
2 Preliminaries

This chapter provides a succinct review of key concepts from probability and

stochastic processes, set theory (with a focus on sets in Euclidean space), and

linear dynamical systems that appear throughout the book. The treatment of

each subject is far from being complete and is mostly included as a reference

for the developments in later chapters. The reader is expected to have certain

mathematical maturity and already be familiar with the material as the majority

of the results are presented without deriving them. The material presented builds

on several concepts from matrix and vector analysis, all of which are briefly

reviewed in Appendix A.

2.1 Probability and Stochastic Processes

2.1.1 Probability Spaces

An experiment whose outcome is uncertain can be mathematically described by

a so-called probability space, whose components are:

P1. the sample space, denoted by Ω, which is the set of all possible outcomes

of the experiment;

P2. an event algebra, denoted by F , which is a set whose elements, referred

to as events, are subsets of the sample space chosen so that (i) Ω ∈ F ,

(ii) if A ∈ F , then Ac ∈ F (clearly ∅ ∈ F because Ω ∈ F), and (iii) if

A1, A2, . . . ∈ F , then
⋃
iAi ∈ F ; and

P3. a probability measure, which assigns each event A ∈ F a number Pr(A),

referred to as the probability of event A, so that: (i) Pr(A)≥ 0 for any

A ∈ F , (ii) Pr
(⋃

iAi

)
=
∑
i Pr(Ai), for any events A1, A2, . . . , such that

Ai ∩Aj = ∅, i 6= j, and (iii) Pr(Ω) = 1.

Conditional Probability and Independence
We say an event A has occurred if the outcome of the experiment is within the

set A. Given events A,B, the conditional probability of event A given that event

B has occurred is defined as follows:

Pr(A |B) =

{
Pr(A∩B)

Pr(B) , if Pr(B) > 0,

undefined, if Pr(B) = 0.
(2.1)
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2.1 Probability and Stochastic Processes 17

A similar expression can be obtained for Pr(B |A), i.e., the conditional proba-

bility of event B given event A has occurred.

Events A,B are said to be independent if Pr(A ∩ B) = Pr(A) Pr(B); thus, if

Pr(B) > 0, we have that Pr(A |B) = Pr(A), i.e., knowing event B has occurred

does not yield additional information about event A. Similarly, if events A and B

are independent and Pr(A) > 0, we have that Pr(B |A) = Pr(B), which is to say

that knowing event A has occurred does not give us any additional information

about event B. Events A,B,C are said to be pairwise independent if Pr(A∩B) =

Pr(A) Pr(B), Pr(A ∩ C) = Pr(A) Pr(C), and Pr(B ∩ C) = Pr(B) Pr(C). Events

A,B,C are said to be independent if they are pairwise independent and

Pr(A ∩B ∩ C) = Pr(A) Pr(B) Pr(C).

Bayes’ Formula and the Law of Total Probability
Given events A,B, if both Pr(A) > 0 and Pr(B) > 0, then Pr(A∩B)=

Pr(A |B) Pr(B) = Pr(B |A) Pr(A); this leads to the following expression

Pr(B |A) =
Pr(A |B) Pr(B)

Pr(A)
,

which is known as Bayes’ formula.

Events E1, E2, . . . , En are said to be mutually exclusive if Ei ∩Ej = ∅, i 6= j.

Events E1, E2, . . . , En are said to form a partition of Ω if they are mutually

exclusive and
⋃n
i=1Ei = Ω. For any event A and any partition of the sample

space, E1, E2, . . . En, satisfying Pr(Ei) > 0, i = 1, 2, . . . , n, we have that

Pr(A) = Pr(A |E1) Pr(E1) + Pr(A |E2) Pr(E2) + · · ·+ Pr(A |En) Pr(En);

this is known as the law of total probability.

By using Bayes’ formula and the law of total probability one can check that,

for any event A and any partition of the sample space, E1, E2, . . . , En, satisfying

Pr(Ei) > 0, i = 1, 2, . . . , n, the following holds true:

Pr(Ei |A) =
Pr(A |Ei) Pr(Ei)

Pr(A |E1) Pr(E1) + Pr(A |E2) Pr(E2) + · · ·+ Pr(A |En) Pr(En)
,

i = 1, 2, . . . , n.

2.1.2 Random Variables

Given a probability space (Ω,F ,Pr), a random variable is a function X(·) that

maps each outcome ω ∈ Ω to a real number, while satisfying that

{ω ∈ Ω: X(ω) ≤ x} ∈ F

for every x ∈ R. The values that X(·) takes are referred to as the realizations

of the random variable. In order to simplify notation, we write {X ≤ x} as a

shorthand for the event {ω ∈ Ω: X(ω) ≤ x}, and Pr(X ≤ x) as a shorthand for

its probability, Pr
(
{ω ∈ Ω: X(ω) ≤ x}

)
.
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18 Preliminaries

Since {ω ∈ Ω: X(ω) ≤ x} is an event for every x ∈ R, we can define the

following function:

FX(x) = Pr(X ≤ x), x ∈ R,

which is referred to as the cumulative distribution function (cdf) of X. The cdf

of a random variable X, FX(·), always satisfies the following properties:

C1. It is always nondecreasing.

C2. limx→−∞ FX(x) = 0, and limx→∞ FX(x) = 1.

C3. It is right continuous, i.e., lim
ε→0
ε>0

FX(x+ ε) = FX(x).

Given events {X ≤ a}, {X ≤ b}, a < b, we have that

{X ≤ b} = {X ≤ a} ∪ {a < X ≤ b},

with events {X ≤ a} and {a < X ≤ b} being mutually exclusive; thus, we can

write Pr(X ≤ b) = Pr(X ≤ a) + Pr(a < X ≤ b), and by using the definition of

cdf, we obtain that

Pr(a < X ≤ b) = FX(b)− FX(a).

Discrete Random Variables
A random variable X is said to be discrete if it takes values in a finite or countable

set X = {x1, x2, . . .}, xi ∈ R, (i.e., there is one-to-one correspondence between

each element in X and a natural number) such that

∑

xi∈X
Pr(X = xi) = 1. (2.2)

For each xi ∈ X , let pX(xi) denote the probability that X takes value xi; pX(·)
is referred to as the probability mass function (pmf) of X and in light of (2.2),

it must satisfy
∑

xi∈X
pX(xi) = 1.

The expectation, or first moment, of a discrete random variable X with pmf

pX(xi), xi ∈ X , which we denote by E[X] and sometimes by µX , is defined as

E[X] =
∑

xi∈X
xipX(xi). (2.3)

Given a discrete random variable X with its pmf taking values pX(xi), xi ∈ X ,

and a function g : R→ R, we have that

E
[
g(X)

]
=
∑

xi∈X
g(xi)pX(xi). (2.4)

https://doi.org/10.1017/9781108123853.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108123853.004


2.1 Probability and Stochastic Processes 19

The variance of a discrete random variable X with its pmf taking values

pX(xi), xi ∈ X , which we denote by σ2
X , is defined as

σ2
X = E

[
(X − µX)2

]

=
∑

xi∈X
(xi − µX)2pX(xi). (2.5)

By using simple manipulations, one can check that

σ2
X = E

[
(X − µX)2

]
= E

[
X2
]
− µ2

X .

The term E
[
X2
]

is referred to as the second moment of X. More generally,

E[Xn], n = 1, 2, . . . , is referred to as the nth moment of X. The square root of

the variance, σX , is referred to as the standard deviation of X.

Example 2.1 (Bernoulli distribution) A discrete random variable X with pmf

pX(·) defined as follows

pX(x) =

{
p, if x = 1,

1− p, if x = 0,

where 0 ≤ p ≤ 1, is said to have a Bernoulli distribution with parameter p. By

using (2.3) and (2.5), one can check that µX = p and σ2
X = p(1− p).

Example 2.2 (Binomial distribution) A discrete random variable X with pmf

pX(·) defined as follows

pX(x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n,

where 0 ≤ p ≤ 1, is said to have a Binomial distribution with parameters n and

p. By using (2.3) and (2.5), one can check that µX = np and σ2
X = np(1− p).

Example 2.3 (Geometric distribution) A discrete random variable X with pmf

pX(·) defined as follows

pX(x) = (1− p)x−1p, x = 1, 2, . . . ,

where 0 ≤ p ≤ 1, is said to have a Geometric distribution with parameter p. By

using (2.3) and (2.5), one can check that µX = 1
p and σ2

X = 1−p
p2 .

Example 2.4 (Poisson distribution) A discrete random variable X with pmf

pX(·) defined as follows

pX(x) =
λxe−λ

x!
, x = 0, 1, . . . ,

where λ ≥ 0, is said to have a Poisson distribution with parameter λ. By using

(2.3) and (2.5), one can check that µX = λ and σ2
X = λ.
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Continuous Random Variables
A random variable X is said to be continuous if there exists some function

fX : R→ [0,∞), referred to as the probability density function (pdf) of X, such

that

FX(x) =

∫ x

−∞
fX(y)dy;

thus, because of Property C2 above, it follows that
∫ ∞

−∞
fX(x)dx = 1.

If the pdf of a continuous random variable X, fX(·), is continuous, then its cdf,

FX(·), is continuously differentiable and

fX(x) =
dFX(x)

dx
. (2.6)

In this remainder, we only consider continuous random variables whose pdf is

piecewise continuous with a finite or countable number of discontinuity points;

thus, except for those points at which the pdf is discontinuous, (2.6) holds.

The expectation, or first moment, of a continuous random variable with pdf

fX(·) is defined as

µX = E[X] =

∫ ∞

−∞
xfX(x)dx. (2.7)

Given a continuous random variable X with pdf fX(x), we have that

E
[
g(X)

]
=

∫ ∞

−∞
g(x)fX(x)dx; (2.8)

this result is analogous to that in (2.4).

