
ON THE DETERMINATION OF SETS BY SETS OF 
SUMS OF FIXED ORDER 

JOHN A. EWELL 

1. Introduction. The present investigation is based on two papers: "On 
the determination of numbers by their sums of a fixed order," by J. L. Self ridge 
and E. G. Straus (4), and "On the determination of sets by the sets of sums 
of a certain order," by B. Gordon, A. S. Fraenkel, and E. G. Straus (2). 

First of all, we explain the terms implicit in the above titles. Throughout 
these considerations we use the term "set" to mean "a totality having possible 
multiplicities," so that two sets will be counted as equal if, and only if, they 
have the same elements with identical multiplicities. In the most general sense 
the term "numbers" of (4) can be replaced by "elements of any given torsion-
iree Abelian group." 

We can now state the 

Problem, For any given (s, n) in Z X Z, with 2 < s < n, we choose 
arbitrarily an n-set X = {xi, . . . . xn}, then form the set P{X) = {<Tt} of 
all sums of 5 distinct elements of X and ask whether or not there exists an 
n-set X' different from X giving rise to the same set of sums as does X. More 
formally, we can describe the problem as follows: Define a mapping P from 
the set {X} of all ?z-sets to the set of all G)-sets by the rule: 

X -» P(X) = {xtl + . . . + xu: 1 < n < . . . < is < n) 

and try to determine (for the given pair (s, n)) whether or not P is one-to-one. 

We take as our point of departure the following 

THEOREM 4 (of 4). For each given pair (s, n) in Z X Z, with 2 < 5 < nf 

let the function f{n, k) be defined by: 

f(n,k)=±(-iy-l.( n Yt*-\ 
i=l \S — 1/ 

for each k in Z+. If f(n, k) ^ 0, for each k in {1, . . . , n}y then the mapping P 
is one-to-one. 
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The above form of / (» , k) was first established in (2). In §2 we give an 
elementary proof of this result. To describe the contents of §§3 and 4 we intro­
duce some notation. For a given pair (s, n), with 2 < 5 < n, we define an 
equivalence relation ~ on the set \X\ of all ^-sets by the rule: 

X~ Y^P(X) = P(Y). 

Also, we define Fs(n) as the greatest number of sets which can fall into one 
equivalence class. In §§3 and 4 we settle the estimates F4(12) < 2 and 
F3(6) < 6 of (3) to F4(12) = 1 and Fz(6) = 4, respectively. The first of these 
two results shows that the condition f(n, k) = 0, though necessary, is not 
sufficient. Finally, after (4; 2) and the results of this paper, the only cases left 
open under the orders s = 3, 4 are: (3, 27), (3, 486), and (4, 8). 

2. The general case. Before stating the main theorem of this section, we 
introduce some further notation. For given (s, n) in Z X Z, with 2 < 5 < n, 
let N = 0 ) , and for each k in Z+ , put 

n N 

Sjc = ]C xi° a n d S*; = ^ o-/. 
i=l i=l 

Also, recall that for an arbitrary set X, \X\ denotes its cardinality. In this 
language we have an alternative way of saying that the mapping P: {X) —> { Y} 
is one-to-one: viz., 

IP-^Y)] < 1 for each F i n { F } . 

Here, it should be borne in mind that P~1(Y) is a collection of sets, where 
the term "collection" carries the usual meaning of set. Now, let us assume 
(as we shall within the statement of our theorem) that we are given a set 
{ai} of sums, N in number. Then for arbitrary k in Z+, we consider the 
symmetric function 

si 2* = 2-JD(S) \xti + . . . + xis) , 

where D(s) means to extend the sum over all ordered ^-tuples (ii, . . . , is) of 
distinct elements of {1, . . . , n\. From symmetric function theory we know 
that the right side of this equation can be expressed in terms of the power-sum 
symmetric functions 5i, 52, . . . . I t is further not difficult to see that apart 
from its coefficient the typical term in the complete expansion of the above-
mentioned right side has the appearance 

1 O2 • • • Ojt , 

(jit J2, • • • i jk) a solution of 

l/i + 2/2 + . . . + kjk = k, 

the ji > 0 and at most 5 of them >0 . The import of the main theorem is that 
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the term involving Sk, corresponding to (0, 0, . . . , 0, 1), has a coefficient 
given by the formula 

In (4) the authors outline a proof of this fact; however, the proof depends on 
the theory of group characters of the symmetric group on 5 symbols. In this 
paper we give a new and simple derivation, avoiding the theory of group 
characters entirely. Furthermore, our proof subsumes a protion of (3). For 
one of the tasks of that paper was to simplify the form oif(n, k). 

