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Enhanced fluctuations, steep gradients, and intensified heat transfer are characteristics
of wall-bounded turbulence at transcritical conditions. Although such conditions are
prevalent in numerous technical applications, the structure of the thermal boundary
layer under realistic density gradients and heating conditions remains poorly understood.
Specifically, statistical descriptions of the temperature field in such flows are provided
inconsistently using existing models. To address this issue, direct numerical simulations
are performed by considering fully developed transcritical turbulent channel flow at
pressure and temperature conditions that cause density changes of a factor of up to O(20)
between the hot and cold walls. As a consequence of the proximity of the Widom line
to the hot wall, significant asymmetries are observed when comparing regions near the
cold wall and near the hot wall. Previous transformations that attempt to collapse the
near-wall mean temperature profiles among different cases to a single curve are examined.
By addressing model deficiencies of these transformations, a formulation for an improved
mean temperature transformation is proposed, with appropriate considerations for real
fluid effects that involve strong variations in thermodynamic quantities. Our proposed
transformation is shown to perform well in collapsing the slope of the logarithmic region
to a single universal value with reduced uncertainty. Coupled with a predictive framework
to estimate the non-universal shift parameter of the logarithmic region using a priori
information, our transformation provides an analytic profile to model the near-wall mean
temperature. These results thus provide a framework to guide the development of models
for wall-bounded transcritical turbulence.
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1. Introduction

Fluids exceeding the critical pressure, p., are ubiquitous in many environmental and
engineering settings. Well-known natural occurrences exist in the atmosphere of Venus
(Lebonnois & Schubert 2017) as well as subsurface flows near terrestrial undersea
volcanoes (Parisio er al. 2019). Technical applications include fluids used in chemical
impregnation and extraction processes, chromatography, and polymer processing (Knez
et al. 2014). Especially in many industrial applications, high-pressure fluids are also subject
to significant heat transfer, with convective heat transfer being a dominant mechanism for
energy transport. Examples of such applications include power generation systems and
heat engines (Wang et al. 2019; Yu et al. 2019). Additionally, the operational designs
of many energy conversion systems under development are predicated on efficient heat
transfer with working fluids at supercritical pressures, including regenerative cooling in
rocket engines (Ruan & Meng 2012), nuclear reactor coolant systems (Yoo 2013), and
supercritical water oxidation (Pizzarelli 2018).

For the large temperature ranges found in many technical and environmental
applications, many such high-pressure fluids exist at transcritical conditions. At these
conditions, the pressure p exceeds p. but the temperature 7 straddles the critical
temperature 7T,. In transcritical fluids, a number of non-ideal effects have been observed
when the reduced pressure p, = p/p. and the reduced temperature 7, = T /T, approach
unity. Transitioning from the liquid-like to gas-like regions, the density, viscosity and
diffusivity display sharp gradients, while the isothermal compressibility, specific heat
capacity and thermal conductivity exhibit pronounced peaks (Clifford & Williams 2000;
Kiran, Debenedetti & Peters 2012). These behaviours are illustrated in figure 1, which
shows thermoviscous properties — density p, constant-pressure specific heat capacity cp,
thermal conductivity A, and dynamic viscosity p — of nitrogen for different supercritical
pressures.

At turbulent conditions in the transcritical regime, the presence of both liquid-like
and gas-like thermodynamic property dependencies yields two spatial regions in the
fluid domain, each with distinctive behaviour as influenced by the thermodynamics.
Compared with classical constant-property trends, observations of turbulence in the
gas-like region have shown — among other features — increased overall streamwise and
spanwise anisotropy, enlarged spanwise spacing of large-scale near-wall structures (Patel
et al. 2015), and intensified relative turbulent fluctuation levels of thermodynamic transport
properties (Kim, Hickey & Scalo 2019). Reverse trends have been observed in the
liquid-like regime. In addition, at the transition between liquid-like and gas-like conditions,
particularly abrupt variations in thermodynamic properties induce sharp increases in
turbulent fluctuations to further alter the flow dynamics. Overall, the coupling between
the transcritical property variations and the turbulence dynamics yields behaviours that
contrast with those of the more extensively-studied compressible turbulent wall-bounded
flows that are well-described as ideal gases.

Additionally, in realistic transcritical flows, these coupled effects of modulated
turbulence and property variations can be combined with a number of other physical
phenomena, including thermoacoustic oscillations and buoyancy, all of which contribute
towards further modification of the resultant turbulence dynamics and heat transfer, as
discussed in Kim er al. (2019) and Nemati et al. (2015). The presence of buoyancy
effects can cause transcritical fluids to undergo significant reduction in the magnitude
of heat transfer. Known as heat transfer deterioration, this is a phenomenon that is
known to arise from reduced turbulence production and decreased near-wall fluid density
(Pizzarelli 2018), but which current analytical models and correlations have not been able
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Figure 1. Thermoviscous properties of nitrogen at various supercritical pressures as a function of reduced
temperature. Data taken from NIST (Linstrom & Mallard 2017). (@) Thermodynamic properties: density p and
constant-pressure specific heat capacity c;, plots. (b) Transport properties: thermal conductivity A and dynamic
viscosity u plots.

to successfully predict (Yoo 2013). In recent decades, while the momentum behaviour of
turbulence has been examined thoroughly for both variable-property and constant-property
wall-bounded flows, the detailed characterization of the thermal transport is not nearly as
well understood (Patel, Boersma & Pecnik 2017). Further physical study and understanding
are necessary to predict accurately the temperature statistics and associated heat transfer
in transcritical flows.

The complex interplay of the physical processes that are present in turbulent
transcritical flows poses a number of challenges when investigating the heat transfer.
Experimental measurements at such conditions lack spatial and temporal resolution;
the available data are mostly limited to averaged heat transfer quantities with minimal
information on turbulence statistics (Ma, Yang & Thme 2018). Presently, models used in
Reynolds-averaged Navier—Stokes (RANS) methods for transcritical fluids are unable to
predict accurately flow statistics of interest, particularly for heat transfer values (Yoo 2013).
Current wall-modelled large eddy simulation (WMLES) techniques have been developed
largely to simulate ideal gas flows (Ma et al. 2018) and thus are not suited for calculations
in transcritical conditions. With such constraints, current and ongoing investigations of
turbulence in transcritical fluids are predominantly direct numerical simulation (DNS)
studies that resolve the full range of turbulent scales in the flow.

Efforts to characterize the thermal boundary layer have led to the development of
the temperature law of the wall as a thermal analogy of the well-known velocity law
of the wall. The temperature law of the wall, first proposed by von Karman (1939), is
a functional relation for the mean temperature difference 6 = |T — T,,|, where T is the
fluid temperature, 7), denotes the temperature at the wall, and - indicates averaging over
homogeneous and steady-state conditions. A general analytical form of the temperature
law of the wall, which can be obtained through scaling arguments, is expressed as (Kader
1981)

Pr¢T, viscous sublayer,

-1 (L)

6+t _
— In¢™ + B(Pr), logarithmic (log) region,
KT
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where Pr = cpm/A is the averaged Prandtl number, «7 is a constant, and B (Pr) is a
function of Pr; ¢ is a modified wall-normal coordinate that provides the distance from
the pertinent wall. The superscript ‘4’ on ¢ and 6 indicates quantities measured in wall
units, via normalization by friction quantities as

§+E§—VTW’OW — C& (1.2)
Hw Vy

and

épwcp,wur _ i . |T —T,| (13)

9_ +
qw T T

where 1, = | du/dy|,, is the wall shear stress, u; = /7,,/pw 1s the friction velocity,
qw = |A0T /9yl is the wall heat flux, v, = u,,/p,, is the kinematic viscosity evaluated
at the wall, and T; = g\ /(pwcp,wr) is the friction temperature. The subscript w
indicates variables evaluated at the wall, or calculated using averaged quantities that
are then evaluated at the wall when applicable. Here, y is a global wall-normal
coordinate. For historical context, the approach of using self-similarity methods to
obtain the temperature law of the wall closely resembles the development of the
Monin—Obukhov (MO) similarity theory (Monin & Obukhov 1954). In the surface layer
of the atmospheric boundary layer, the MO similarity theory utilizes the near-constant
vertical fluxes to describe successfully the wind speed and temperature profiles in
stable boundary layers. Even with considerations for buoyancy-driven physics, the MO
similarity theory also yields a log-linear profile that remains similar in form to (1.1)
(Stull 1988).