The variance of a continuous random variable with pdf fX(·) is defined as

σ2
X = E[(X − µX)2]

=

∫ ∞

−∞
(x− µX)2fX(x)dx. (2.9)

As in the discrete case, we have that

σ2
X = E[(X − µX)2] = E[X2]− µ2

X .

Example 2.5 (Uniform distribution) A continuous random variable X with pdf

fX(x) =





1
b−a , if a < x ≤ b,
0, otherwise,

a, b ∈ R, a < b, is said to have a Uniform distribution on the interval [a, b]. One

can check by using (2.7) and (2.9) that µX = a+b
2 and σ2

X = (b−a)2

12 .
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Example 2.6 (Exponential distribution) A continuous random variable X with

pdf

fX(x) =

{
λe−λx, if x ≥ 0,

0, otherwise,

λ > 0, is said to have an Exponential distribution with parameter λ. One can

check by using (2.7) and (2.9) that µX = 1
λ and σ2

X = λ2.

Example 2.7 (Gaussian distribution) A continuous random variable X with

pdf

fX(x) =
1√

2πσ2
X

e
− (x− µX)2

2σ2
X , −∞ ≤ x ≤ ∞,

µ ∈ R, σ > 0, is said to have a Gaussian (or Normal) distribution with parameters

µX and σ2
X . One can check by using (2.7) and (2.9) that indeed µX and σ2

X are

respectively the mean and variance of X.

2.1.3 Jointly Distributed Random Variables

Given two random variables X and Y defined on the same probability space

(Ω,F ,Pr) and any x, y ∈ R, we can define an event of the form

{ω ∈ Ω: X(ω) ≤ x, Y (ω) ≤ y},

and as before, we will write Pr(X ≤ x, Y ≤ y) as a shorthand for its probability.

Then, we can define the function

FX,Y (x, y) = Pr(X ≤ x, Y ≤ y),

x, y ∈ R, which we refer to as the joint cdf of X and Y . In the remainder of

this section, we mostly focus on continuous random variables; however, there are

counterpart notions for discrete random variables to the majority of concepts

introduced.

Joint and Marginal pdfs
Given two continuous random variables X,Y , there exists a function fX,Y (·, ·),
referred to as the joint probability density function of X and Y , such that

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dudv,

and, similar to the single continuous random variable case, we have that
∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y)dxdy = 1.
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Given two continuous random variables with joint pdf fX,Y (·, ·), the marginal

pdf fX(·) is the pdf of X when considered by itself, and can be obtained as

follows:

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy.

One can similarly obtain an expression for the marginal pdf fY (·).

Example 2.8 Consider two continuous random variables X,Y with joint pdf as

follows:

fX,Y (x, y) =

{
1
2 , if |x|+ |y| ≤ 1,

0, otherwise;
(2.10)

see Fig. 2.1 (left) for a graphical representation of the support of fX,Y (·, ·).
The marginal pdf fX(x) can be computed as follows. For 0 ≤ x ≤ 1, we have

that fX,Y (x, y) = 1
2 if −1 + x ≤ y ≤ 1− x and fX,Y (x, y) = 0 otherwise; thus

fX(x) =

∫ 1−x

−1+x

1

2
dy

= 1− x, 0 ≤ x ≤ 1.

A similar argument yields

fX(x) = 1 + x, − 1 ≤ x < 0.

Finally, since fX,Y (x, y) = 0 when x > 1 or x < −1, we have that fX(x) = 0 for

x > 1 or x < −1. Putting together the results above yields

fX(x) =

{
1− |x|, if − 1 ≤ x ≤ 1,

0, otherwise.
(2.11)
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Figure 2.1 Example 2.8: support of joint pdf fX,Y (·, ·) (left), marginal pdf fX(·)
(center), and marginal pdf fY (·) (right).
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Because of symmetry, it is easy to see that

fY (y) =

{
1− |y|, if − 1 ≤ y ≤ 1,

0, otherwise.
(2.12)

The graphs of fX(·) and fY (·) are displayed in Fig. 2.1 (center) and Fig. 2.1

(right), respectively.

Conditional pdfs and Independence
As we did with events, if X and Y are continuous random variables, we can define

the conditional pdf of X given Y = y such that fY (y)> 0, which we denote by

fX |Y (· | y), as follows:

fX |Y (x | y) =
fX,Y (x, y)

fY (y)
. (2.13)

One can also write a similar expression for the conditional pdf of Y given X = x.

Two jointly distributed continuous random variables X and Y are said to

be independent if we can factor their joint pdf as the product of the marginal

pdfs, i.e.,

fX,Y (x, y) = fX(x)fY (y), (2.14)

for all x and y. Then, by plugging (2.14) into (2.13), we obtain

fX |Y (x | y) = fX(x),

for all x and all y such that fY (y) > 0.

Example 2.9 We continue with Example 2.8 and compute the conditional pdf

of X given Y . Recall from (2.12) that fY (y) = 1 − |y| > 0 if −1 < y < 1,

and fY (y) = 0 otherwise; thus, fX |Y (x | y) is only defined if y ∈ (−1, 1). Also,

recall from (2.10) that for any y ∈ (−1, 1), we have that fX,Y (x, y) = 1/2 if

|x| ≤ 1− |y|, and fX,Y (x, y) = 0 otherwise; thus,

fX |Y (x | y) =





1
2(1−|y|) , if − 1 + |y| ≤ x ≤ 1− |y|,
0, otherwise,

(2.15)

for any y ∈ (−1, 1), i.e., given Y = y, y ∈ (−1, 1), the distribution of X on the

interval
[
−1+|y|, 1−|y|

]
is uniform. The graph of fX |Y (· | y0) for some y0 ∈ (0, 1)

is displayed in Fig. 2.2, where one can visualize the relation between the support

of fX |Y (· | y0) and the shape of the support of the joint pdf fX,Y (x, y). By

inspection of (2.10), (2.11), and (2.12), it is clear that fX,Y (x, y) 6= fX(x)fY (y);

thus, the random variables X and Y are not independent.
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fX | Y (x | y0)

1 − |y0|−1 0−1 + |y0| x−1

−1

y

1

x−1 1

−1

y0

1

2(1 − |y0|)

Figure 2.2 Example 2.9: conditional pdf fX |Y (· | y0) for some y0 ∈ (0, 1) (top), and
support of joint pdf fX,Y (·, ·) (bottom).

Expectation, Covariance, and Correlation
Given two jointly distributed continuous random variables with joint pdf

fX,Y (x, y), and a function g : R× R→ R, we have that

E
[
g(X,Y )

]
=

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y)dxdy; (2.16)

this result is similar in spirit to the one in (2.8) for a single random variable and

a real-valued function.

If X and Y are independent, then we have that

E
[
XY

]
= E

[
X
]
E
[
Y
]
.

To see this, we use (2.16) and (2.14) and proceed as follows:

E
[
XY

]
=

∫ ∞

−∞

∫ ∞

−∞
xyfX,Y (x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
xyfX(x)fY (y)dxdy

=

∫ ∞

−∞
xfX(x)dx

︸ ︷︷ ︸
E
[
X
]

∫ ∞

−∞
yfY (y)dy

︸ ︷︷ ︸
E
[
Y
]

.

Given two jointly distributed continuous random variables X,Y , the condi-

tional expectation of X given Y = y is as follows:
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E
[
X |Y = y

]
=

∫ ∞

−∞
xfX |Y (x | y)dx, (2.17)

which depends on y; thus, there exists some real-valued function h(·) such that

h(y) := E
[
X |Y = y

]

=

∫ ∞

−∞
xfX |Y (x | y)dx.

Then, h(Y ) is another random variable, denoted by E
[
X |Y

]
, and referred to as

the conditional expectation of X given Y . Now, by using (2.8), we have that

E
[
E
[
X |Y

]]
= E

[
h(Y )

]

=

∫ ∞

−∞
h(y)fY (y)dy

=

∫ ∞

−∞

(∫ ∞

−∞
xfX |Y (x |y)dx

)
fY (y)dy

=

∫ ∞

−∞
x



∫ ∞

−∞
fX |Y (x |y)fY (y)
︸ ︷︷ ︸

= fX,Y (x, y)

dy


 dx

=

∫ ∞

−∞
xfX(x)dx

= E[X]. (2.18)

The covariance of two jointly distributed continuous random variables X,Y ,

which we denote by cX,Y , is defined as follows:

cX,Y = E
[
(X − µX)(Y − µY )

]

=

∫ ∞

−∞

∫ ∞

−∞
(x− µX)(y − µY )fX,Y (x, y)dxdy,

and similarly to the variance of a single random variable, one can check that

cX,Y = E[XY ]− µXµY

=

∫ ∞

−∞

∫ ∞

−∞
xyfX,Y (x, y)dxdy

︸ ︷︷ ︸
=: rX,Y

−µXµY .

The term rX,Y := E[XY ] is referred to as the correlation of X and Y . Random

variables X and Y are said to be uncorrelated when cX,Y = 0. If this is the case,

we have that

rX,Y = µXµY ;

the converse is also true, i.e., if rX,Y =µXµY , then X and Y are uncorre-

lated. Recall that if two random variables X and Y are independent, then
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E[XY ] = µXµY ; thus, if X and Y are independent, they are also uncorrelated.

The converse is not true in general, i.e., if X and Y are uncorrelated, it does not

imply that they are independent unless both X and Y are jointly distributed

Gaussian random variables.