THEOREM 1. Let n, s denote given integers, with n > 5 > 2. If fin, k) ^ 0, 
for each k in {1, . . . , n], then | P - 1 ( F ) | < 1, for each given set 

Y= {<n,. . . , * * } , N = (?). 

Proof. We break the proof up into a sequence of lemmas, first introducing 
some further notation. 

Notation. For each given n-set X = {xi, . . . , xn] and ai, . . . , au in Z+ , 
with 1 < u < n, set 

ç» \ ^ a 1 au 

^ai, . . . , au +-^D(,u) % i\ • • • % iu • 

LEMMA 1. The coefficient of Sal+...+<Xu in the expression of Sal,...,au ^n terms of 
the power-sum symmetric functions is: 

( - l ) " - 1 - ^ - 1)!. 

Proof of Lemma 1. Recall the identity 

S1 = 9 - 9 — 9 — — 9 
u a i , . . . , a < ^ai,... ,at — 1 u a « ^ai+at ,«2 at — 1 • • • ^ a i , . . . ,at — 2 ,<xt — 1 +ott 

and use induction on u. 

LEMMA 2. 

f n \ _ V (n ~~ v 11 v ~~ * i 
\s — q) ~q \s — v) \q — 1/ q/ — \5 - v/ \q 

Proof of Lemma 2. Use induction on n, starting with n = s. 

Now, returning to the proof of our theorem, we allow the &'s of Ski ks to 
be 0, and thus derive: 

Ski,...,k8-i,o = yn — s -{- ljSjd ks-i' 

For a given / in {0, 1, . . . , 5 — 1}, suppose that exactly t of the k's in 
{ki, . . . , ks} are zero and, without loss of generality, put 

{kh . . . , £ , } = {/i, . . . , Za_i, 0, . . . , 0}, 
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so that all /'s are positive integers and the remaining / elements of the right-
hand set are all 0. Then we successively apply the above procedure to derive 

Skl ks = (n - s + 1) . . . (n - s + t)Sh,...,la_t. 

We now appeal to Lemma 1 to write: 

(*) Skl *. = (n-s+ 1 ) . . . in - s + t){-iy-^{s-t- l)\Sk 

+ terms involving 5i, . . . , 5*_i, 

where k = k\ + . . . + ks. And now, let us suppose explicitly that we are given 
Y = {ci, . . . , <rN}, where N = (*), and further that we are viewing the 
elements of X = { unknown. Hence, choose any k in Z + and 
write: 

?! 2* = E (*<i + • • • + *«.)* 

kl 
D(s) ki ! 

~~ ^ &! . . . &5!
 x' • • • • *s' 

where for the undescribed sigma sums one extends the sum over all non-
negative integral solutions of 

s 

Now, substitute from (*) to write 

s! i,- 4 l n ^ r (-»-"(.-<-1)£^}+..., 
where for the second sum one extends the sum over all non-negative integral 
solutions of 

s 

i=l 

for which exactly t of the &'s are 0. To evaluate the inner sum choose just / of 
the elements fei, . . . , ks to be 0, set r = s — t, denote the new non-zero &'s by 
the letter k, as well, and write: 

v kl v kl _ (r \ v- kl 
^ *i! . . . &r! ^ Éi!. . . &r! \ 1 / ^ kxl . . . kr-il 

-£<-'K^*—>" 
= É(-i)-(ï>'. 
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setting I = r — m. We remark that the sum on the left in the above sequence 
of equations extends over all positive integral solutions of J^ki = k. Thus, 
we have derived: 

and since there are precisely Q) ways of choosing just t of the elements to be 0 
(order immaterial), we have: 

.'*-*{sX!<^<-»"-,<'-'-»i(;) 
xE(-i)--'(! 7')("} + .... 