The viscous sublayer solution of (1.1) is well characterized for a broad range of flows.
In contrast, there is currently no consensus regarding a consistent representation of the
logarithmic region. The most successful and widely-used correlation was developed by

Kader (1981), who employed an assumption of constant turbulent Prandtl number in the
logarithmic region and arrived at the expressions k7 = 0.4717 and B(Pr) = (S.SSEI/ L

1.3)2 4+ In(Pr) /kr. In flows with spatially homogeneous Pr, Kader’s correlation agrees

well with mean temperature profiles from experimental data for 0.7 < Pr < 170, for
data from fully developed turbulent flows in flat-plate boundary layers (Simonich &
Bradshaw 1978; Blair 1983) and in channels (Kader 1981). Agreement with numerical
data has also been observed in DNS (Kim & Moin 1989; Pirozzoli, Bernardini &
Orlandi 2016; Abe & Antonia 2017) as well as in RANS and large eddy simulation
(LES) settings (Duponcheel er al. 2014; van Cauwenberge et al. 2015). However,
characterizing the mean temperature profile using Kader’s correlation in other flow set-ups
has shown a number of deficiencies, specifically in characterizing the logarithmic region
quantitatively. This poor agreement is seen in flows with strong temperature gradients
(Toutant & Bataille 2013), in chemically reacting flows (Artal & Nicoud 2006), and in
flows with strongly varying thermodynamic properties (Patel et al. 2017; Guo, Yang &
Thme 2018).

In the following, we review the relevant body of literature for variable-property
wall-bounded DNS studies that attempt to characterize the mean temperature profile. We
introduce here the density ratio, §2, defined as £2 = pco1d/ Phot, With peoiq being the density
at the cold wall and pp,; being the density at the hot wall. A number of early numerical
simulations of variable-property flows have considered relatively small §2 values of O(1)
and simplified thermodynamics wherein one or more transport properties are either held
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constant artificially or prescribed by a simplified algebraic dependence on temperature.
While general insight into the behaviour of the temperature profile in variable-property
turbulence was accessible from these early studies, limited understanding is available into
the more extreme conditions that are representative of typical transcritical turbulence
in real-world applications (with §2 values of O(10-100)). Nicoud (1998) and Nicoud
& Poinsot (1999) performed simulations of variable-property isothermal wall channels
with £2 = 2 and showed significant deviation from Kader’s mean temperature correlation.
Later, Patel et al. (2017) analysed a set of nine variable-density turbulent channel flows
with £2 < 2.5, and showed that both Kader’s correlation and a proposed modification
developed through the analysis by Lee et al. (2014) for flat-plate turbulent boundary layers
have limited success in representing the mean temperature accurately. Instead, Patel et al.
(2017) proposed an ‘extended van Driest transformation’ for the mean temperature profile,
demonstrating good collapse across cases with different behaviours of the semi-local

friction Reynolds number Re} = p\/t,,/p Ly/ [t but constant Pr. Here, L, is the channel
half-height.

Recent computational investigations have utilized more realistic thermodynamic
models in an effort to examine conditions that are more representative of real-world
transcritical turbulence. Toki, Teramoto & Okamoto (2020) presented results for
turbulent transcritical channel flow calculations at density ratios 2 =4 and £2 = 8§
before proposing a mixing-length model to transform the mean temperature profile.
Comparisons of results from their transformation with incompressible DNS data
by Morinishi, Tamano & Nakamura (2007) appeared successful, conditional on
allowing the amount of shift in the logarithmic region to be fitted empirically a
posteriori. Wan et al. (2020) presented channel flow simulations of transcritical
carbon dioxide with a maximum density ratio §2 ~ 3. They then extended the
capabilities of Patel er al. (2017)’s ‘extended van Driest transformation’ to include
the effects of variable c,. These more recent studies demonstrate relative success in
the characterization of the mean temperature profile and other temperature statistics,
but still at limited ranges of density ratios and heating conditions examined. At the
transcritical conditions relevant to practical applications, current modelling efforts have
not yet demonstrated confidence in the ability to characterize or predict temperature
statistics.

To address this issue, this investigation provides a detailed analysis of DNS calculations
of fully developed transcritical turbulent channel flow, with a focus on the analysis of
the thermal boundary layer. Our calculations involve (1) a compressible Navier—Stokes
formulation, (2) realistic thermodynamic considerations to represent accurately the
behaviour of state variables and transport properties in the transcritical regime, and
(3) density ratios £2 of up to O(20) to better represent the behaviour of transcritical
turbulence in real-world settings. The main objective of this study is to provide a
theoretical framework to best characterize the mean temperature profile in the logarithmic
region. As a secondary objective, we provide observations of the turbulent statistics
and structures of the thermal flow field, and how they are affected by the operating
conditions.

The remainder of this paper is organized as follows. Section 2 presents the problem
formulation, which includes details of the governing equations, model relations utilized,
domain definition and overall computational set-up. Section 3 presents results from the
simulations along with associated interpretations, discussions, and modelling efforts.
Finally, § 4 offers conclusions.
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2. Problem formulation
2.1. Governing equations, thermodynamic models, and domain definition

The governing equations that are solved are the conservation equations of mass,
momentum and total energy:

ap 3 (pu
o, olew) _ 2.1a)
dt 8xj
3 (oup) 9 (pujug) p 3T
=———+_—+fi 2.1b
or o o T T (2.16)
0 (per) 3 (pwier) 9 (uip) | d(vyui) g
= - - — +ufi, 2.1
ot + 0x; 0x; + 0x; 0x; +uif 2.1e)

where u; is the ith component of the velocity vector, p is the pressure, and ¢; is the total
specific energy, combining the specific internal energy e and the specific kinetic energy
(u;ju;) /2. Here, f; is the ith component of the body force vector, which imposes a prescribed
bulk streamwise momentum. This body force vector serves as a streamwise-homogeneous
substitute for a pressure gradient. For the Reynolds numbers in the current investigation,
the choice of a body force to replace a conventional pressure gradient has a negligible
effect on the pressure drop from skin friction. Previous authors (Huang, Coleman &
Bradshaw 1995; He, He & Seddighi 2016; Quadrio, Frohnapfel & Hasegawa 2016) have
shown additionally that characteristic turbulence statistics are largely robust to the choice
of forcing scheme. Following Huang et al. (1995), f; is written as

_ Xty P

A 2.2
2Ly 20 Li (2.2)

ﬁ:

where the direction i = 1 indicates the streamwise direction, the subscript ‘0’ denotes a
volume-averaged quantity, and §;; is the Kronecker delta operator. Here, 7;; is the viscous

stress tensor defined as
Bui n 8uj 2 Buk s (2 3)
T = — 4+ — ) = —u— &, .
PRy T ) T3 o

and g; is the heat flux vector given as

aT
gi=-12% 2.4)
0x;
where A is the thermal conductivity.

The working fluid considered is nitrogen (N) with critical pressure p. = 3.3958 MPa,
critical temperature 7. = 126.19 K, molecular weight W = 28.0134 g mol~!, and acentric
factor = 0.0372.

We close the system of equations with the Peng—Robinson (PR) equation of state (EoS)
(Peng & Robinson 1976; Poling, Prausnitz & O’Connell 2001), which has been used
widely in supercritical and transcritical settings because of its accuracy in predicting
thermodynamic state variables in the vicinity of the critical point (Miller, Harstad &
Bellan 2001). At transcritical conditions comparable to those used in our investigation,
Peng & Robinson (1976) reports root-mean-square (r.m.s.) errors below 1.25 % in enthalpy
departure prediction when compared to experimental values, while Congiunti & Bruno
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(2003) and Hickey et al. (2013) show results with similar error levels when representing p
and c¢,. The PR EoS is expressed as

_ PRT ,oza
T 1—bp 142bp—b2p?’

where R is the gas constant. The parameters a and b account for real fluid effects and are

(2.5)

p

given as
2
R*T? T
a = 0.457236 l+c|l—,/— ) (2.6a)
Pc T,
RT,
b = 0.077796 ) (2.6D)
Dc
with
¢ = 0.37464 + 1.542260 — 0.2699202, 2.7

and with w being the previously introduced acentric factor. For N, b = 8.58 x 10™* and
c=0.432.