Example 2.10 We continue with Example 2.9. By plugging (2.15) into (2.17),

we obtain

E
[
X |Y = y

]
=

∫ 1−|y|

−1+|y|
x

1

2(1− |y|)dx

= 0

=: h(y), −1 ≤ y ≤ 1. (2.19)

Then, by plugging (2.12) and (2.19) into (2.18), we obtain

E
[
X
]

= E
[
E
[
X |Y

]]

= E
[
h(Y )

]

= 0, (2.20)

which matches the value of E[X] computed by using (2.11):

E
[
X
]

=

∫ ∞

−∞
xfX(x)dx

=

∫ 1

−1

x
(
1− |x|

)
dx

=

∫ 0

−1

x(1 + x)dx+

∫ 1

0

x(1− x)dx

= 0, (2.21)

as expected. Similar calculation yields E[Y ] = 0. Thus,

cX,Y = rX,Y

=

∫ ∞

−∞
x

(∫ ∞

−∞
yfX,Y (x, y)dy

)
dx

=
1

2

∫ 0

−1

x

(∫ 1+x

−(1+x)

ydy

)
dx+

1

2

∫ 1

0

x

(∫ 1−x

−(1−x)

ydy

)
dx

= 0, (2.22)

therefore, X and Y are uncorrelated; however, they are not independent as we

established in Example 2.9.
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2.1.4 Random Vectors

An n-dimensional random vector X is an n-tuple whose components, denoted by

X1, X2, . . . , Xn, are random variables all defined on the same probability space,

(Ω,F ,Pr). Because the Xi’s take values in R, the values that X takes, denoted

by x, are real vectors in Rn. (Unless otherwise stated, in this book we adopt the

convention that the components of a vector are arranged in a column format.)

Now, for any x = [x1, x2, . . . , xn]> ∈ Rn, we can define events of the form:

{ω ∈ Ω: X1(ω) ≤ x1, X2(ω) ≤ x2, . . . , Xn(ω) ≤ xn}, (2.23)

and as before, we write Pr(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) as a shorthand for

their probability. Then, we can define a function FX: Rn → [0, 1] as follows:

FX(x1, x2, . . . , xn) = Pr(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn);

this function is referred to as the joint cdf of the components of X.

If the components of an n-dimensional random vector X are jointly distributed

discrete random variables, then X will take values in a finite or countable set X ⊂
Rn, and we refer to X as a discrete random vector. Thus, as in the case of a single

random variable, the pmf of the random vector X, denoted by pX(·, ·, . . . , ·), is

defined as follows:

pX(x1, x2, . . . , xn) = Pr(X1 = x1, X2 = x2, . . . , Xn = xn),

x = [x1, x2, . . . , xn]> ∈ X , which satisfies
∑

x∈X
pX(x1, x2, . . . , xn) = 1.

We can write the set X ⊂ Rn containing the values taken by a discrete random

vector X = [X1, X2, . . . , Xn]> as follows:

X = X1 ×X2 × · · · × Xn ⊂ Rn,

where Xi ⊂ R, i = 1, 2, . . . , n, is a countable set containing the values that Xi

can take. Then, we can define the marginal pmf of Xi, denoted by pXi(·), as

follows:

pXi(xi) =
∑

xj∈Xj ,j 6=i
pX(x1, x2, . . . , xi, . . . , xn).

For the case when the components of X are jointly distributed continuous

random variables, in which case we refer to X as a continuous random vector,

there exists some function fX : Rn → [0,∞), referred to as the joint pdf of the

components of X, such that

FX(x1, x2, . . . , xn) =

∫ x1

−∞

∫ x2

−∞
. . .

∫ xn

−∞
fX(y1, y2, . . . , yn)dy1dy2 . . . dyn,
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and
∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
fX(x1, x2, . . . , xn)dx1dx2 . . . dxn = 1.

Given an n-dimensional continuous random vector X with pdf fX(·), the

marginal pdf of its ith component, denoted by fXi(·), is defined as follows:

fXi(xi) =

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
fX(x1, x2, . . . , xi, . . . , xn)dx1dx2 . . . dxi−1dxi+1 . . . dxn.

Conditional pdfs and Independence
Given two random vectors X = [X1, X2, . . . , Xn]> and Y = [Y1, Y2, . . . , Ym]>

defined on the same probability space, (Ω,F ,Pr), we can define their joint cdf,

which we denote by FX,Y (·, ·), by using a similar approach to the one above used

for defining the joint pdf of the components of a random vector X. Similarly,

whether X and Y are discrete or continuous random vectors, we can also define

their joint pmf and pdf, which we denote by pX,Y (·, ·) and fX,Y (·, ·), respectively,

and the marginal pmf and pdf of X (or Y ), which we denote by pX(x)
(
or pY (y)

)

and fX(x)
(
or fY (y)

)
, respectively.

As we did with events, if X and Y are discrete random vectors, we can define

the conditional pmf of X given Y , denoted by pX |Y (· | ·), as follows:

pX |Y (x | y) =
pX,Y (x, y)

pY (x)
,

and if

pX,Y (x, y) = pX(x)pY (y),

we say they are independent. Similarly, if X and Y are continuous random

vectors, we can define the conditional pdf of X given Y , denoted by fX |Y (· | ·),
as follows:

fX |Y (x | y) =
fX,Y (x, y)

fY (x)
,

and if

fX,Y (x, y) = fX(x)fY (y),

we say they are independent.

Expectation, Covariance, and Correlation
The mean of a random vector X = [X1, X2, . . . , Xn]>, denoted by E[X] or mX ,

is a vector in Rn whose components are the expectations of the components of

X, i.e.,

E[X] =
[
E[X1],E[X2], . . . ,E[Xn]

]>
. (2.24)

https://doi.org/10.1017/9781108123853.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108123853.004


2.1 Probability and Stochastic Processes 29

The covariance matrix of a random vector X = [X1, X2, . . . , Xn]>, denoted by

E
[
(X −mX)(X −mX)>

]
or ΣX , is defined as:

[
ΣX
]
i,j

= E
[
(Xi −mXi)(Xj −mXj )

]
,

i = 1, 2, . . . , n, j = 1, 2, . . . , n. Similarly, the correlation matrix of a random

vector X = [X1, X2, . . . , Xn]>, denoted by E
[
XX>

]
or SX , is defined as:

[
SX
]
i,j

= E
[
XiXj

]
,

i = 1, 2, . . . , n, j = 1, 2, . . . , n. One can check that the relation between the

covariance and correlation matrices of X is given by:

ΣX = SX −mXm
>
X .

Given two random vectors, X = [X1, X2, . . . , Xn]> and Y = [Y1, Y2, . . . , Yn]>,

defined on the same probability space, we can define their covariance matrix,

which we denote by E
[
(X −mX)(Y −mY )>

]
or CX,Y , as follows:

[
CX,Y

]
i,j

= E
[(
Xi − E[Xi]

)(
Yj − E[Yj ]

)]
, (2.25)

i = 1, 2, . . . , n, j = 1, 2, . . . , n. Similarly, we can define their correlation matrix,

which we denote by E
[
XY >

]
or RX,Y , as follows:
[
RX,Y

]
i,j

= E
[
XiYj

]
, (2.26)

i = 1, 2, . . . , n, j = 1, 2, . . . , n. For the case when Y = X, we clearly have

CX,X = ΣX and RX,X = SX . Given two random vectors X and Y , one can check

that the relation between their covariance and correlation matrices is given by:

CX,Y = RX,Y −mXm
>
Y .

2.1.5 Stochastic Processes

An n-dimensional stochastic process X is a collection of n-dimensional random

vectors indexed in some set T , all of which are defined on the same probability

space (Ω,F ,Pr). When T = {0, 1, 2, . . .}, X is called a vector-valued discrete-

time stochastic process, and we typically write X =
{
Xk : k ∈ T

}
,

T = {0, 1, 2, . . .}, or X = {Xk : k ≥ 0} to represent it. When T = [0,∞),

X is called a vector-valued continuous-time stochastic process, and we typically

write X =
{
X(t) : t ∈ T

}
, T = [0,∞), or X =

{
X(t) : t ≥ 0

}
to represent it.

To completely characterize a vector-valued discrete-time stochastic process,

X = {Xk : k ≥ 0}, it is necessary to obtain the joint cdf of the random vectors

Xk1
, Xk2

, . . . , Xk` ,

FXk1
,Xk2

,...,Xk`
(x1, x2, . . . , x`),
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for all ` and any k1, k2, . . . , k`. Similarly, to fully characterize a vector-valued

continuous-time stochastic process, X =
{
X(t) : t ≥ 0

}
, it is necessary to

obtain the joint cdf of the random vectors X(t1), X(t2), . . . , X(t`),

FX(t1),X(t2),...,X(t`)(x1, x2, . . . , x`),

for all ` and all t1, t2, . . . , t`.

Example 2.11 (Bernoulli process) Consider a discrete-time stochastic process

X = {Xk : k ≥ 0}, where the Xk’s are Bernoulli independent and identically

distributed (i.i.d.) random variables with parameter p, i.e., Pr(Xk = 1) = p and

Pr(Xk = 0) = 1 − p; such process is referred to as a Bernoulli process. In this

case, instead of characterizing

FXk1
,Xk2

,...,Xk`
(x1, x2, . . . , x`),

for all ` and any k1, k2, . . . , k`, we can equivalently provide a complete descrip-

tion of the stochastic process by providing the joint pmf of Xk1 , Xk2 , . . . , Xk` ,

pXk1
,Xk2

,...,Xk`
(x1, x2, . . . , x`), for all ` and any k1, k2, . . . , k`. First note that

Pr(Xk = xk) = pxk(1− p)1−xk ,

with xk ∈ {0, 1}; then, we have that

pXk1
,Xk2

,...,Xk`
(x1, x2, . . . , x`) = Pr

(
Xk1

= x1, Xk2
= x2, . . . , Xk` = x`

)

= Pr
(
Xk1

= x1

)
Pr
(
Xk2

= x2

)
· · ·Pr

(
Xk` = x`

)

= px1(1− p)1−x1px2(1− p)1−x2 . . . px`(1− p)1−x`

= p
∑`
k=1xk(1− p)`−

∑`
k=1xk , (2.27)

with xi ∈ {0, 1}, i = 1, 2, . . . , `.