Now, we are interested in the bracketed expression. Therefore, set s — t = v 
and reverse the order of summation, getting (with P 0 used as an abbreviation) : 

However, P 0 is just slf(n, k). Finally, to complete the proof of our theorem, 
we observe that: if f(n, k) ^ 0, for each k in {1, . . . , n], we can recursively 
determine the Sk in terms of Si, . . . , Sw. But as soon as we know Si, . . . , Sn, 
we equivalently know #i, . . . , an, the elementary symmetric functions in the 
x's. In a word, under our present hypotheses, | P _ 1 ( F ) | < 1. 

3. The case (4, 12). In (2) the authors established the following general 
theorem. 

THEOREM. For a fixed s > 2 and n sufficiently large, we have | P _ 1 ( F ) | < 1, 
always. 

However, the present state of the art dictates that for small n each case 
2 < 5 < n be investigated separately. In this regard much has already been 
done: e.g., sets Y having more than one original under P have actually been 
constructed for the case s = 2, n = 8. Also, in cases not as thoroughly 
investigated, an upper bound has been found for |P _ 1 (F ) | , as Franges over all 
possibilities. In every case where | P _ 1 ( F ) | > 1, for some F, we have: 

(1) f(n, k) = 0 for some k in {1, . . . , n]. 

I t is our purpose to present in this section a special case: viz., s = 4, n = 12, 
for which the condition (1) holds and yet | P _ 1 ( F ) | < 1, always. Heretofore 
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such an example has not been found. Accordingly, let Y = {ah . . . , <rN] be 
given, where N = Ci) = 495. For the proof we shall also use a weak part of 
another result established by Gordon, Fraenkel, and Straus. 

THEOREM. If \P~1(Y)\ > 1, for some set Y, then \P~1(Y)\ > 1, for some 
Y <Z Z, the ring of integers. 

We begin by choosing arbitrarily k in Z+ and considering the problem of 
expressing 

4! 2* = Z^Z>(4)(#Ù + %ii + xiz + xuY 

in terms of Si, . . . , Sk. By effecting a simple translation we may assume, 
without loss of generality, that Si = 0. The first 12 and the 14th equations 
are given below. In (2) it is established that | P _ 1 (F ) | < 2, for the case s = 4, 
n = 12. 

From symmetric function theory we shall also need the following lemma, 
which we state without proof. (For the proof, see p. 6 of (3).) 

LEMMA (*). If m > n and Si, S2, . . . are the power-sum symmetric functions 
in Xi, . . . , xn, then 

_£o _ y f__-nsp 0 l ° 2 • • •  
m lpi+2p2+...=m; 1 ^ 2 • • • Pi- P2I . . • 

where 

(1) 2i = 0, 

(2) 22 = 120S2, 

(3) 2 3 = 48S3, 

(4) s 4 = - 4 8 S 4 + 84S2
2, 

(5) 25 = - I 2 O S 5 + 140S2S3, 

(6) S6 = O.S6 - 120S2 S4 + 40S3
2 + 90S2

3, 

(7) S7 = 648S7 - 714S2 S5 - 350S3 S4 + 420S2
2S3, 

(8) 2 8 = 1632S8 - 896S2S6 - 1120S3S5 - 280S4
2 

+ O.S2
2 S4 + 560S2 S3

2 + 105S2
4, 

(9) 2 9 = -3480S9 + 4824S2 S7 + 1176S3 S6 + 1764S4 S5 + O.S3
3 

-3024S2
2S5 - 2520S2 S3S4 + 1260S2

3S3, 

(10) s10 = -59,520Sio + 42,840S2 S8 + 29,280S3 S7 + 23,520S4 S6 

+ 12,600S5
2 - 15,120S2

2S6 - 8,400S3
2S4 - 9450S2S4

2 - 25,000S2 S3 S5 

+ 3150S2
3S4 + 6300S2

2S3
2, 

(11) Su = -407,352Sn + 222,530S2S9 + 196,350S3S8 + 155,100S4S7 

+ 150,612S5 S6 - 55,440S2
2S7 - 55,440S3

2S5 - 46,200S3 S4
2 

- 120,120S2 S3S6 - 97,020S2 S4S5 + 6930S2
3S5 + 15,400S2 S3

3 

+ 34,650S2
2S3 S4, 
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(12) Z12 = -2,203,488512 + 964,12852 Sia + 998,80053 5 9 

