
(

Sn+1 − Γ n+1 − 16(1 − e)〈φ〉g0

dp
√

π
(Tn)3/2

)
, (C8)

where e ∈ [0, 1] is the restitution coefficient. It is now emphasized that the continuous
form of (C8) does not match the moment equation for granular temperature resulting from
(A1), since collisional dissipation was omitted from that derivation. For this reason, there
exists an aliasing error where Tn+1 /=(σ 2

v′)n+1. This is not the case for elastic particles
in § C.1 where the moment equations match and thus Tn+1 = (σ 2

v′)n+1. By utilizing the
granular temperature from the previous time step Tn when computing coefficients (e.g.
(C4)), rather than the value predicted without collisional dissipation (σ 2

v′)n, we account
approximately for the aliasing error. Considering e = 0.5, we obtain results in HHS and
HCS that are comparable to the numerical integration of KS99 theory (see figure 9). We
note that the PR–DNS data in figure 9 correspond to e = 1 and thus should not match
either of the lines. The PR-DNS data are included for reference to show the decrease in
steady granular temperature and time required to reach steady state.

For inhomogeneous flows, specifying ρ0 poses a challenge since acceleration–velocity
covariances are not transported quantities in classical kinetic theory. We emphasize that
σv′a′′(t) derived here is a consequence of solving a balance relation for this moment
– i.e. the ordinary differential obtained by multiplying (A1) by a′′v′ and integrating
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over a′′ and v′ space. For homogeneous systems, only an initial condition is required
to solve the ordinary differential equation. By contrast, inhomogeneous flows would
require the general balance relation obtained by taking the acceleration–velocity moment
of (1.1). Since granular kinetic theories neglect ah in (1.1), transport equations for this
cross-moment are generally ignored. Therefore, within an Euler–Euler framework, Tn

would be known at each computational cell (result of solution to granular temperature
balance), but σ n

v′a′′ would not be known. The simplest extension of the present theory to
inhomogeneous flows requires a local equilibrium approximation in each computational
cell:

σ n
v′a′′ ≈ σv′a′′,∞ = σ 2

a′′ τ̂+ n, (C9)

ρn
0 = min

(
σa′′ τ̂+ n
√

Tn
, 1
)

. (C10)

Acceptable results are obtained with the local equilibrium approximation in HHS and HCS
(see figure 10).
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