Mean, Covariance, and Correlation Functions
Except for specific cases (as in the example above), it is hard in general to obtain

a full characterization of a stochastic process. However, in many applications it

suffices to characterize the first and second moments of the stochastic process,

which we define next.

The first moment, or mean function, of an n-dimensional discrete-time stochas-

tic process X, which we denote by mX [·], is defined as follows:

mX [k] = E
[
Xk

]
∈ Rn, k ≥ 0. (2.28)

Similarly, if X is an n-dimensional continuous-time stochastic process, its mean

function, which we denote by mX(·), is defined as follows:
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mX(t) = E
[
X(t)

]
∈ Rn, t ≥ 0. (2.29)

The covariance function of an n-dimensional discrete-time stochastic process,

which we denote by CX [·, ·], is defined as follows:

CX [k1, k2] := CXk1
,Xk2

= E
[(
Xk1 −mX [k1]

)(
Xk2 −mX [k2]

)>] ∈ Rn×n, k1, k2 ≥ 0.

(2.30)

Similarly, if X is an n-dimensional continuous-time stochastic process, its covari-

ance function, which we denote by CX(·, ·), is defined as follows:

CX(t1, t2) := CX(t1),X(t2)

= E
[(
X(t1)−mX(t1)

)(
X(t2)−mX(t2)

)>] ∈ Rn×n, t1, t2 ≥ 0.

(2.31)

In words, given k1, k2 ≥ 0 (t1, t2 ≥ 0), the value of the covariance function of

X, CX [k1, k2]
(
CX(t1, t2)

)
, is equal to the covariance of the random vectors Xk1

and Xk2

(
X(t1) and X(t2)

)
.

The correlation function of an n-dimensional discrete-time stochastic process,

which we denote by RX [·, ·], is defined as follows:

RX [k1, k2] := RXk1
,Xk2

= E
[
Xk1

X>k2

]
∈ Rn×n, k1, k2 ≥ 0. (2.32)

Similarly, if X is an n-dimensional continuous-time stochastic process, its covari-

ance function, which we denote by RX(·, ·), is defined as follows:

RX(t1, t2) := RX(t1),X(t2)

= E
[
X(t1)X>(t2)

]
∈ Rn×n, t1, t2 ≥ 0. (2.33)

In words, given k1, k2 ≥ 0 (t1, t2 ≥ 0), the value of the correlation function of

X, RX [k1, k2]
(
RX(t1, t2)

)
, is equal to the correlation of the random vectors Xk1

and Xk2

(
X(t1) and X(t2)

)
.

The correlation and covariance functions of a stochastic process X are referred

to as the second moments of the process, and they are related as follows:

CX [k1, k2] = RX [k1, k2]−mX [k1]m>X [k2], k1, k2 ≥ 0, (2.34)

if X is a discrete-time stochastic process, and

CX(t1, t2) = RX(t1, t2)−mX(t1)m>X(t2), t1, t2 ≥ 0, (2.35)

if X is a continuous-time stochastic process.
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Example 2.12 (Bernoulli process moments) Consider again the Bernoulli pro-

cess in Example 2.11. In this case, the mean, covariance, and correlation functions

of the process are:

mX [k] = E
[
Xk

]

= p, k = 0, 1, 2, . . . , (2.36)

CX [k1, k2] = CXk1
,Xk2

= E
[(
Xk1
−mX [k1]

)(
Xk2
−mX [k2]

)]

=

{
p(1− p), if k1 = k2,

0, if k1 6= k2,
(2.37)

RX [k1, k2] = CX [k1, k2] +mX [k1]mX [k2]

=

{
p, if k1 = k2,

p2, if k1 6= k2.
(2.38)

Stationarity
An n-dimensional discrete-time stochastic process X = {Xk : k ≥ 0} is said to

be strict-sense stationary if

FXk1
,Xk2

,...,Xk`
(x1, x2, . . . , x`) = FXk1+k′ ,Xk2+k′ ,...,Xk`+k′

(x1, x2, . . . , x`)

for all ` and all k1, k2, . . . , k`, k
′ ≥ 0. Similarly, an n-dimensional continuous-time

stochastic process X =
{
X(t) : t ∈ [0,∞)

}
is said to be strict-sense stationary if

FX(t1),X(t2),...,X(t`)(x1, x2, . . . , x`) = FX(t1+s),X(t2+s),...,X(t`+s)(x1, x2, . . . , x`)

for all ` and all t1, t2, . . . , t`, s ∈ [0,∞).

A discrete-time stochastic process X = {Xk : k ≥ 0} is said to be wide-sense

stationary if

mX [k] = mX [k + k′], (2.39)

CX [k1, k2] = CX [k1 + k′, k2 + k′], (2.40)

for all k, k′, k1, k2 ≥ 0, i.e., its mean function does not depend on time, and

the value of the covariance function for any k1, k2, CX(k1, k2), only depends on

k1 − k2. Similarly, a continuous-time stochastic process X = {X(t) : t ∈ [0,∞)}
is said to be wide-sense stationary if

mX(t) = mX(t+ s), (2.41)

CX(t1, t2) = CX(t1 + s, t2 + s), (2.42)

for all t, s, t1, t2≥ 0. Any strict-sense stationary process is also wide-sense

stationary; the converse is not true in general.
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Example 2.13 Consider again the Bernoulli process of Examples 2.11, 2.12. For

any k, k′ ≥ 0, we have that

mX [k + k′] = E[Xk+k′ ]

= p; (2.43)

which matches the expression formX [k] in (2.36). Similarly, for any k1, k2, k
′ ≥ 0,

direct calculation of E
[(
Xk1+k′ −mX [k1 + k′]

)(
Xk2+k′ −mX [k2 + k′]

)]
yields

CX [k1 + k′, k2 + k′] =

{
p(1− p), if k1 = k2,

0, if k1 6= k2,
(2.44)

which matches the expression for CX [k1, k2] in (2.37). Thus, we conclude that

the Bernoulli process is wide-sense stationary.

By using a similar procedure to the one used in (2.27), we obtain that

pXk1+k′ ,Xk2+k′ ,...,Xk`+k′
(x1, x2, . . . , x`) = p

∑`
k=1xk(1− p)`−

∑`
k=1xk , (2.45)

for any k1, k2, . . . , k`, k
′ ≥ 0, which matches the expression for

pXk1
,Xk2

,...,Xk`
(x1, x2, . . . , x`)

in (2.27); thus, the Bernoulli process is also strict-sense stationary.

The Wiener Process
The Wiener process is a continuous-time stochastic process that will be heavily

featured in Chapter 6. It can be used to formally describe the random motion of

a tiny particle suspended in water, a phenomenon first observed by the botanist

Robert Brown in 1827, and for this reason, a Wiener process is also referred to

as Brownian motion process, or Brownian motion. However, it was not until the

1920s that the mathematician Norbert Wiener provided a rigorous mathematical

description of the phenomenon (Albert Einstein also studied the problem in

1905). The formal definition of the Wiener process is as follows:

definition 2.1 Let W =
{
W (t) : t ∈ T = [0,∞)

}
denote a real-valued

stochastic process. We say W is a standard Wiener process if it satisfies the

following properties:

B1. W (0) = 0.

B2. W has independent increments, i.e., the distribution of W (t)−W (s) depends

on t−s alone, and the variables W (tj)−W (sj), j = 1, 2, . . . , n, are indepen-

dent whenever the intervals (sj , tj ] are disjoint.

B3. W (s+ t)−W (s) is normally distributed with zero mean and variance t for

all s, t ≥ 0.

B4. The sample paths of W are continuous.
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Mean, Covariance, and Correlation Function. A standard Wiener pro-

cess W is a zero-mean process, i.e.,

mW (t) = 0, (2.46)

for all t ≥ 0; this can be easily established as follows. First note that E
[
W (0)

]
= 0

by Property B1; then we have

mW (t) = E
[
W (t)

]

= E
[
W (t)

]
− E

[
W (0)

]

= E
[
W (t)−W (0)

]

= 0, (2.47)

where the last equality follows from Property B3. In addition, the values

taken by the covariance and correlation functions of a Wiener process W ,

CW (t, s), t, s ≥ 0, and R(t, s), t, s ≥ 0, respectively, are equal and given by

CW (t, s) = RW (t, s)

= min{t, s}; (2.48)

this formula can be established as follows. Clearly CW (t, s) = RW (t, s) since

mW (t) = 0 for all t ≥ 0. Now, assume t ≥ s, then by noting Property B1 (i.e.,

W (0) = 0), we have that

E
[
W (t)W (s)

]
= E

[(
W (t)−W (0)

)(
W (s)−W (0)

)]

= E
[(
W (s)−W (0)

)2
+
(
W (t)−W (s)

)(
W (s)−W (0)

)]

= E
[(
W (s)−W (0)

)2]
+ E

[(
W (t)−W (s)

)(
W (s)−W (0)

)]

︸ ︷︷ ︸
= 0 by Properties B2 and B3

= E
[(
W (s)−W (0)

)2]

= s, (2.49)

where the last equality follows from Property B3. A similar derivation for the case

when t ≤ s results in E
[
W (t)W (s)

]
= t; thus, CW (t, s) = RW (t, s) = min{t, s}.