+ 827,6405458 + 744,4805657 + 373,29656
2 - 69,30054

3 

- 178,20052
258 - 258,72053

256 - 182,95252 55
2 - 459,36052 5 3 57 

-415,80052 5 4 5 6 - 443,52053 5 4 5 6 + 15,40053
4 + 13,86052

356 

+ 83,16052
253 5 5 + 138,60052 53

254 + 51,97552
254

2, 

(14) 2 M = -48,517,4405u + 14,260,79252 5 i 2 + 18,521,7765» 5X1 

+ 17,649,63254 Sw + 15,095,08056 59 + 14,030,01656 5 8 

+ 7,008,14457
2 - l,513,51252

25io - 3,723,72053
258 

- 3,783,78054
256 - 3,531,5285456

2 - 2,270,26852 56
2 

- 5,005,00052 5 3 5 9 - 5,675,67052 5 4 5 8 - 5,045,04052 5 5 57 

- 7,687,6805s 5 4 57 - 6,726,72053 5 5 5 6 + 45,04552
858 

+ 560,56053
355 + 525,52552 54

3 + 378,37852
256

2 

+ 1,051,05053
254

2 + 360,36052
253 5 , + 630,63052

254 56 

+ 840,84052 S^S6 + 2,522,52052 5 3 5 4 55. 

The problem then is to decide whether (i) | P - 1 ( F ) | = 2, for some Y or 
(ii) |P _ 1( F) | < 1, always. To this end, we first express 5 i 4 in terms of 52 , 5 3 , . . . , 
5i2 with the help of 

~rj" = K7 5 2 5i2 + ™ 5 3 5 n + 77) 5 4 5io + JJ : 5s 5 9 

"̂ " 48 *̂ 6 80 '^'10 — ^4 ^2 ""*3 "^9 

"" 64 ^ 2 ^ 4 ^ 8 ~ 144 ^ 3 ^ 8 "" Ï 4 4 ^ 2 ^ 6 

~̂* T09 ^ 6 ~̂~ 9?fi ^ 2 *̂ 3 ^ 6 ~~~ 9Q04- ^ 2 ^6 + • • • • 

(This follows from Lemma (*).) Then we substitute for 52, 53, . . . , 5i2 and 
collect coefficients of S6

2 and S& to obtain 
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(W) s j2-32-7-ll-901 I , 
(14) 2 1 4 - 1 5.17.(1093) ' S 2 F 6 

. < 7.2159 7(54,779,291,131) 
+ \ ~ 22.3-17 ^8 + 24-33.52.17-29-16,973 Z ' 2 6 

7-36,941 2 7(3,143,656,870,861) 2 

24-33-17-31 ^4 + 212-34-17-31- (1093) ^2 ^4 

7(24,630,735,707,477,213) 2 

28-35-52-17-29-(1093)-16,973 2 3 

+ 2'14\I4^-77Tr.7l093) S 2 j 5e + 
7(45,882,318,990,331) 

Let us now state the main result. 

THEOREM 2. The equation (14') cannot have two distinct positive real roots, 
say SQ and S6'. 

Proof. For otherwise, we can assume, without loss of generality, that 
0 < 56 < Se'. 

We can further assume that Y = {ci, . . . , a>} does not consist entirely 
of 0's, since in the contrary case it is clear that P~1(Y) = {0}, where 0 is the 
12-set consisting entirely of 0's. So, 22 > 0 and the coefficient of S6

2 in (14') 
is positive. Hence, the coefficient of SO must be negative. However, we shall 
now show that the coefficient of S6 is always positive. We, first of all, establish 
the following simple lemma. 

LEMMA 3. (i) 2 8 < 24
2 < 22

224 < 22
4, 

(ii) 22 23
2 < 22

224 , 

(iii) | 2 3 2 5 | < 22
224 . 