Chung’s model for high-pressure fluids (Chung, Lee & Starling 1984; Chung et al. 1988)
is used to evaluate molecular transport properties. For N; at temperatures and pressures
comparable to those used in our current investigation, Chung’s model demonstrates
average absolute deviations below 1.24% for p and 7.30% for A when compared to
experimental data; both values lie within typical experimental uncertainty ranges. With
its relative accuracy and computational efficiency, this model has also been used by a
number of previous studies of transcritical turbulence (Ruiz 2012; Toki et al. 2020).

A schematic of the computational domain is given in figure 2. The channel is periodic in
streamwise and spanwise directions, while the wall-normal coordinate y extends from —L,
to Ly. The cold wall for each case is thus at y/L, = —1, and the hot wall is at y/L, = 1. As
introduced in § 1 and also depicted in figure 2, the coordinate ¢ provides the wall-normal
distance from each pertinent wall and satisfies { = 0 at the wall being considered. Gravity
1s not considered in our calculations, so the relative orientation of the hot and cold walls
is arbitrary. The domain dimensions are Ly x 2L, x L,, with Ly/L, = 2m, L,/Ly, = 47/3,
and the channel height measuring 2L, = 9.0132 x 107> m. In their comprehensive study,
Lozano-Durdn & Jiménez (2014) showed that dimensions of L, = 2nL, and L, = nL,
are sufficient for capturing one-point statistics in channel flows with Re; up to 2009 for
isothermal ideal gas flows. Further investigation is needed to extend this conclusion to
real-fluid turbulent flows. However, with the grid and domain validation results presented
in Appendix A and in Ma et al. (2018), we conclude that the domain dimensions in our
study are adequate for capturing the desired statistics of our study.

2.2. Computational set-up

In our simulations, we used a compressible finite-volume solver (Khalighi er al. 2011;
Hickey et al. 2013; Larsson et al. 2015; Ma et al. 2018). The governing equations are
solved in dimensional units using a strong stability-preserving Runge—Kutta scheme with
third-order accuracy for time stepping, and a flux reconstruction central scheme with
fourth-order accuracy on uniform grids and third-order accuracy on non-uniform grids
for spatial discretization. Ensuring that the effects of numerical errors are minimal for the
current choice of numerical methods at the high density ratios studied is important for
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Figure 2. Schematic for the turbulent channel at transcritical conditions. Note that x denotes the streamwise
coordinate (with velocity component #; = u), y denotes the wall-normal coordinate (with velocity component
up = v), and z denotes the spanwise coordinate (with velocity component u3 = w). The wall-distance
coordinate ¢ is also depicted for each wall. The hot and cold walls are each independently assigned isothermal
temperature values at T, and 7,4, respectively.

confidence in the results. To this end, for the currently-used numerical procedure, Ma, Lv
& Thme (2017) and Ma et al. (2019) demonstrated minimal dispersion errors via solution
profiles that are robust against the formation of spurious numerical oscillations, as well as
evidence for the negligible effect of dissipation errors through convergence studies. In our
current study, we also provide evidence towards the robustness of the numerical procedure
against dissipation errors using the well-resolved energy spectra provided in Appendix A.

For our simulations, a relative solution (RS) sensor has been applied (Ma et al. 2017);
in regions where the local density ratio, defined using the reconstructed face value
and the control volume centre value, exceeds 50 %, a second-order hybrid essentially
non-oscillatory (ENO) scheme is employed along with a Harten—Lax—van Leer contact
(HLLC) Riemann flux computation. The same framework is also applied for the local
pressure ratio. An entropy-stable double-flux model, developed as part of the procedure to
simulate transcritical flows with physically-realizable solutions, is used (Ma et al. 2017).

We use a structured Cartesian grid with mesh size Ny x Ny x N, = 384 x 256 x 384.
The streamwise and spanwise spacings are uniform, while the wall-normal spacing is
stretched using a hyperbolic tangent profile to resolve the viscous sublayer. Validation of
the current numerical procedures for stretched grids is provided in Ma et al. (2017, 2018).
Details of the grid resolution are provided in Appendix A.

Details of individual cases considered are provided in table 1, and a thermodynamic
state diagram is provided in figure 3. The operating conditions were chosen to sample
density ratios §2 for values from 1 to ~20. To study different heating conditions, we vary
the temperature of the top wall T}, among different cases. Cases are named based on the
ratio of the hot wall to the cold wall temperatures, which we denote as the temperature
ratio (TR). Of note, cases TR3, TR1.9, TR1.4 and TR1.3 are transcritical, whereas cases
TR1.25 and TRI1 are strictly subcritical in temperature. The wall temperatures of case
TR1 are the same, and the case is included as a reference. The maximum Mach number,
calculated using u# and the mean speed of sound, is less than 0.16 for all cases. For all
cases, the bulk pressure is set to a constant value 3.87 MPa, which corresponds to a
reduced pressure p, = 1.14, and the bulk Reynolds number is set to a constant value

Reg = 2pouoLy /o = 3.5 x 10*. At the given bulk pressure, the transition temperature
of the Widom line (WL), Ty, is found at a reduced temperature Ty /T, =~ 1.022; this
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p/p,

Figure 3. State diagram for nitrogen. The colour spectrum shows the reduced density p/p., where p is the
critical density, and solid grey-white curves (with numbered labels) are isocontours of the compressibility
factor Z = p/(pRT). A black star marks the critical point. The dashed black line is the Widom line, which
corresponds to the locus of points of maximum ¢, for a specific pressure value. The solid white line represents
the conditions considered in this study (see table 1 for parameters), with the circle denoting the condition at

the cold wall and x-marks denoting conditions at the hot wall. All cases are at p, o = 1.14.

Cases Ty cold T} hot Pr,0 Rer,mld Rer,max(t}),mld Rex por Rer,max([l),hot 2

TR3 0.79 2.38 1.16 430 650 300 140 17.84
TR1.9 0.79 1.51 1.60 440 600 610 395 10.05
TR1.4 0.79 1.11 1.92 500 610 1370 1055 5.24
TR1.3 0.79 1.03 2.09 570 650 1530 1295 2.89
TR1.25 0.79 0.99 2.19 590 680 1290 1110 1.60
TR1 0.79 0.79 2.36 700 700 700 700 1.00

Table 1. Summary of cases and conditions, where T ot = Tcotd/Tes Trhot = Thot/Te, and pro = po/pe 18
the reduced volume-averaged density, p. is the critical density.

is the temperature corresponding to maximum c;, at the given supercritical pressure. For
each case, two different friction Reynolds numbers are reported at each of the two walls,
calculated using property values evaluated at the conditions of the appropriate wall. For
the length scale, the friction Reynolds number Re; uses the channel half-height L,. In
contrast, the modified friction Reynolds number Re: ,4x(i) uses the distance of maximum
u from the wall, Ly jnax@)-

Because the bulk pressure pg is held constant while the bulk temperature 7y changes
among cases as a result of the adjusted temperature boundary conditions, the bulk density
po of the system needed to be adjusted accordingly for the flow to remain statistically
stationary. For each case, the values for the bulk momentum (pu)g and bulk density pg
were found by iterating. After reaching a statistically stationary state, each case is run for
more than six flow-through times, where each flow-through time is defined as L, /ug.