Probability Distribution. By Property B3, ∆W (t) = W (t) − W (0) is

normally distributed with zero mean and variance t; thus, its pdf, which we

denote by f∆W (t, ·), is given by

f∆W (t,∆w) =
1√
2πt

e−
∆w2

2t , (2.50)

and since W (0) = 0 by Property B1, we have that the pdf of

W (t) = W (0) + ∆W (t),
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denoted by fW (t, ·), is given by

fW (t, w) =
1√
2πt

e−
w2

2t . (2.51)

One can check that (2.51) satisfies the following partial differential equation

∂fW (t, w)

∂t
=

1

2

∂2fW (t, w)

∂w2
, (2.52)

with fW (0, w) = δ(w).

Assume that W (s) = x, s ≥ 0 and x ∈ R; then, conditioned on this, we have

that W (t), t ≥ s, is normally distributed with mean x and variance t − s, i.e.,

the pdf of W (t) conditioned on W (s) = x, which we denote by fW (t, · | s, x), is

given by

fW (t, w | s, x) =
1√

2π(t− s)
e−

(w−x)2

2(t−s) . (2.53)

One can check that fW (t, w | s, x) satisfies the following partial differential equa-

tion

∂fW (t, w | s, x)

∂t
=

1

2

∂2fW (t, w | s, x)

∂w2
, (2.54)

which has the same form as that in (2.52) governing the evolution of the uncon-

ditional pdf.

2.2 Set Theory

2.2.1 Basic Notions and Notation

A set X is a collection of distinct objects, referred to as the elements of X . We

write x ∈ X to denote that x is an element of X and x /∈ X to denote that x is

not an element of X . The cardinality of a set X , denoted by |X |, is the number

of elements in X . A set X is called a singleton if it contains a single element,

i.e., |X | = 1. The empty set, denoted by ∅, is a set containing no elements;

thus, |∅| = 0. The sets of natural numbers (including 0), integer numbers, real

numbers, and complex numbers are denoted by N, Z, R, and C, respectively.

A set can be described in terms of some relations that its elements satisfy.

For example, let X denote a set whose elements, denoted by x, are real numbers

satisfying the following relation:

x2 − 1 ≤ 0;

then we write

X =
{
x ∈ R : x2 − 1 ≤ 0

}
.

We say two sets X and Y are equal, and denote it by X = Y, if every element

in X is also an element of Y and vice versa. We say the set X is a subset of
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another set Y, and denote it by X ⊆ Y, if every element in X is also an element

of Y. We say the set X is a strict subset of another set Y, and denote it by

X ⊂ Y if X ⊆ Y and X and Y are not equal, i.e., X 6= Y. We say two sets X
and Y are disjoint if none of the elements in the set X are contained in the set

Y and vice versa.

The union of two sets X and Y, denoted by X ∪ Y, is another set containing

all the elements that are in either X or Y; this can be written as

X ∪ Y =
{
x : x ∈ X or x ∈ Y

}
.

The intersection of two sets X and Y, denoted by X ∩ Y, is another set

containing all the elements that are in both X and Y; this can be written as

X ∩ Y =
{
x : x ∈ X and x ∈ Y

}
.

The difference of two sets X and Y, denoted by X \ Y, is another set containing

the elements in X that are not in Y; this can be written as

X \ Y =
{
x : x ∈ X and x /∈ Y

}
.

Let X ⊆ U , where U denotes the universal set, i.e., the set that contains all

considered elements; then we can define the complement of X , which we denote

by X or X c, as X = U \ X .
The Cartesian product of two sets X and Y, denoted by X ×Y, is another set

containing ordered pairs of the form (x, y); this can be written as:

X × Y =
{

(x, y) : x ∈ X , y ∈ Y
}
.

2.2.2 Sets in Euclidean Space

We write X ⊆ Rn to denote a set whose elements are vectors in the n-dimensional

Euclidean space. Given a set X ⊆ Rn, we say an element x ∈ X is an interior

point of X if there exists some ε > 0 so that the set

{
y ∈ Rn : (y − x)>(y − x) ≤ ε

}

is a subset of X . The set of all interior points of X is called the interior of X
and is denoted by int(X ). A set X ⊆ Rn is said to be open if int(X ) = X . A set

X ⊆ Rn is said to be closed if its complement,

X = {x ∈ Rn : x /∈ X},

is open. The closure of a set X ⊆ Rn, denoted by cl(X ), is defined as

cl(X ) = Rn \ int(Rn \ X ).

The boundary of a set X ⊆ Rn, denoted by bd(X ) or ∂X , is defined as

bd(X ) = cl(X ) \ int(X ).
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Operations with Sets in Rn
The (geometric) Minkowski sum of two sets X ∈ Rn and Y ∈ Rn, denoted by

X + Y, is another set whose elements result from adding each element in X to

each element in Y; this can be written as

X + Y =
{
z ∈ Rn : z = x+ y, x ∈ X , y ∈ Y

}
.

The (geometric) Minkowski difference of two sets, X ∈ Rn and Y ∈ Rn,

denoted by X − Y, is another set defined as follows:

X − Y =
{
x ∈ Rn : {x}+ Y ⊆ X

}
.

For a given H ∈ Rp×n, the linear transformation of a set X ⊆ Rn is another

set HX ⊆ Rp defined as follows:

HX =
{
y ∈ Rp : y = Hx, x ∈ X

}
.

The Support Function
Given a closed set X ⊆ Rn, its support function, denoted by SX (·), is defined as

SX (η) = max
x∈X

η>x, η ∈ Rn. (2.55)

Let

x∗(η) = arg max
x∈X

η>x
︸ ︷︷ ︸
SX (η)

; (2.56)

then, clearly SX (η) = η>x∗(η) and x∗(η)∈bd(X ); to see this, assume that

SX (η)> 0. Then, if x∗(η) /∈ bd(X ), there exists some x̃∗ ∈ X satisfying

x̃∗(η) = x∗(η) + εη

for some ε > 0. Then we have that

η>x̃∗ = η>
(
x∗(η) + εη

)

= SX (η) + εη>η

> SX (η),

but this contradicts the fact that SX (η) = max
x∈X

η>x. A similar argument can be

made when SX (η) < 0.

The support function of the Minkowski sum of two sets X ⊆ Rn and Y ⊆ Rn,

denoted by SX+Y(·), is given by

SX+Y(η) = SX (η) + SY(η), η ∈ Rn. (2.57)

To see this, define

Z := X + Y =
{
z ∈ Rn : z = x+ y, x ∈ X , y ∈ Y

}
;
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then, by using (2.55), we have

SX+Y(η) = SZ(η)

= max
z∈Z

η>z

= max
x∈X , y∈Y

η>(x+ y)

= max
x∈X

η>x+ max
y∈Y

η>y

= SX (η) + SY(η), (2.58)

as claimed in (2.57).

The support function of HX , where H ∈ Rp×n and X ⊆ Rn, is given by

SHX (η) = SX (H>η); (2.59)

this can be established as follows. Let Y := HX ; then, by using (2.55), we have

SHX (η) = SY(η)

= max
y∈Y

η>y

= max
x∈X

η>(Hx)

= max
x∈X

(
H>η

)>
x

= SX (H>η), (2.60)

as claimed in (2.59).

Convex Sets
A set X ∈ Rn is convex if the line segment between any two points in X is

contained in X , i.e., for any x1, x2 ∈ X , and any θ ∈ [0, 1], we have that

θx1 + (1− θ)x2 ∈ X .

Let B ⊆ Rn denote the unit ball, i.e.,

B =
{
η ∈ Rn : η>η = 1

}
.

A closed convex set X ⊆ Rn can then be described via its support function as

follows:

X =
{
x ∈ Rn : η>x ≤ SX (η), η ∈ B

}
. (2.61)

To establish this, we need the following result.

theorem 2.2 (Supporting Hyperplane Theorem) If X ⊆ Rn is a nonempty

convex set, then for any x in the boundary of X , there exists a vector a ∈ Rn
such that

a>x ≤ a>x (2.62)

for all x ∈ X .
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The geometric interpretation of the result in the theorem above is that the

hyperplane,

H(a) =
{
x ∈ Rn : a>x = a>x

}
,

is tangent to X at x; thus, H(a) is called a supporting hyperplane to X at x,

hence the name of the theorem.

From the supporting hyperplane theorem, associated to each x ∈ bd(X ), there

exists some a so that a>x ≤ a>x for all x ∈ X , which is equivalent to saying

that

η>x ≤ η>x, η =
a

‖a‖ ,

for all x ∈ X . Now, recall from (2.56) that SX (η) = η>x∗(η), with

x∗(η) = arg max
x∈X

η>x

in the boundary of X ; thus,

η>x ≤ η>x∗(η) (2.63)

for all x ∈ X . Therefore, each x ∈ bd(X ) can be written as

x = x∗(η), η ∈ B,
thus,

X =
{
x ∈ Rn : η>x ≤ SX (η), η ∈ B

}
, (2.64)

with

H(η) =
{
x ∈ Rn : η>x = SX (η)

}
(2.65)

defining a supporting hyperplane to X at x∗(η), i.e., H(η) is tangent to X at

x∗(η).