Proof of Lemma 3. 

and 

22 = 24 + 2 2L/ ai aj > ^4 

2 4 = 2 8 + 2 ^ c^ (Tj ^ 28. 
l<i<j<N 

This proves (i). By Schwarz's inequality we have 

y 2 - JLJ aJ \ ^ Z-J a3 ' Zl^ °"i — ^2 2 4 , 
j=l I .7=1 J ' = l 

and (ii) follows. Finally, the same argument shows that 

|2 5 | < 2 2
1 / 2 2 8

1 / 2 < 22
1/224. 
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But 

|S8 | < 2 2
1 / 2 2 4

1 / 2 < 22
3/2, 

whence 

| 2 3 2 5 | < 22
224 . 

Now, after all cancellations have been effected and equation (14') has been 
multiplied by the LCD of the resulting fractions, the coefficient of 56 becomes: 

-7,466,483,185,927,856,640,000- 2 8 

+427,642,380,608,641,459,200-23 S5 

-114,474,275,132,088,960,000- 24
2 

+ 11,605,210,155,034,416,277,500-22
224 

-1,221,684,491,090,869,764,800- 22 23
2 

+ 67,752,172,219,391,261,481-22
4. 

And now, in view of our lemma, it is easy to check that the " 2 2
2 2 4 " term 

dominates the possibly negative terms in the above sum, whence it is always 
positive. 

But now going back to the equations following Lemma (*), we see that the 
first five 2's uniquely determine the first five S's, and once a value of 56 is 
known, this and the 2's uniquely determine £7, Ss, SQ, S10, Su, and 5i2. Since 
the S's uniquely determine 56, as well, they uniquely determine all of ths S's 
and hence the x's. 

4. The case (3, 6). 

THEOREM 3. 2 < F3(6) < 4. 

Proof. Without loss of generality, let us assume that all sets under con­
sideration are sets of integers. Then to see that 2 < F$ (6) it suffices to choose 
any X = {xi, . . . , x&} C Z not symmetric with respect to the origin, so that 
X ^ — X, and write 

% il ~T~ %ii 1 %iz = \ % 31) \ \ ^32) ~T~ \ ^js)i 

where 1 < H < H < is < 6, 1 < j t < j 2 < jz < 6, and {H, i2, H] H {jlt 

J2,jz} = 0. Since the j indices trace all possibilities as do the i indices, we have 
X ~ - X , whence 2 < F8(6). 

The arguments for demonstrating that ^3(6) < 4 are similar to those used 
in §3. They are sketched below, omitting the details. The normalization 
S\ = 0 makes the set of sums symmetric with respect to the origin. Hence, 
Sfc = 0 for odd k. S2 and 5 4 are determined uniquely from the equations for 
2 2 and 24. The equation for 2 6 is used to express SQ in terms of .S32. The equation 
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for 2 8 involves S32, S3, S5, 5s, and the equation for S10 involves S32, S3 S5, S5
2, 

S7, S8, SIQ. Now, S7, S8, and Si0 can be expressed by terms of lower-order S's, 
using Lemma (*). This eliminates S8 in the equation for 28, and permits 
writing it in the form S3 S5 = aS32 + 0, where a and & are rational functions 
of the S's and a > 0. I t also eliminates S7, S8, S10 from the equation for 2 i 0 . 
The resulting equation for S10 is now multiplied by S32, and S3 S5 is replaced 
by aS3

2 + P. This gives a quartic equation in S3, and it turns out that the 
coefficient of S34 does not vanish identically. Hence, ^3(6) < 4. 

We now sharpen our last result by the following theorem. 

THEOREM 4. F3(6) = 4. 

Proof. To see this, it suffices to exhibit four distinct sets giving rise to the 
same set of sums. But we wish to do more. We wish to characterize the four-
member equivalence classes. And since the one-member classes are solely 
determined by the sets symmetric to the origin, all classes will be determined 
up to the appearance of the elements of the sets in two-member classes. 

So, let there be given any two equivalent 6-sets X = { ! and 
Y = {yiy • • • » ^6}, with elements ordered according to size: i.e., 

#1 < #2 < . . . < #e and yi < y2 < . . . < y%. 