Values of the Eckert number, calculated as

Fe=—20__ (2.8)
hw - hCL
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Cases Eccold Ecpor

TR3 0.0083  0.0029
TR1.9 0.0113  0.0042
TR1.4 0.0232  0.0085
TR1.3 0.0385  0.0139
TR1.25 0.0594  0.0322
TR1 0.1700  0.1700

Table 2. Eckert number Ec values for each case, evaluated at each wall, defined by (2.8).

are provided in table 2. Here, 4 is the specific enthalpy, defined as h = e + p/ p, h,, denotes
the mean enthalpy at the wall, and /¢y is the mean enthalpy at the channel centreline
(CL). As observed, viscous heating and dissipation effects become more significant as the
temperature ratio decreases.

Cases TR3, TR1.9, TR1.4 and TR1.3, being transcritical, all cross the Widom line within
the fluid domain and thus contain both liquid-like and gas-like fluid behaviours. From past
studies regarding the coupled effects of property variations and turbulence modulation (as
discussed in § 1), we expect many of the previously-observed features to be present in these
transcritical cases; these details will be examined and discussed in § 3.

Although case TR1.25 is subcritical in temperature, the relative proximity of the hot wall
temperature (125 K) to the Widom line transition temperature (~129 K) means many of
the discussed effects that are intrinsic to transcritical flows are still observable. Case TR1,
on the other hand, has wall temperatures (both at 100 K) markedly far from the Widom
line transition temperature; we expect the behaviour in this case to be similar to that of
constant-property turbulence.

3. Results

In this section, we present DNS results for all cases, along with associated analysis
and modelling. Note that investigation of the momentum characteristics of case TR3
were presented in Ma et al. (2018). Subsection 3.1 provides observations regarding
instantaneous contours and fluctuations profiles, and §3.2 discusses mean profiles.
These two subsections provide the foundation for characterization of the near-wall mean
temperature behaviour. Consequently, § 3.3 discusses the performance of previous mean
temperature transformations and models, before we provide the mathematical formulation
and results for our improved mean temperature transformation and model in § 3.4.

3.1. Instantaneous contours and fluctuation profiles

As a means of visualizing the instantaneous thermal field, figure 4 shows contours of ¢,
normalized by the cold wall value, which we denote ¢, ¢4, for the four transcritical cases.
As the temperature ratio decreases, we observe a shift in location of the transition point of
the Widom line towards the hot wall. Increased intensity of fluctuations in ¢, is visible for
cases with larger temperature ratio.

For observations of how variations in temperature boundary conditions affect the
resultant temperature field, figures 5 and 6 show temperature fluctuations near the cold
and hot walls. Two different wall-normal distances are shown to capture the behaviour in
both the viscous sublayer (with planes at £* = 5) and the logarithmic region (with planes
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Figure 4. Instantaneous contours of ¢, for cases (a) TR3, (b) TR1.9, (¢c) TR1.4, and (d) TR1.3, normalized by
Cp.cold> defined as ¢p,,, at the cold wall. The half of the domain adjacent to the hot wall is shown. The y-axis
gives ¢ normalized by the channel half-height, displayed on a logarithmic scale. The solid blue line demarcates
the location of the transition point of the Widom line, with 7 = Ty. Contour levels and intervals are kept
constant, with colour bar shown in (a).

at £* = 100). Here, ¢* is the semi-local coordinate and is defined as ¢* = ¢/1,0/ 1.
As a modification of ¢, £* has been used extensively in variable-property wall-bounded
turbulence in order to account for the effect of local property variations on the magnitude
of near-wall characteristic turbulent scales (Huang et al. 1995).

In the viscous sublayer, the structure of the streaks is visibly distinct between the cold
and hot walls. Similar qualitative characteristics in temperature fluctuations were also
reported by Sengupta et al. (2017). When values are normalized by the friction temperature
T., we observe an increase in the relative intensity of temperature fluctuations near the hot
wall at both reported ¢* distances for case TR1.3, due to the proximity of the hot wall
temperature to Ty

There exists a sizeable body of literature studying near-wall velocity structures
(especially for «'), from which observations and associated theoretical predictions have
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Figure 5. Fluctuations of temperature (7'" = T’/T, where the prime notation denotes fluctuations from the
Reynolds-averaged mean) at {* = 5, for (@) TR3, cold wall, (b) TR3, hot wall, (¢) TR1.3, cold wall, and
(d) TR1.3, hot wall. Axes are normalized by the semi-local length scale jt/+/T, 0, and plots display the entire
x—z-extents of the computational domain. Contour intervals and levels are kept constant.

been made. A key conclusion from previous studies is the spanwise spacing of 100 wall
plus units for near-wall streaks in « (Kline ef al. 1967; Kim, Moin & Moser 1987).
Observations of the streak structures in temperature in figure 5 show similar spacing
values of ~100 when measured using semi-local units; these visual observations are
confirmed using two-point spanwise correlations of temperature fluctuations, as plotted
in figure 7. Departing from this trend is the hot wall of case TR3, which is characterized
by a larger spacing approaching 400 semi-local units. Deviations from the value of 100
are consistent with the conclusions reached by Patel et al. (2015); the liquid-like structures
at the cold wall tend to exhibit decreased spacing, while the gas-like structures at the
hot wall tend to have increased spacing. We note also that with the high degree of
correlation observed between u’ and 7" in the near-wall regime (Guo et al. 2018), many
conclusions regarding structures in 7’ can be compared directly with those from the
near-wall ' literature. Further details of transcritical velocity structures and statistics,
including evidence supporting the presence of attached eddies and other comparisons with
results from classical constant-property wall-bounded turbulence, are provided in Ma et al.
(2018).

For a more quantitative view of the apparent asymmetry in temperature fields, figure 8
displays probability density functions (p.d.f.s) of temperature in the viscous sublayer and
in the logarithmic region. In the cold wall profiles, we observe pronounced skewness
towards the hot wall temperature in the viscous sublayer. This behaviour is an indication
of significant mixing of thermal energy between the two walls; similar behaviour in the
density p.d.f. distributions was reported by Ma et al. (2018). Profiles in the logarithmic
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Figure 6. Fluctuations of temperature (7'7) at {* = 100, for (a) TR3, cold wall, () TR3, hot wall, (c) TR1.3,
cold wall, and (d) TR1.3, hot wall. Axes are normalized by the semi-local length scale ji/+/7,p, and plots
display the entire x—z-extents of the computational domain. Colour is the same as used in figure 5.

1.0 T T T T T T T
—— TR3
0.8 F —— TR1.3 |4

0.6 1

Ry 04t

0 50 100 150 200 250 300 350 400

*

z

Figure 7. Profiles of two-point spanwise correlations for temperature fluctuations, Rrr, all at ¢* = 5. Cold
wall profiles are plotted with dashed lines, and hot wall profiles are plotted with solid lines.

region are less skewed (consistent with increasing isotropy in flow structures closer to
the channel centre) and also display decreased overall variance compared to the viscous
sublayer profiles. For the hot wall profiles, a skewness is again observed in the viscous
sublayer towards the temperature of the opposite (cold) wall. However, distinct from the
behaviour of the cold wall profiles, many of the hot wall profiles are observed to cluster
near 7, = 1 as a consequence of the proximity of 7, to Twr.
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Figure 8. P.d.f.s of reduced temperature at all cases at {* =~ 5 (solid lines) and at {* ~ 100 (dashed lines), for
(a) cold wall and (b) hot wall. Hot wall profiles have been split into two subplots in order to alleviate visual
congestion.

To examine the importance in fluctuations of thermodynamic quantities, figure 9 shows
profiles for relative magnitudes of r.m.s. fluctuations in p, ¢, 1 and A. Just as was observed
for the instantaneous snapshots and the temperature p.d.f.s, a pronounced asymmetry
between cold and hot wall values is observed in all cases except for case TR1, with much
larger fluctuation magnitudes near the hot wall. All asymmetric cases with temperature
ratio > 1 are also characterized by r.m.s. fluctuation values that are significantly larger
than for the symmetric case TR1.