Consider two closed and convex sets X ,Y ∈ Rn. Then, as a consequence of the

supporting hyperplane theorem and the result in (2.65), if SX (η) = SY(η) for

some η ∈ Rn, then the boundaries of X and Y touch each other at the following

point:

x∗(η) = arg max
x∈X

η>x
︸ ︷︷ ︸

= SX (η)

= arg max
x∈Y

η>x
︸ ︷︷ ︸

= SY(η)

. (2.66)

Let X ,Y ∈ Rn be closed and convex, then, X ⊆ Y if and only if SX (η) ≤ SY(η)

for all η ∈ Rn; this can be established as follows. Since X and Y are convex, we

can describe them using (2.61) as follows:

X =
{
x ∈ Rn : η>x ≤ SX (η), η ∈ B

}
, (2.67)

Y =
{
y ∈ Rn : η>y ≤ SY(η), η ∈ B

}
. (2.68)
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If SX (η) ≤ SY(η) for all η ∈ Rn, then, by using (2.67), we have that every

x ∈ X satisfies η>x ≤ SX (η) ≤ SY(η), η ∈ B; thus, every x ∈ X is contained

in Y by virtue of (2.68), therefore, X ⊆ Y. If X ⊆ Y, then for every η ∈ B,

and because X is closed, there exists some x′ ∈ X such that η>x′ = SX (η)

by virtue of (2.67), which also satisfies η>x′ ≤ SY(η) by virtue of (2.68); thus,

SX (η) ≤ SY(η) for all η ∈ B. Now, if we multiply η by any α ∈ R, it follows from

the definition of support function that SX (αη) = αSX (η) and SY(αη) = αSY(η),

thus SX (αη) ≤ SY(αη) for any α ∈ R and all η ∈ B, therefore, SX (η) ≤ SY(η)

for all η ∈ Rn.

The Minkowski sum of two closed convex sets X ,Y ∈ Rn is also a closed

convex set. To see this, let w and z denote two elements of X + Y. Then, there

exist w1, z1 ∈ X and w2, z2 ∈ Y so that w = w1 + w2 and z = z1 + z2. Now, for

θ ∈ [0, 1], we have that

θw + (1− θ)z = θw1 + (1− θ)z1︸ ︷︷ ︸
=: x

+ θw2 + (1− θ)z2︸ ︷︷ ︸
=: y

,

and by convexity of X and Y, we have that x ∈ X and y ∈ Y; thus, we conclude

that θw + (1− θ)z ∈ X + Y, therefore X + Y is convex.

Ellipsoids. An ellipsoid is a closed convex set E ⊆ Rn defined as follows:

E =
{
x ∈ Rn : (x− x0)>E−1(x− x0) ≤ 1

}
, (2.69)

where x0 ∈ Rn is the center of the ellipsoid, and E ∈ Rn×n is a symmetric

positive definite matrix referred to as the shape matrix. The directions of the

the semi-axes of E are defined by the eigenvectors of the matrix E, whereas its

eigenvalues are the squares of the semi-axis lengths.

Support function: Consider an ellipsoid E ⊆ Rn with center x0 ∈ Rn and shape

matrix E ∈ Rn×n. Then, its support function, SE(·), is given by

SE(η) = η>x0 +
√
η>Eη, η ∈ Rn, (2.70)

and

H(η) =

{
x ∈ Rn : η>x = η>x0 +

√
η>Eη︸ ︷︷ ︸

= SE(η)

}

is a supporting hyperplane to E at

x∗(η) = x0 +
1√
η>Eη

Eη.

To see this, recall that SE(η) = η>x∗(η), where x∗(η) = arg max
x∈E

η>x. Since

x∗(η) ∈ bd(E), we can obtain x∗(η) from local extremum points of the following

optimization problem:

maximize
x

η>x

subject to (x− x0)>E−1(x− x0) = 1.
(2.71)
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By introducing a Lagrange multiplier, λ, we can reformulate (2.71) as an uncon-

strained optimization problem as follows:

maximize
x,λ

f(x, λ), (2.72)

where f(x, λ) = η>x− λ
(
(x− x0)>E−1(x− x0)− 1

)
. The values that maximize

f(x, λ) can be obtained by computing the values of x and λ for which the gradient

of f(·, ·) is equal to zero. Thus, we have that

∂f(x, λ)

∂x
= η> − 2λ(x− x0)>E−1

= 0, (2.73)

∂f(x, λ)

∂λ
= (x− x0)>E−1(x− x0)− 1

= 0. (2.74)

Then, by using (2.73), we obtain

x = x0 +
1

2λ
Eη, (2.75)

and by plugging this expression into (2.74), and solving for λ, we obtain

λ = ±1

2

√
η>Eη. (2.76)

Now, one can easily see that

x = x0 +
1√
η>Eη

Eη, λ =
1

2

√
η>Eη,

maximize the value of f(x, λ), while

x = x0 −
1√
η>Eη

Eη, λ = −1

2

√
η>Eη,

minimize it. Thus,

x∗(η) = x0 +
1√
η>Eη

Eη,

which, by plugging into SE(η) = η>x∗(η), yields

SE(η) = η>x0 +
√
η>Eη,

as claimed in (2.70). The fact that

H(η) =
{
x ∈ Rn : η>x = η>x0 +

√
η>Eη

}
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is a supporting hyperplane to E at

x∗(η) = x0 +
1√
η>Eη

Eη

follows directly from (2.65).

Minkowski sum: Consider two ellipsoids X ⊆ Rn and Y ⊆ Rn defined as

follows:

X =
{
x ∈ Rn : (x− x0)>X−1(x− x0) ≤ 1

}
,

Y =
{
y ∈ Rn : (y − y0)>Y −1(y − y0) ≤ 1

}
,

where X and Y are positive definite matrices; thus, their support functions are

SX (η) = η>x0 +
√
η>Xη,

SY(η) = η>y0 +
√
η>Y η,

respectively. Now, let Z ⊆ Rn denote the set that results from the Minkowski

sum of X and Y. Then, by using (2.57), we have that

SZ(η) = SX (η) + SY(η)

= η>(x0 + y0) +
√
η>Xη +

√
η>Y η; (2.77)

thus, in general, Z is not an ellipsoid because, except for specific cases, we can

not find some positive definite matrix Z such that
√
η>Zη =

√
η>Xη+

√
η>Y η.

Volume: Consider an ellipsoid E ⊆ Rn with center x0 ∈ Rn and shape matrix

E ∈ Rn×n. Then its volume, denoted by vol(E), is defined as follows:

vol(E) =
πn/2

√
det(E)

Γ
(
n
2 + 1

) , (2.78)

where Γ(·) is Euler’s gamma function, which is defined as follows:

Γ(x) =

∫ ∞

0

ux−1e−udu. (2.79)

For n = 2, we have that

Γ(2) =

∫ ∞

0

ue−udu

= 1; (2.80)

thus, in this case, vol(X ) = π
√

det(E). Now, if E = r2I2, the resulting ellipsoid

is just a disc of radius r, and since det(E) = r4, we have that vol(X ) = πr2,

which is the familiar formula for the surface area of a disc of radius r. For n = 3,

we have that

Γ(2.5) =

∫ ∞

0

u1.5e−udu

=
3
√
π

4
; (2.81)
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thus, in this case, vol(X ) = 4π
3

√
det(E). Now, if E = r2I3, the resulting

ellipsoid is just a sphere of radius r, and since det(E) = r6, we have that

vol(X ) = 4πr3

3 , which is the familiar formula for the volume of a sphere of

radius r.

Zonotopes. A zonotope is a closed convex set Z ⊆ Rn defined as follows:

Z =

{
x ∈ Rn : x = x0 +

s∑

i=1

αiei, − 1 ≤ αi ≤ 1

}
, (2.82)

where x0 ∈ Rn is the center of the zonotope, and e1, e2, . . . , es are vectors in Rn
referred to as the generators of the zonotope.

Support function: Consider a zonotope Z ⊆ Rn with center x0 ∈ Rn and

generators e1, e2, . . . , es. Then, its support function, SZ(·), is defined as follows:

SZ(η) = η>x0 +

s∑

i=1

|η>ei|, η ∈ Rn. (2.83)

To see this, define X0 = {x0} and

Li = {x ∈ Rn : x = αiei, − 1 ≤ αi ≤ 1}, i = 1, 2, . . . , s;

then, clearly Z can be written as the Minkowski sum of X0, Li, i = 1, 2, . . . , s;

thus,

SZ(η) = SX0
(η) +

s∑

i=1

SLi(η).

Now, from the definition of support function in (2.55), we have

SX0
(η) = max

x∈X0

η>x

= η>x0, (2.84)

and

SLi(η) = max
x∈Li

η>x

= max
−1≤αi≤1

αiη
>ei

= |η>ei|; (2.85)

thus,

SZ(η) = η>x0 +
s∑

i=1

|η>ei|,

as claimed in (2.83).

Minkowski sum: Consider two zonotopes X ⊆ Rn and Y ⊆ Rn defined as

follows:

X =

{
x ∈ Rn : x = x0 +

p∑

i=1

αiei, − 1 ≤ αi ≤ 1

}
,
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Y =

{
y ∈ Rn : y = y0 +

q∑

i=1

βifi, − 1 ≤ βi ≤ 1

}
; (2.86)

thus, their support functions are

SX (η) = η>x0 +

p∑

i=1

|η>ei|,

SY(η) = η>y0 +

q∑

i=1

|η>fi|, (2.87)

respectively. Now, let Z ⊆ Rn denote the set that results from the Minkowski

sum of X and Y. Then, by using (2.57), we have that

SZ(η) = SX (η) + SY(η)

= η>(x0 + y0) +

p∑

i=1

|η>ei|+
q∑

i=1

|η>fi|; (2.88)

thus, Z is clearly a zonotope with center z0 = x0 + y0 and generators

e1, e2, . . . , ep, f1, f2, . . . , fq.