This ordering of X and Y induces an ordering on P(X) and P(Y), so that 
(with xijk used as abbreviation for xt + Xj + xk) we have: 

#123 ^ #124 ^ #ÙÏ2Ï3 a n d #456 ^ #356 ^ #ùî '2*3 

for all 1 < i\ < i2 < is < 6. We make a similar statement about the 3^-sums 
and therefore must have 

#123 = 3>123, #124 = ^124, #356 = ^356, #456 = 3>456-

Now, the next smallest #-sum after # m must be either Xi25 or Xi34. We make 
a similar statement about the ;y-sums and thus assert that exactly one of the 
following three alternatives must prevail: 

#123 = ^123 #123 = ^123 #123 = 3>123 

#124 = ^124 Or #124 = ^124 Or #124 = ^124 

#125 = ^125 #134 = J l 3 4 #125 = ^134 

Since we are only interested in comparing the sets X and Y up to their being 
either identical or one being the set of negatives of the other, we can assume, 
without loss of generality, that the second of these alternatives holds. For 
putting Zi = — #7_z, for each i in {1, . . . , 6}, we have #1 < #2 < . . . < #6 if 
and only if Z\ < z2 < . . . < Ze, whence 
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#123 = ~~ #654 = #123, #124 = — #653 = #124, 

#125 = —#652 = #134, #134 = —#643 = #125-

(*) #256 = 3^56, #356 = 3^56, #456 = 3>456> 

there are (as a first approximation to solution) 14! ways of pairing the remain­
ing sums. However, the following lemma greatly simplifies the matter. 

LEMMA 4. If alternative 2 holds and therefore the complementary couplings (*) ; 
and if a single pair of x- and y-sums which are indexed the same way, not including 
the six mentioned pairs, are equal, then we must have Y — X or Y = —X. 

Proof. Because of symmetry it suffices to choose the additional equality 
from the following seven possibilities: 

#125 = 3>125, #126 = 3>i26, #135 = 3>135, #136 = 3̂ 136, 

#145 = 3̂ 145, #146 = 3>146, #156 = ^156. 

For each i £ {1, . . . , 6}, put A* = xt — yt. Then 

A3 = A4 = A, say; 

#12 = y 12 —A; 

and #56 = 3̂56 —A. 

The diagram Xi x2 #3 #4 #5 #6 

2A - A - A - A - A 5 - A 6 

is to be interpreted as follows. Add the (signed) A's to the x's under which 
they stand to obtain 

yi j2 y* y± y& y*. 

The hypothesis and any one of the above seven equations imply that either 
A = 0 (in which case Y = X) or one of the two patterns 

( * i ) xi # 2 #3 # 4 #5 #6 

2A - A - A - A - A 2A 

(* 2 ) #1 #2 #3 # 4 #5 #6 

2A - A - A - A 2A - A 

must prevail. Therefore, suppose A ^ 0 and (*i). Then equal sums correspond 
to the indices 123, 124, 125, 134, 135, 145, 456, 356, 346, 256, 246, 236 while 
unequal sums correspond to 126, 136, 146, 156, 345, 245, 235, 234. Hence 

#126 = 3'234, #136 = 3>235i #146 = 3̂ 245, #156 = 3,345-

From the first of these equations 

A = — (xi — x3 — #4 + #e)/3, 
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while from the second we derive 

A = — (xi — x2 — x5 + x6)/3. 

Therefore 
Xz + X4 = X2 + X5. 

But then 

3A = — Xi + Xz + x± — XQ 

= —Xi — x2 — xz — x4 — x5 — x6 + x2 + xb + 2(x3 + x4) 

= 3(x3 + #4) = 3(x2 + x5), 

whence 
A = x% + x4 = x2 + x5. 

So, 
x3 — 3>3 = x3 + Xi —» y3 = — x4, 

X 4 _ 3/4 = xz + XA —• ^4 = — ^ 3 , 

x2 — y2 = x2 + x5 —> 3>2 = —^5, 

a n d X5 — y h = ^2 + #5 - * 3>5 = —x 2 . 

Further, 
3>i = Xi + 2A = Xi + (x2 + x6) + (xz + XA) = — Xe, 

and 3>6 = x6 + 2A = x% + (x2 + x6) + (x3 + x4) =" — xx. 

Thus F = —X. If A j£ 0 and (*2) holds, the same argument leads to 

yi = — ^ 5 , 3>2 = —x 6 , 3>3 = —XA, 

yA = —xz, y5 = —xi, yQ = — x2. 