Especially for cases with large temperature ratio (cases TR3 and TR1.9), the fluctuations
in ¢, are most significant and consistently exceed 50 % of the local mean value. This
observation suggests the importance of capturing the behaviour of ¢, on characterizing
the thermal boundary layer, a conclusion that was also noted by previous authors (Wan
et al. 2020) and which we will utilize in § 3.4. We note that fluctuations in p, n and
A exceed 20 % of the mean value near the hot wall — with highly localized peak values
for cases TR1.3 and TR1.4 — and are by no means negligible. Notably, cases TR3 and
TR1.9 have fluctuation magnitudes = 10% of the corresponding mean value across the
majority of the channel for each of the four plotted quantities. Observations of these
fluctuation profiles have important implications for the temperature characterization.
With sufficiently large temperature ratio, fluctuations of all thermodynamic properties
in transcritical turbulence cannot be neglected presumptively and require consideration
in boundary layer modelling. This conclusion is in direct contrast to classical results.
Constant-property turbulence by its nature has negligible thermodynamic fluctuation
levels, and supersonic turbulent boundary layers (with significant density variation)
generally follow Morkovin’s hypothesis and are characterized by fluctuation magnitudes
typically not exceeding 10—15 % of the mean value (Coleman, Kim & Moser 1995; Huang
et al. 1995).

3.2. Mean profiles

Figure 10 shows mean profiles of the decomposition of the heat flux terms into two
contributions, the turbulent heat flux —pv”A” and the molecular heat flux 137 /dy. The
tilde denotes Favre-averaged quantities, and the double prime denotes fluctuations from the
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Figure 9. Profiles for r.m.s. quantities for (a) density p, (b) constant-pressure specific heat capacity c,
(c) dynamic viscosity u, and (d) thermal conductivity A. The r.m.s. profile for a quantity ¢ is defined as

Orms = /@' ¢’. All profiles are normalized by Reynolds-averaged mean quantities.

Favre-averaged mean. The molecular heat fluxes exhibit similarity in behaviour among all
cases. However, the same similarity is not observed for the turbulent heat fluxes, including
in the near-wall thermal boundary layer (regions with large gradients in mean temperature,
as can be observed in profiles of the mean temperature provided in figure 25a). The
significant dissimilarity in turbulent heat flux profiles seen here was not observed in cases
with lower temperature ratio values (Toki et al. 2020).

For the momentum transport, figure 11 displays the decomposition of the total mean
stress into the viscous stress u du/dy and the Reynolds stress —pu”v”. In all cases, the
profiles of viscous stress collapse well near the cold wall, while the asymmetry among
different cases is evident moving towards the hot wall. It can be seen that as the temperature
ratio decreases, the stress profile becomes more and more symmetric, with the Reynolds
stress profile equalling zero closer to the channel centreline, and 7, o increasing in
magnitude to approach that of 7,, /4. Overall, similarity in the behaviour among Reynolds
stress profiles is evident — a feature not observed in the turbulent heat flux profiles in
figure 10.

Despite the differences between the behaviours of the turbulent heat fluxes and Reynolds
stresses, similarity is observed for the ratio of the turbulent and molecular components,
as done in figure 12. The profiles provide a metric for the relative importance of each
component for the momentum and energy transport as a function of ¢*. As observed,
the dynamics of both the momentum and thermal fields are governed primarily by the
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Figure 10. Decomposition of the heat flux terms into (a) the molecular heat flux A d7/dy and (b) the
turbulent heat flux —pv”h”. All cases are normalized by the cold wall molecular heat flux (197/9y).cold-
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Figure 11. Decomposition of the total momentum stress into (@) the viscous stress p du/dy and (b) the
Reynolds stress —pu”v”. All cases are normalized by the cold wall viscous stress (i1 du/9y)w. cold-

molecular component for ¢* <5 and by the turbulent component for ¢* = 30. The
presence of distinct spatial regimes and transport mechanisms supports early theory that
led to the recognition of the logarithmic scaling of the velocity distribution, thus providing
key insights towards the development of Townsend’s hypothesis of equilibrium layers
(Townsend 1961) and the Monin—Obukhov similarity theory (Monin & Obukhov 1954).
The observations made here, in addition to justifying the choice of ¢* used in studying the
near-wall temperature fluctuations in § 3.1, will also be utilized for defining the extent of
the temperature logarithmic region in § 3.3.

Before considering the near-wall mean temperature behaviour, it is informative to gain
insight into the scales that govern the near-wall dynamics. The friction velocity and
temperature are plotted in figure 13(a). From observations of u; across both cold and
hot walls, and in all conditions considered, variations by a factor of less than 2 are seen.
The variability of the cold wall T is somewhat larger, with overall variation of a factor of
approximately 6, while the hot wall 7, displays much larger variations of more than two
orders of magnitude. We observe that for the hot walls, trends in both u#, and 7 have a
noticeable non-monotonicity for cases with Tj,; = T,. This observation is rationalized by
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Figure 12. Ratios of turbulent and molecular components of (a) heat flux, —,5v7’77” /10T /dy, and

(b) momentum stress, — ,5u7’\1;” /i du/dy. Profiles are plotted against semi-local coordinate ¢*. Cold wall
profiles are plotted with dashed lines, and hot wall profiles are plotted with solid lines.
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Figure 13. (a) Plots of friction velocities u, and friction temperatures 77, as a function of reduced hot wall
temperature 7 ;.. Normalization in each line uses the values for case TR1. (b) Plots of magnitude of mean heat
flux gy, = [107T/dy|,, at hot and cold walls, plotted as a function of the reduced hot wall temperature 7} por.
Normalization by the value found in case TR1 is used. In both plots, Twy is also plotted as a vertical dotted
line.

the significant gradients in thermodynamic properties near Tyy. Figure 13(b) compares
the magnitude of the mean wall heat flux ¢,, = |19T/dy|,, for each case and for the
cold and hot walls. The overall trend of decreasing heat fluxes at both walls for smaller
values of T, is expected from observations of the mean temperature profiles in figure 25.
Deviating from this trend, we observe a considerable increase in gy, nor for Tho; /T, = 1.03
(corresponding to case TR1.3) that can be explained by the peak in A that occurs at Ty,
for weakly supercritical pressures (as observed in figure 1).

Knowledge of the variation in characteristic scales given by figure 13 provides a
foundation to investigate the temperature behaviour. Figure 14(a) shows the near-wall
mean temperature profiles, normalized using the friction temperature 7. The cases each
appear to display a region with linear slope as indication of the logarithmic region; this
observation is also substantiated using the diagnostic function plotted in figure 14(b).
If friction quantities by themselves were sufficient to describe the mean temperature
dynamics, then all profiles would collapse into a single curve and thus satisfy a universal
temperature law of the wall, in the form as presented by (1.1) but with ¢* replacing ¢*.
While this is not the case, the observed profiles provide insight into the ability of T,
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Figure 14. Profiles for (a) normalized mean temperature 61, and (b) the log law diagnostic function
£*d@* /dc*. For each profile, the diagnostic function approaches a constant value in the logarithmic region,
corresponding to 1/«7 in (1.1). Dashed lines indicate cold wall profiles, and solid lines indicate hot wall profiles.
All 12 curves (6 cases with 2 walls each) are displayed. Profiles are plotted versus the semi-local coordinate ¢ *.

to describe accurately the near-wall scales for the temperature dynamics. The cold wall
profiles collapse more tightly — with similar log region slopes and amount of vertical
shift — than the hot wall profiles do; this indicates that 7 at the cold walls performs
relatively well as a normalization quantity. This good collapse of the cold wall profiles is
expected; profiles at the cold walls are more similar in nature to classical constant-property
results, with comparatively less effect of near-wall property gradients on the mean flow.
In contrast, the hot wall profiles of cases TR3 and TR1.9 display noticeably smaller slopes
and are shifted vertically downwards compared to the cold wall profiles and to all other
hot wall profiles. This suggests that near the hot wall, 77 73 and T 7r1.9 overestimate the
true near-wall temperature scales. The opposite conclusion can be made for the hot wall
profiles of TR1.3 and TR1.25; the log regions in these cases have slope values that are too
large and profiles that are shifted vertically upwards.

These profiles of near-wall mean temperature serve as a baseline for the characterization
efforts that follow. Additional mean profiles to illustrate the flow are provided in
Appendix B.