Volume: Consider a zonotope Z ⊆ Rn with center x0 ∈ Rn and generators

e1, e2, . . . , es. Then, its volume, denoted by vol(Z), is defined as follows. For

n > s, we have that

vol(Z) = 0. (2.89)

For n ≤ s, consider all n-combinations of the set of generators,

{
e1, e2, . . . , es

}
,

i.e., all sets formed by taking n distinct elements of the set
{
e1, e2, . . . , es

}
; there

are N =
(
s
n

)
= s!

n!(s−n)! such sets, which we denote by Ei, i = 1, 2, . . . , N . Let

Ei denote the (n×n)-dimensional matrix formed by horizontal concatenation of

the elements in Ei, i = 1, 2, . . . , N , then,

vol(Z) = 2n
N∑

i=1

∣∣det(Ei)
∣∣. (2.90)

Consider the case when Z ⊆ R3 is a zonotope with center x0 = [0, 0, 0]>

and generators e1 = [l/2, 0, 0]>, e2 = [0, l/2, 0]>, and e3 = [0, 0, l/2]>; thus

Z is a cube with sides of length l. In this case, N = 1 and E1 = l
2I3; thus,

vol(Z) = 23det

(
l

2
I3

)
= l3,

which is the familiar formula for the volume of a cube of length l.
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x1
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2
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Figure 2.3 Zonotope in R2 with center x0 = [1, 1]> and generators e1 = [1, 0]>,
e2 = [0, 1]>, and e3 = [1, 1]>.

Example 2.14 (Zonotope in R2) Consider a zonotope Z ⊆ R2 with center

x0 = [1, 1]>,

and generators

e1 = [1, 0]>, e2 = [0, 1]>, e3 = [1, 1]>; (2.91)

thus,

Z =

{[
x1

x2

]
:

[
x1

x2

]
=

[
1 + α1 + α3

1 + α2 + α3

]

− 1 ≤ α1 ≤ 1, −1 ≤ α2 ≤ 1, −1 ≤ α3 ≤ 1

}
; (2.92)

see Fig. 2.3 for a graphical depiction.

Now, by tailoring (2.90) to the setting here, we have that

E1 =

[
1 0

0 1

]
, E2 =

[
1 1

0 1

]
, E3 =

[
0 1

1 1

]
, (2.93)

from where it follows that

vol(Z) = 22
(∣∣det(E1)

∣∣+
∣∣det(E2)

∣∣+
∣∣det(E3)

∣∣
)

= 12. (2.94)

By inspection of Fig. 2.3, one can verify that the area enclosed by the boundary

of the zonotope is 12, which is consistent with the result in (2.94).
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2.3 Linear Dynamical Systems

In this section, we study discrete-time and continuous-time linear dynamical

systems described by state-space models. We first introduce the notion of the

state-transition matrix, which we subsequently use for trajectory characteriza-

tion and stability analysis.

2.3.1 Discrete-Time Systems

Here we study linear time-varying dynamical systems described by a difference

equation of the form:

xk+1 = Gkxk +Hkwk, k = 0, 1, . . . , (2.95)

where xk ∈Rn is referred to as the system state, wk ∈Rm is referred to as the in-

put, Gk ∈Rn×n, and Hk ∈Rn×m. Given x0, and a sequence of inputs, w0, w1, . . . ,

we would like to find an expression describing the trajectory followed by the state,

xk, k ≥ 0. In addition, we would like to provide a formal characterization of the

stability of such systems.

Trajectory Characterization. Consider first the case when wk = 0m for all

k ≥ 0; then, (2.95) reduces to

xk+1 = Gkxk, k ≥ 0, (2.96)

from where it follows that

xk = Gk−1Gk−2 . . . G1G0x0, k ≥ 0. (2.97)

More generally, we can relate the value the system state takes at time instant k

to the value taken at an earlier time instant ` as follows, By defining the following

matrix,

Φk,` =

{
Gk−1Gk−2 · · ·G`+1G`, if k > ` ≥ 0,

In, if k = `,
(2.98)

referred to as the discrete-time state-transition matrix, we can write

xk = Φk,`x`, k ≥ ` ≥ 0, (2.99)

and in particular

xk = Φk,0x0, k ≥ 0. (2.100)

From (2.98), it is clear that discrete-time state-transition matrix, Φk,`, can also

be described recursively as follows:

Φk+1,` = GkΦk,`, k ≥ ` ≥ 0. (2.101)

If Gk is invertible for all k, we can relate the value that the state takes at time

instant k to the value it would take at a later time instant ` as follows:

xk = G−1
k G−1

k+1 . . . G
−1
`−2G

−1
`−1x`; (2.102)
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one can see this by noting that

x` = G`−1G`−2 . . . Gk+1Gkxk;

thus,

xk = (G`−1G`−2 . . . Gk+1Gk)−1x`

= G−1
k G−1

k+1 . . . G
−1
`−2G

−1
`−1x`. (2.103)

Thus, for such class of systems, we could generalize the definition of the discrete-

time state-transition matrix in (2.98) as follows:

Φk,` =





Gk−1Gk−2 · · ·G`+1G`, if k > ` ≥ 0,

In, if k = `,

G−1
k G−1

k+1 . . . G
−1
`−2G

−1
`−1, if 0 ≤ k < `,

(2.104)

which would allow us to generalize (2.99) as

xk = Φk,`x`, k, ` ≥ 0, (2.105)

and (2.101) as

Φk+1,` = GkΦk,`, k, ` ≥ 0, (2.106)

with Φ`,` = In. Unless otherwise stated, we will assume Φk,` is only defined for

k ≥ ` ≥ 0 as in (2.98).

Now, consider the general case when wk can take any values in Rm; then, by

using (2.95) for k = 0, 1, we have

x1 = G0x0 +H0w0,

x2 = G1x1 +H1w1

= G1

(
G0x0 +H0w0) +H1w1

= G1G0x0 +G1H0w0 +H1w1

= Φ2,0x0 + Φ2,1H0w0 + Φ2,2H1w1, (2.107)

and more generally one can check that

xk = Φk,0x0 +
k−1∑

`=0

Φk,`+1H`w`, k ≥ 0. (2.108)

When the system is time-invariant, i.e., Gk = G and Hk = H for all k, where

G and H are some constant matrices, we have that

Φk,` = Gk−`, k ≥ ` ≥ 0;

thus, (2.108) reduces to

xk = Gkx0 +
k−1∑

`=0

Gk−`−1Hw`, k ≥ 0. (2.109)
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Stability Characterization. Consider the homogeneous part of the system

in (2.95), i.e.,

xk+1 = Gkxk, (2.110)

with x0 ∈ Rn given. Recall the expression in (2.99):

xk = Φk,`x`, (2.111)

with Φk,` as defined in (2.98). If x` = 0n, it follows that xk = 0n, k ≥ `; thus, we

say x◦ = 0n is an equilibrium point of the system in (2.110). Next, we introduce

two important notions for characterizing the stability of the system in (2.110)

around x◦.
The system in (2.110) is said to be stable in the sense of Lyapunov around x◦

if the following property is satisfied:

S1. For a given ε > 0, there exists some δ1 > 0 such that if ‖x0‖2 ≤ δ1, then

‖xk‖2 < ε for all k ≥ 0.

Furthermore, the system in (2.110) is said to be asymptotically stable around x◦

if it is stable in the sense of Lyapunov and the following property is additionally

satisfied:

S2. There exists some δ2 > 0 such that if ‖x0‖2 ≤ δ2, then limk→∞ xk = 0n.

Since xk = Φk,0x0, k ≥ 0, the matrix Φk,0 completely determines whether or

not Properties S1 and S2 are satisfied.

For homogeneous linear time-invariant systems, i.e., xk+1 = Gxk, we have

that Φk,0 = Gk. Then, Property S1 is satisfied if and only if (i) the magnitude

of all the eigenvalues of the matrix G is smaller than or equal to one, and (ii) for

each eigenvalue whose magnitude is equal to one, the associated algebraic and

geometric multiplicities must be identical. For Property S2 to be satisfied, the

magnitude of all the eigenvalues of the matrix G must be strictly smaller than

one. Finally, consider time-invariant systems of the form

xk+1 = Gxk +Hwk,

where wk, k ≥ 0, is bounded, i.e., there exists some positive constant, Kw, such

that ‖wk‖2 ≤ Kw for all k. Then, the system state will also remain bounded,

i.e., there exists some positive constant, Kx, such that ‖xk‖2 ≤ Kx for all k, if

the magnitude of all the eigenvalues of the matrix G is strictly smaller than one.

2.3.2 Continuous-Time Systems

Consider the continuous-time counterpart of the system in (2.95), which is de-

scribed by a differential equation as follows:

d

dt
x(t) = A(t)x(t) +B(t)w(t), (2.112)
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where x(t) ∈ Rn is the system state, w(t) ∈ Rm is the input, A(t) ∈ Rn×n, and

B(t) ∈ Rn×m. Given x(0), and w(τ), 0 ≤ τ ≤ t, where w(·) is some integrable

function, and assuming the entries of A(t) and B(t) are sufficiently well behaved,

we would like to find an expression describing the trajectory followed by the

state, x(t), t ≥ 0.