This proves the lemma. 

Let us call either of the cases Y = X and Y = —X trivial. Then any other 
case will be called non-trivial. With the help of our lemma we argue that the 
first four equations of any pairings of the x- and ̂ -sums which would lead to 
a non-trivial case must be: 

X\2Z = 3;123, #124 = 3>124, #134 = 3>134, #125 = 3^34. 

Now, there are three possibilities for the fifth equation: 

( I ) X234 = ^125, ( I I ) Xi26 = 3;125, Or ( I I I ) Xi35 = 3>125. 

Case I. Here we have 

#125 = 3^234 #346 = 3^56 

and 
X234 = 3;125 #156 = 3;346 
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Subt rac t ing the second of the r ight pair of equat ions from the first of the left 

pair we have 

#2 — J2 = #e — yQ. 

Hence, the pa t te rn (*2) mus t prevail. So, once more ei ther A = 0 (in which 
case Y = X) or A ^ 0 and Y = -X. 

Case I I . Here the equat ions 

#125 = ^234 a n d #126 = ^125 

imply 

3>5 = #6 — A . 

So, 
y\ = #1 + 2A, y2 = x2 — A, 3/3 = #3 — A, 

3/4 = #4 — A, 3/5 = x6 — A, 

whence —yQ = — #5 — 2A, i.e., 3>e = #5 + 2A. 
If A = 0, the problem is settled. If A 7^ 0, then those sums not paired are 

summarized by 

3>126 = #125 + 3A, 3>234 = #234 ~ 3A, 

3;136 = #135 + 3A, 3^235 = #236 ~ 3A, 

3/146 = #145 + 3A, 3>245 = #246 ~ 3A, 

3;156 = #156 + 3A, 3/345 = #346 — 3A. 

W i t h o u t loss of generality, we can assume t h a t A > 0, whence 

#125 < 3,125 < Jl36 < 3,146 < 3,156 

and therefore we mus t have #125 = 3̂ 234, the smallest 3/-sum in the comple­
men ta ry set. B u t then 

#125 = #234 — 3A, X135 = X236 — 3A, 
whence 

A = %2 + #6 = #3 + #4 

and Y = —X, as in the proof of the lemma for the pa t t e rn (*2). 

Case I I I . Here the reader will find it instruct ive to const ruct trees (as we 
have part ial ly done a t the end of this exposition) to show all possible orderings 
of the x- and 3/-sums induced by the orderings of the elements. Straightforward 
analysis then reveals t h a t (i) Y = X or (ii) Y = —X or (iii) one of the 
following five descriptions m u s t fit X and F, where A, 5 , a, /3, and d are 
parameters used for this purpose (i.e., of describing X and F ) : 

(1) X = {A, A + 3 5 , A + 4 5 , A + 5 5 , A + 6 5 , A + 8 5 } , 

Y = {A + 2B,A + 2B,A + 35 , A + 45 , A + 65 , A + 95}, 

A = xi, 5 = — A, and A5 = 0; 
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(2) X = {A,A + 65, ,4 + 95 , A + 125, A + 155, A + 245}, 

Y = {A +W,A +W}A + 7B,A + 1 0 5 , 4 + 165, A + 255}, 

A = Xi, 5 = A5, and A = — 2A5; 

(3) X = {A,A + 8B,A + 95 , 4 + 105, A + 135, 4 + 165}, 

Y = {A + 45 , 4 + 65, 4 + 75, 4 + 85, 4 + 125, A + 195}, 

i4 = *i, 5 = —A5, and A = 2A5; 

(4) X = {A, A +±B,A + 55, A + 65, A + 85 , A + 115}, 

Y = {A + 25, A + 35, 4 + 45 , 4 + 55, A + 85, 4 + 125}, 

A = Xi, 5 = — A, and A5 = 0; 

(5) X = {a, £(« + 0), i ( a + 0) + d, i (« + « + 2d, 0, i(3/3 - a) - d}, 

F = {a + 2d, J (a + 0) - d, J (a + 0), £(« + 0) + d, 0, * (3/3 - a)}, 

a = X], 0 = x5, d = — A, and A5 = 0. 