3.3. Assessment of previous mean temperature theoretical work

As discussed in § 1, the mean temperature behaviour of the viscous sublayer is well
characterized. For completeness, we show these profiles in § 3.2. In this subsection, we
focus on the quantitative assessment of the performance of previous transformations from
literature in characterizing the logarithmic region of the mean temperature profile for our
simulations. Note that while we included case TR1 in plots and discussions up to this point
as a reference case, we will not consider it for purposes of characterization and modelling.

Before beginning the assessment, the boundaries of the temperature log region must
be defined properly. For the velocity log law, the log region is defined as being between
¢* > 30 and ¢/L, < 0.3; these bounds have been well-validated using data from both
computational and experimental investigations (Pope 2000).

The lower bound value of ¢* = 30 for the velocity log law is chosen based on
observations from past studies that the direct effect of the molecular viscosity on the total
viscous stress is negligible in the region further than ~30 viscous length scales from the
wall (Pope 2000). From the observations and discussion associated with figure 12, it is
seen that both the viscous stress and the molecular heat flux are negligible for our cases
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Cold wall Hot wall

Case Ly.max(z}) /Ly §* at g = 0.3 Ly,max(ﬁ) Ly.max(z}) /Ly §* at ¢ = 0.3 Ly,max(ﬁ)

TR3 1.52 512 0.48 110
TR1.9 1.36 382 0.64 140
TR1.4 1.23 315 0.77 200
TR1.3 1.15 299 0.85 255
TR1.25 1.14 282 0.86 228
TR1 1.00 268 1.00 268

Table 3. Distance from wall to location of maximum mean streamwise velocity, Ly max(@) /Ly, and the
corresponding location of the upper bound of the temperature log region, ¢ = 0.3 Ly juax(@), in semi-local units.

for ¢* 2 30. Thus we choose to use the same value of ¢* = 30 for the lower bound of
the temperature log region. Observations of figure 14 support this choice for the cases
under investigation, with a region of linear slope for all cases beginning at ¢* =~ 30 and
extending away from the wall.

For the upper bound of the temperature log region, modification of the velocity log law
criterion (¢ /Ly < 0.3) is necessary. The criterion from the velocity log law stems from the
fact that ¢ = L, is the location of the maximum of « in a symmetric channel. In our current
investigation, it can be seen in figure 25(c) that the peak in u deviates significantly from
¢ = L, for several cases, making ¢ = Ly an ill-suited choice in our current investigation.
Instead, we choose Ly ;uax@) — the distance from the wall to the location of maximum u —
as the relevant length scale for each case, as was also used to calculate Re; ;,4x() in table 1.
The modified upper bound for the temperature log region is thus ¢ /Ly juax@ < 0.3. Values
for the location of this temperature log region upper bound are provided in table 3.

With our clarification of the boundaries for the temperature log region, we proceed
by reviewing previous transformations from literature. We quantify the performance of a
transformation by (1) how the slopes of the temperature log region differ among cases, and
(2) how well the shift parameter of the temperature log region is characterized. Here, the
shift parameter of the temperature log region is defined to be the value of the transformed
temperature at ¢ * = 30, and can be interpreted as a measure of the vertical variation in the
log region of the transformed temperature.

Note that the presented integrals are of the form

dy

: Y (p) do, 3.1

with d; and d> being the limits of the interval of integration and v being the integrand.
Throughout, ¢ is used as an arbitrary dummy variable to represent a point within the
interval of integration, with ¢ € [dy, d>].

The first transformation from literature is a scalar analogy of the velocity van
Driest (VD) transformation. Known as the temperature van Driest transformation, this

transformation is given as
o+ 5 o
- / L gy (32)
0 Pw Cpw

A version with constant ¢, was discussed in Patel er al. (2017), and a formulation with
variable ¢, was discussed in Wan et al. (2020). Both studies report unsatisfactory collapse
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Figure 15. Profiles of (@) the temperature van Driest transformation, () the transformation proposed by Toki
et al. (2020), and (c) the extended van Driest transformation proposed by Patel et al. (2017) and Wan et al.
(2020). In the left-hand panels, dashed lines indicate cold wall profiles, and solid lines indicate hot wall profiles.
Log region slopes and shift parameters are also plotted for each transformation. For each transformed profile,
log region slope values are determined using the slope of the line of best fit through the temperature log region,
and the shift parameter is given by the value of the profile at ¢* = 30 (¢+ = 30 for the Toki et al. (2020)
transformation).

of the temperature profiles, and each study attributes this result to the influence of near-wall
property variations that are unaccounted for by the transformation. We plot the results of
this transformation for our data in figure 15(a) and note that, in addition to the variation
in the log region shift parameter, the slopes among different cases vary across a wide
range. It is evident that accounting only for variations in p and ¢, is not sufficient to fully
describe the mean temperature profile. In contrast, Ma et al. (2018) demonstrated good
agreement with the established velocity log law correlation when using the velocity van
Driest transformation on the u profile.

934 A45-20


https://doi.org/10.1017/jfm.2021.1157

https://doi.org/10.1017/jfm.2021.1157 Published online by Cambridge University Press

Thermal field in transcritical turbulent channel flows

A second transformation proposed by Toki et al. (2020) is derived using the mixing
length hypothesis for both momentum and energy and also by assuming linear shear stress
and heat flux. This transformation is written as

9~+ '5 C’T’
2 :/ | 2 2P dg. (3.3)
Toki 0 Pw Cpw

The results for this transformation are provided in figure 15(). The Toki transformation
shows a slight improvement over the van Driest transformation when observing the
collapse of the slope. However, significant deviations from the reported slope value of
2.8 (provided in Toki et al. 2020) are seen, especially for the hot wall of case TR3.

We now analyse the behaviour of the extended van Driest (eVD) transformation, first
proposed by Patel er al. (2017) and later extended to variable ¢, conditions by Wan et al.
(2020). The derivation of the transformation begins from the low-Mach energy equation,
with a final expression written as

_ ¢ 1
*
eVD_/O @ T de, (3.4)

Pr*

where the turbulent eddy conductivity is defined to be o; = (—pv”0”)/(d6/dy). The
local Prandtl number is defined as Pr* = Pry,(Cp/cpw)(iL/1iw)/(A/dy) = Ty 1/ A and
is plotted and discussed in Appendix B. Notably, while (3.2) and (3.3) are direct
integral transformations for temperature, (3.4) is a spatial integral. The results of this
transformation for our data are provided in figure 15(c). Though significant improvement
in the collapse of the slope is achieved when compared to previous models, we observe
a large spread in slope values of ~ &+ 0.8 (corresponding to an uncertainty percentage of
approximately 25 % from an average value of ~3.3). Increasingly large slope values are
found for the hot wall of cases with larger temperature ratios, with an especially large
value for the hot wall of case TR3. This difficulty in collapse indicates that the governing
physical processes of the near-wall temperature dynamics are not sufficiently accounted
for at higher temperature ratios. Our current study seeks to address this issue in § 3.4.

An additional feature of the extended van Driest transformation is a mathematical
description of the log region shift parameter by decomposing (3.4) into two portions:

_ ¢ 1
Oovp =07 ovp + 0P oy With0F = / TN de. (3.5)
0 t
i

One portion, 9_3‘—, ovp» Sets Pr* =1 to remove variations in the viscous sublayer (and
thus remove variation in the log region shift parameter) to isolate the log region slope.
A second portion, 073 ovp- captures the different log region shift parameters of each case
by removing the effect of the log region slope. Figure 16 shows this decomposition. With
this formulation, the log region shift parameters glven in figure 15(c) can be found by
adding the asymptotic values of 973 ovp to the log region shift parameter of 07— vp- We
expand upon this decomposition in our model development in § 3.4.