In the discrete-time case discussed earlier, we saw that the solution can be

expressed as a function of the state-transition matrix Φk,`, which is completely

characterized by the recursion in (2.101); here, we will follow a similar approach

and describe the solution in terms of some matrix Φ(t, s), t, s ≥ 0, referred to

as the continuous-time state-transition matrix. To this end, we first consider a

matrix F (t) ∈ Rn×n that satisfies the following matrix differential equation:

d

dt
F (t) = A(t)F (t), t ≥ 0, (2.113)

with F (0) given such that det
(
F (0)

)
6= 0; we refer to F (t) as a fundamental

matrix of the system in (2.112) for the special case when B(t)w(t) = 0 for all

t ≥ 0. The matrix F (t) is invertible for all t ≥ 0; one can see this by using

Jacobi’s formula (see (A.11)) as follows:

d

dt
det

(
F (t)

)
= tr

(
adj
(
F (t)

) d
dt
F (t)

)

= tr
(
adj
(
F (t)

)
A(t)F (t)

)

= tr
(
F (t)adj

(
F (t)

)
︸ ︷︷ ︸

= det
(
F (t)

)
In

A(t)
)

= det
(
F (t)

)
tr
(
A(t)

)
, (2.114)

which by integrating results in

det
(
F (t)

)
= det

(
F (0)

)
e

∫ t

0

tr
(
A(τ)

)
dτ

; (2.115)

thus, clearly det
(
F (t)

)
6= 0, therefore F (t) is invertible. Now, we use F (t) to

define the continuous-time state-transition matrix Φ(t, τ), t, τ ≥ 0, as follows:

Φ(t, τ) := F (t)F−1(τ), t, τ ≥ 0. (2.116)

The continuous-time state-transition matrix satisfies the following properties:

F1. Φ(t, t) = In for any t ≥ 0. One can see this as follows:

Φ(t, t) = F (t)F−1(t)

= In. (2.117)
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F2. Φ−1(t, s) = Φ(s, t) for any t, s ≥ 0. One can see this as follows:

Φ−1(t, s) =
(
F (t)F−1(s)

)−1

= F (s)F−1(t)

= Φ(s, t). (2.118)

F3. Φ(t, s) = Φ(t, τ)Φ(τ, s) for any t, τ, s ≥ 0. One can see this as follows:

Φ(t, s) = F (t)F−1(s)

= F (t)F−1(τ)F (τ)F−1(s)

= Φ(t, τ)Φ(τ, s). (2.119)

F4. ∂
∂tΦ(t, τ) = A(t)Φ(t, τ), for any t, τ ≥ 0. One can see this as follows:

∂

∂t
Φ(t, τ) =

∂

∂t

(
F (t)F−1(τ)

)

=
d

dt
F (t)F−1(τ) = A(t)F (t)F−1(τ)

= A(t)Φ(t, τ). (2.120)

Now, we use Φ(t, τ) to construct the solution of (2.112). For the special case

when w(τ) = 0 for all τ ∈ [0, t], the expression in (2.112) reduces to

d

dt
x(t) = A(t)x(t), (2.121)

with x(0) given, the solution of which is given by

x(t) = Φ(t, 0)x(0); (2.122)

this can be seen by differentiating both sides of the expression above with respect

to t and using Property F4:

d

dt
x(t) =

d

dt
Φ(t, 0)x(0)

= A(t)Φ(t, 0)x(0)

= A(t)x(t), (2.123)

which matches the expression in (2.121). More generally, we have

x(t) = Φ(t, s)x(s), (2.124)

for any t, s ≥ 0. (This is unlike the discrete time case, where, unless the matrix

Gk is invertible for all k, the state-transition matrix, Φk,`, was only defined for

k ≥ ` ≥ 0.) To see this, note that

x(t) = Φ(t, 0)x(0),

x(s) = Φ(s, 0)x(0).
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Now, by using Property F2, we have that

x(0) = Φ−1(s, 0)x(s)

= Φ(0, s)x(s),

thus,

x(t) = Φ(t, 0)x(0)

= Φ(t, 0)Φ(0, s)x(s)

= Φ(t, s)x(s),

where the last equality follows from Property F3.

For the general case when w(τ) is not equal to zero for all τ ∈ [0, t], we have

that the solution of (2.112) is given by

x(t) = Φ(t, 0)x(0) +

∫ t

0

Φ(t, τ)B(τ)w(τ)dτ. (2.125)

To see this, we differentiate both sides of (2.125) with respect to t and check that

the result matches (2.112). To this end, recall Leibniz’s rule for differentiating

an integral:

d

dx

(∫ b(x)

a(x)

f(x, y)dy

)
= f

(
x, b(x)

) d
dx
b(x)− f

(
x, a(x)

) d
dx
a(x)

+

∫ b(x)

a(x)

∂

∂x
f(x, y)dy; (2.126)

then, it follows that

d

dt
x(t) =

d

dt
Φ(t, 0)x(0) +

d

dt

∫ t

0

Φ(t, τ)B(τ)w(τ)dτ

=
d

dt
Φ(t, 0)x(0) +

∫ t

0

(
∂

∂t
Φ(t, τ)

)
B(τ)w(τ)dτ + Φ(t, t)︸ ︷︷ ︸

In

B(t)w(t)

= A(t)Φ(t, 0)x(0) +

∫ t

0

A(t)Φ(t, τ)B(τ)w(τ)dτ +B(t)w(t)

= A(t)

[
Φ(t, 0)x(0) +

∫ t

0

Φ(t, τ)B(τ)w(τ)dτ

]

︸ ︷︷ ︸
= x(t) by (2.125)

+B(t)w(t)

= A(t)x(t) +B(t)w(t), (2.127)

which matches the expression in (2.112).

When the system is time-invariant, i.e., A(t) = A and B(t) = B for all t,

where A and B are some constant matrices, it follows from (2.113) that

d

dt
Φ(t, 0) = AΦ(t, 0), t ≥ 0, (2.128)
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with Φ(0, 0) = In, the solution of which is

Φ(t, 0) = etA

:=
∞∑

k=0

1

k!
tkAk; (2.129)

one can check this by noting that

d

dt
Φ(t, 0) =

d

dt

( ∞∑

k=0

1

k!
tkAk

)

=

∞∑

k=1

1

(k − 1)!
tk−1Ak

= A

∞∑

k=1

1

(k − 1)!
tk−1Ak−1

= A
∞∑

m=0

1

m!
tmAm

= AΦ(t, 0). (2.130)

Then, by plugging Φ(t, 0) = etA into (2.125), we obtain

x(t) = etA +

∫ t

0

e(t−τ)ABw(τ)dτ. (2.131)

Stability Characterization. Consider the homogeneous part of the system

in (2.112), i.e.,

d

dt
x(t) = A(t)x(t), (2.132)

with x(0) ∈ Rn. As in the discrete-time case, x◦ = 0n is an equilibrium point

of the system in (2.132). Similar to the discrete-time case, the system in (2.132)

is said to be stable in the sense of Lyapunov around x◦, if, for a given ε > 0,

there exists some δ1 > 0 such that if ‖x(0)‖2 ≤ δ1; then ‖x(t)‖2 < ε for all t ≥ 0.

Furthermore, the system in (2.132) is said to be asymptotically stable around x◦,
if it is stable in the sense of Lyapunov and there exists some δ2 > 0 such that if

‖x(0)‖2 ≤ δ2, then limt→∞ x(t) = 0n.

For the time-invariant case, i.e., d
dtx(t) = Ax(t), stability in the sense of

Lyapunov around x◦ is guaranteed if and only if (i) the real part of all the

eigenvalues of A is smaller than or equal to zero, and (ii) for those eigenvalues

whose real part is equal to zero, the associated algebraic and geometric multi-

plicities are identical. Furthermore, asymptotic stability around x◦ is guaranteed

if and only if each eigenvalue of the matrix A has real part strictly smaller than

zero. Finally, consider the non-homogeneous case d
dtx(t) = Ax(t)+Bw(t), where

w(t), t ≥ 0, is bounded, i.e., ‖w(t)‖2 ≤ Kw, where Kw is some positive constant.
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Then, the x(t), t ≥ 0, will be bounded, i.e., ‖x(t)‖2 ≤ Kx, where Kx is some

positive constant if the real part of all the eigenvalues of A is strictly negative.

2.4 Notes and References

The material on probability theory is standard and follows the developments

in [11, 12, 13, 14]. The basic material on stochastic processes can be found in

[15]. The material on the Wiener process follows the developments in [11]. Basic

set-theoretic notions are covered in [16]. The material on sets in Euclidean space

can be found in [10, 17, 18, 19, 20]. The derivation of the formula for the support

function of an ellipsoid follows ideas from [10]. The formula for the volume of

an ellipsoid given in (2.78) can be obtained from that given in [21], where an

n-dimensional ellipsoid is referred to as a hyperellipsoid and the term “content”

is used instead of “volume.” The formula for the volume of a zonotope given in

(2.90) follows from that given in [22], where a zonotope Z ⊆ Rn is parametrized

as follows:

Z =

{
x ∈ Rn : x =

s∑

i=1

α′ie
′
i, 0 ≤ α′i ≤ 1

}
. (2.133)

Let E ′i , i = 1, 2, . . . , N, where N =
(
s
n

)
= (s)!

n!(s−n)! , denote all n-combinations of

the set
{
e′1, e

′
2, . . . , e

′
s

}
. Then, the formula for the volume of Z given in [22] is as

follows:

vol(Z) =
N∑

i=1

∣∣det(E′i)
∣∣, (2.134)

where E′i denotes the (n× n)-dimensional matrix formed by horizontal concate-

nation of the elements in E ′i . Note that Z in (2.133) can be equivalently written as

Z =

{
x = Rn : x = x0 +

s∑

i=1

αiei, − 1 ≤ αi ≤ 1

}
, (2.135)

where ei = 1
2e
′
i and αi = −1+2α′i for all i = 1, 2, . . . , s, and x0 = 1

2

∑s
i=1 e

′
i

(
this

is the parametrization given in (2.82)
)
. As above, consider all n-combinations of

the set {e1, e2, . . . , es}, which we denote by Ei, i = 1, 2, . . . , N, and associated to

each Ei, define a matrix Ei formed by horizontal concatenation of the elements

in Ei. Clearly E′i = 2Ei, i = 1, 2, . . . , s; thus

vol(Z) =
N∑

i=1

∣∣det(E′i)
∣∣

= 2n
N∑

i=1

∣∣det(Ei)
∣∣, (2.136)

which coincides with the formula of a zonotope given in (2.90).

https://doi.org/10.1017/9781108123853.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108123853.004