Making the convention that the y-sums shall always be on the left in the 
tree analysis, we are able to list the first sequence of 10 equations giving rise 
to each of these families as follows: 

a: I (2) i 1 (3) 

3>123 = # 1 2 3 ^ 1 2 3 = # 1 2 3 3>123 = # 1 2 3 

^ 1 2 4 = # 1 2 4 ^ 1 2 4 = # 1 2 4 ^ 1 2 4 = # 1 2 4 

3>134 = # 1 3 4 ^ 1 3 4 = # 1 3 4 ^ 1 3 4 = # 1 3 4 

3>234 = # 1 2 5 3>234 = # 1 2 5 ^ 2 3 4 = # 1 2 5 

3>125 = # 1 3 5 yub = # 1 3 5 3>125 = # 1 3 5 

3>135 = #126 yub = # 1 4 5 3>135 = X145 

yub = #136 yu5 = #126 ^ 1 4 5 = #126 

3^235 = # 1 4 5 yn& = #136 3^235 = #136 

3>126 = #146 yue = # 1 4 6 3 ;245 = #146 

3>136 = #156 yu6 = #156 3 /126 = #156 

(4: ) (5) 

3>123 = # 1 2 3 3,123 = # 1 2 3 

3>124 = # 1 2 4 3>124 = = # 1 2 4 

3>134 = # 1 3 4 yuA = # 1 3 4 

3;234 = # 1 2 5 3,234 = # 1 2 5 

yi25 = # 1 3 5 3^125 = # 1 3 5 

3>135 = # 1 4 5 3^135 = X145 

3,145 = #126 3>145 = # 2 3 4 

3/235 = # 2 3 4 3,126 = # 2 3 5 

3>126 = # 2 3 5 3/136 = # 2 4 5 

3,136 = # 2 4 5 3'146 = # 3 4 5 
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Now, we shall see that cases (1), (2), and (4) are but special cases of case (5). 
We get (1) from (5) simply by setting a = A, d = 5 , and (5 = A + 65 . To 
obtain (4) from (5) set a = A, d = 5 , and 0 = A + 8B. To see that (2) is a 
special case of (5), we argue as follows: For each i in {1, . . . , 6}, 

- 3 y 7 - i = y-yi-i + Ç yjj - 2;y7_*, 

whence it follows that under (2) 

_ y = {A + 18B, A + 185, A + 155, A + 125, 4 + 65, 4 - 35} 

and 
X = {A + 245, A + 155, 4 + 125, A + 95 , A + 65 , 4 } , 

where we have reversed the ordering of the elements to show off the fact that 
(2) is a special case of (5), up to either one or perhaps both of the sets being 
replaced by the corresponding sets of negatives. Simply take a = A + 245, 
0 = A + 65 , and d = - 5 . 

Owing to the condition Si — 0, we can also describe (5) as a two-parameter 
family of classes. To this end, set 

a = lia + p), b = %(a + p) + d, and c = 0. 

Then 

26 - a = i (« + 0) + 2d, 2a - c = a, 2c - b = §(3/3 - a) - J, 

2a - 6 = | 0 + 0) - d, 2c - a = 1(30 - a) , 26 - c = a + 2d. 

Now, it easily follows (because of Si = 0) that a + b + c = 0, whence 

X = fa, b, -a - b,2b - a, - 2 a - 36, 3a + b\, 
(5) 

Y = {a, 6, - a - 6, 2a - 6, - 2 6 - 3a, 36 + a}, 
where now the sets are not ordered according to size. 

The condition Si = 0 implies 

(*') A = - ( 2 8 / 3 ) 5 

for family (3). Thus, we have proved the following theorem. 

THEOREM 5. There are two distinct families of four-member classes of sets. One 
family is described by two parameters a and 6 as by (5) above. The other family 
is a one-parameter family described by 

X = {A, A + 85, A + 95 , A + 105, A + 135, A + 165}, 

Y = {A + 45 , A + 65 , A + 75 , 4 + SB, A + 125, A + 195}, 

where 5 ^ 0 and A is a rational multiple of 5 according to (*'). 
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FIGURE 1. The Y tree. 
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FIGURE 2. The X tree. 
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