In these presented transformations, we observe significant non-universality in the value
of log region slopes obtained. Difficulties in collapsing the slope values are especially
pronounced near the hot wall for cases TR3 and TR1.9 (with T} p,; = 2.58 and 1.51,
respectively); these coincide with large values of 77 and g,,, as shown in § 3.2 through the
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Figure 16. Profiles of the decomposition of the extended van Driest transformation proposed by Patel er al.
(2017) and Wan et al. (2020) into (a) the portion that characterizes the log region slope, 9; oyp and (b) the
portion that characterizes the log region shift parameter, é;g,eVD. Dashed lines indicate cold wall profiles, and
solid lines indicate hot wall profiles.

discussion associated with figure 13. We observe deviations from the general trend of hot
wall slopes for cases TR1.3 and TR1.25 as a result of the proximity of the transition point
of the Widom line; however, we do not observe the same degree of difficulty in collapse
of slopes as in the hot walls of cases TR3 and TR1.9. Specifically for the log region shift
parameter, a common theme that we observe is the larger shift parameter values found near
the hot walls for cases TR1.3 and TR1.4 (with 7 j,, = 1.03 and 1.11, respectively). This
common observation can be rationalized by the proximity of these cases to Ty and the
corresponding peak Pr* that occurs at this temperature. We note that in the transformations
presented in this section, the log region shift parameter is either not predicted by the
proposed mathematical transformation (for the van Driest and Toki transformations) or
characterized a posteriori using the transformed DNS profiles (for the extended van Driest
transformation).

3.4. Mean temperature characterization and modelling

From observations of the performance of currently available transformations in § 3.3,
an improved transformation for the near-wall mean temperature profile would provide a
characterization of the log region slope with higher accuracy. An improved transformation
would also contain a predictive model for the log region shift parameter. If the log region
shift parameter could be determined using only values known a priori, then the details
of the temperature profile in the log region can be quantitatively predicted beforehand,
increasing the applicability of the transformation to turbulence modelling. These are the
goals that motivate our proposed transformation, which we derive next.

To consider the entire set of relevant physical processes, we begin with the energy
equation (2.1¢); after subtracting the transport of kinetic energy and then averaging over
time and over homogeneous directions, we obtain

o do ¢ ap & u; _
— pv"h +/1&+ A Migdfp—l- A TijEdQDECL (3.6)
i j

where g represents the total heat flux. Note that in this equation, the turbulent heat flux term
—pv”h’" and the molecular heat flux term Ad6/d¢ are present, as well as two additional
terms: the pressure work term fog u; dp/dx; dp and the viscous dissipation of kinetic energy
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Figure 17. Profiles of (a) fluctuating molecular heat flux A’ d6’/d¢, (b) pressure work foc u; dp/ax;de, and

(c) viscous dissipation of kinetic energy fog 7jj 0u;/0xj de. All terms have been normalized by the total mean
heat flux g, as defined in (3.6). Dashed lines indicate cold wall profiles, and solid lines indicate hot wall profiles.

fog 7;; 0u;/0xj dp. These integrals are evaluated from the wall to the desired ¢ location.
Notably, these last two terms are neglected by the energy equation of the low-Mach limit
of the Navier—Stokes equations.

In simplifying the energy equation, we make two assumptions. The first is that
the fluctuating molecular heat flux is negligible, |A1dd/d¢| > | d6’/d¢|. Although
observations of the r.m.s. fluctuations as seen in figure 9 have shown that such fluctuations
of thermodynamic properties (including A) can be significant, figure 17(a) shows that the
contributions of the fluctuating heat flux are small when normalized by g. Additionally
and more importantly, the profiles decay to 0 for ¢* > 30. Because our primary focus is
the characterization of the temperature log region, this first assumption is justified, and we
approximate the molecular heat flux term as

do - do
A— 1 —. (3.7)
dg dg

As a second simplifying approximation, we neglect the pressure work term while
keeping the viscous dissipation of kinetic energy. Figure 17(b) shows the pressure work,
and figure 17(c) shows the viscous dissipation of kinetic energy. When assessing the
absolute value of the relative magnitude across all cases, the pressure work is two orders
of magnitude smaller than the other terms in consideration in figure 17, and thus does
not provide a significant contribution to the overall heat flux. In contrast, the viscous
dissipation contributes 5—10 % of the overall heat flux in certain cases. These contributions

934 A45-23


https://doi.org/10.1017/jfm.2021.1157

https://doi.org/10.1017/jfm.2021.1157 Published online by Cambridge University Press

J. Guo, X.1.A. Yang and M. Ihme

are most significant in the temperature log region for ¢* > 30. We thus neglect the
fluctuating molecular heat flux and the pressure work but keep the viscous dissipation.
With this simplification, we rewrite (3.6) as

~ _de T Qu;
— VW + A — i — do ~ g. 3.8
pv +d;+/of”axj¢ q (3.8)

Normalizing each term with the wall heat flux g,, = pyucp, T; and rearranging leads to

_ /g 3Mid
B Y ——
(at+1)lﬂ‘ pog oot Ty oy (3.9)
[L Pr* Re;k pw vaw dé‘ QW ' .

where the turbulent eddy conductivity «;, accounting for enthalpy fluctuations, is defined
as

p 7/\}-1///
pvm (3.10)

o = —
Cp E
The potential of (3.9) in collapsing the @ profile rests on how well the quantity

do* L 5 ¢, dot
e R N Bl (3.11)
de* Re:\ pw cpw d¢

collapses among different cases as a function of ¢*. Here, we introduce the d6* /d¢* label
following the notation used by Patel e al. (2017). Following the definition in (3.11), we
can rearrange the terms in (3.9) to obtain

_ /5 3Mid
_ — T —
agr 1) a1
dé—* ~ qw O 1 - Cl % 1

, (3.12)

n  Pr* n  Pr*

as an approximate representation of (3.11), which will be used to develop a mathematical
transformation to model the mean temperature. Here, Cy is given as

qw

SF T ’
i— | mi—d
1 ./o i ax; v

C = (3.13)

The profiles of d6*/d¢*, as defined in (3.11), are plotted in figure 18(a:). We observe
significant spread in magnitudes of profiles among cases; in the temperature log region

(defined by the discussion in § 3.3), relative magnitudes of cases span a factor of up to 3.
Notably, the magnitude of profiles for the hot walls of cases TR3 and TR1.9 are consistent
outliers. To correct for these observed discrepancies among profiles, we introduce two
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correction factors to be multiplied by d6* /d¢* as given in (3.11):

do*
C,Cy, (3.14)
dec*
with Cp as given by (3.13) and C; given as
1 dh
cp do

As seen in figure 18(b), these two correction terms achieve significant improvement in the
collapse of d9* /d¢™*, when compared with the uncorrected values in figure 18(a). The term
C corrects for the observed variation in total heat flux across cases. The term C, corrects
for an implicit approximation made by the eddy conductivity definition in (3.10) — a more
appropriate eddy conductivity would use the enthalpy gradient di/dy, instead of cp dé /dy,
in the denominator of the definition of «;. Note that the specific enthalpy differential for a
real fluid is a function of two independent state variables — such as 7" and p — and can be
written as

dh oh dh
h=h{T.p)—dh= () dT+ (=) dp=cpdT+ (=) dp.  (3.16)
aT P 8p T 8p T

Employing dh = T'ds 4+ (1/p) dp leads to
oh 0 1 a(l 1
<_> :T<_S) —|——:—T< (/p)) i1 (3.17)
o) w)r P oT p P

where the Maxwell relation
as\ __ (9(1/p) G1s)
) T/, '

has been used. Substituting (3.17) into (3.16) leads to

1 T (0dp
dh=c,dT+ — |1+ — | = dp, (3.19)
P p \oT/,

thus showing that di # ¢, d0 for a real fluid.

The combination of C; and C; has demonstrated their ability to provide a
physics-motivated collapse of the profiles of (3.11). Our goal is to achieve an accurate
transformation to represent (3.11), and in turn represent the mean temperature profile.
Given the success of the correction factor procedure, we apply the same procedure to
the approximate representation for d6*/d¢™* as given by (3.12) and obtain

1 dh
. &
2 _ 9d (3.20)

(077 1 (077 1

PP n TP

which serves as the basis of the integrand of our proposed transformation to represent the
mean temperature profile.
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Figure 18. Profiles of (a) d0*/d¢*, and (b) C;C, d@* /d¢*. Dashed lines indicate cold wall profiles, and solid
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Figure 19. (a) Profiles of the full transformation, as given in (3.21). Dashed lines indicate cold wall profiles,
and solid lines indicate hot wall profiles. (b) Slopes and shift parameters of each case, plotted against the
temperature at the hot wall. For each transformed profile, log region slope values are determined using the
slope of the line of best fit through the temperature log region, and the shift parameter is given by the value of
the profile at ¢* = 30.

With these corrections in place, we can now define a temperature transformation in the
near-wall region by integrating (3.20) to obtain

1 dh
5*5/4 ﬂdw,
o o 1
n  Pr*

(3.21)

Profiles of the full transformation #* as given in (3.21) are plotted in figure 19, along
with the slope and shift parameter that best fit the logarithmic region of the profile. The
slopes are all clustered nicely around a mean value of ~3.2 (with a reduced range of
~ £ 0.56 among all cases, corresponding to an improved uncertainty percentage range of
approximately +18 %).

We observe a shift in the log region shift parameter that is seen in previous models and
can be explained by Pr* effects. Borrowing the procedure of Patel et al. (2017) and Wan
et al. (2020), the final transformation 6* can be decomposed into two separate terms, as

0* =05 + 0. (3.22)
934 A45-26
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One term, 0}, characterizes the slope of the log region and assumes unity Pr*:

1 dh
- ¢z, dd
05 = / a— do. (3.23)
0 —+1
"

The second term, 5;’;, contains effects of variable Pr* on the shift parameter of the log
region, and is written as

1 dh 1 dh
_ | & do & do
9*:/ b S de. 3.24
S 7R ST R (24
o P R

Figure 20(a) shows profiles of 9_;; with the removal of variations in log region shift
parameter, we observe good collapse among profiles. To provide a modelled profile using
an empirical fit, we integrate an ODE-based wall model equation for near-wall mean
temperature (as an analogy of the near-wall mean velocity model equation of Kawai &
Larsson 2012):
dox 1
dex  1+107

(3.25)

where the mixing length parameter /. is given by

1 £*\ 2/ b
T = = c* (1 —exp |:— (E) :|) . (3.26)
T

Parameter choices used in figure 20(a) to best describe the data are k7 = 2.90, A = 23 and
b = 1. Figure 20(b) shows profiles of 9_7*;. The observation that 0_7*9 reaches an asymptotic
value for ¢* 2 30 indicates that the variation in the shift parameter of the log region for 6*
comes nearly exclusively from variations in d6,/d¢* for ¢* < 30 (in the viscous sublayer
and in the buffer layer). The log region shift parameter for 6* can now be described as the
sum of (1) the log region shift parameter value for 67, which is ~14 for all cases, and (2)
0%(¢* = 30).

As mentioned previously, the ability to predict the shift parameter of the log region for
6* has direct utility in turbulence modelling. In analysing the distribution of values for
9_7’; (¢* = 30), we observe a significant increase for wall temperatures near Tyz. We make
the following observations and approximations.

(1) From the expression for é;’; given in (3.24), the value of d9_7’§ /d¢* at the wall (¢* = 0)
can be estimated for all cases to be Pr,, — 1.

(ii) Given that Pr reaches a maximum at 7' = Ty, an estimated theoretical maximum
value of 07, /d¢* for ¢* = 0is (Prwr — 1), where Pryy is the value of Pr evaluated
at T = Twr. A reasonable estimate for the integral of d677*3 /d¢* from ¢* =0 to
¢* = 30 to obtain 6%,(¢* = 30) is 3(Pry, — 1).

(iii) At values of |T),, — Twr|/Twr exceeding unity, Pr will approach the same value
as found in an ideal gas, which we denote as Pri,. In this regime, a reasonable
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Figure 20. Profiles of (a) 5*7, where the fitted curve is per (3.25), and (b) 9_7*,. Dashed lines indicate cold wall
profiles, and solid lines indicate hot wall profiles.
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Figure 21. Values of 9_;; (¢* =30), normalized by a maximum value, 3(Prws — 1), plotted against
normalized temperature coordinate |7, — Twr.|/Twr. The fitted curve is an exponential function of the form

X2 = aj exp(—azTi’;pm) + a3, where Ti’;lpm and x, are the x- and y-axis quantities of the plot, respectively.

Parameter values used to generate the curve shown are a; = 1.06, a; = 4.5 and a3 = —0.06.

estimate for the integral of dé;‘; /d¢* from ¢* = 0 to ¢* = 30 to obtain 0_7*3({* = 30)
is 5(Prig — 1).

_ Figure 21, developed using these observations, shows our prediction of the values of

5(¢* = 30), along with an exponential function that best fits the data. Although the exact
value of the log region shift parameter would still require the evaluation of the expression
in (3.24), this approximation provides a framework to estimate the value quantitatively
with reasonable accuracy.

This concludes the derivation of our mean temperature transformation. Previous
formulations began their model development by starting off with one or more simplifying
assumptions — namely the low-Mach equations and hypotheses of linear heat flux/stress —
that restrict the applicability and performance of the transformations. Instead, we consider,
from the outset, all possible physical processes allowed by the energy equation.
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In assessment of performance, our transformation offers reduced uncertainty in the
value of log region slope. Note that the current transformation improves the collapse of
the slope near the hot walls for cases TR3 and TR1.9 — cases that previous transformations
have struggled with, likely due to the presence of steeper gradients in mean temperature
(figure 25a), larger relative values of fluctuations (figure 9), real fluid considerations for
the enthalpy, and larger heat flux and friction temperature values (figure 13). Additionally,
we have presented a methodology to estimate the log region shift parameter a priori, thus
providing a quantitative, predictive view for the near-wall mean temperature profile.

4. Conclusions

The results of DNS calculations for a fully developed transcritical turbulent channel flow
at areduced pressure p, = 1.14 are presented. The ratio of wall temperatures of the cases is
varied up to a value of 3, resulting in four transcritical and two non-transcritical cases with
density ratios of up to O(20). For the transcritical cases, the asymmetric thermodynamic
behaviour of the liquid-like and gas-like regimes, as well as the direct influence of the
Widom line, strongly interact with the turbulence dynamics and heat transfer in the
near-wall regime. The impact of the transcritical thermodynamics is also evident through
a number of modifications to flow structures and statistics.

(i) Compared to classical boundary layer trends, the spanwise spacing of temperature
structures is widened in the gas-like regime and contracted in the liquid-like regime.

(i1) Probability distributions of temperature fluctuations exhibit increased skewness,
which is indicative of significant mixing between the hot and cold walls.

(iii) Enhanced turbulent fluctuations in the transcritical thermal field and in
thermodynamic quantities are observed, with r.m.s. fluctuation levels reaching
>90% of ¢, and >25% of p, 1 and A. Large turbulent magnitudes are seen
especially near the hot wall as a consequence of the proximity of the transition point
of the Widom line.

Although profiles of the momentum and thermal transport appear disparate in nature,
the molecular and turbulent transport were each found to be the dominant mechanism in
the same wall-normal region of both fields.

The previous characterization efforts for the near-wall mean temperature profile are
examined, along with a quantitative assessment of their strengths and weaknesses.
Difficulty in consistently characterizing the near-wall temperature dynamics is seen in
conditions with large density ratios and the associated steep gradients in mean temperature,
larger relative fluctuation magnitudes, real fluid considerations for the enthalpy, and
increased heat flux and friction quantity magnitudes. In certain conditions, the viscous
dissipation of kinetic energy is also found to be a non-negligible portion of the total
heat flux. To address these findings, a new characterization is introduced and derived
systematically. Results demonstrate improved collapse in the log region slope to within
+18 % uncertainty. Following the procedure proposed by Patel et al. (2017), the full
transformation is split into two component terms. The first term, 05, characterizes the
log region slope and collapses well among all cases into a single, near-universal profile.
The second term, 65, characterizes the non-universal log region shift parameter that
deviates significantly for different operating conditions. After a predictive framework is
developed that models the log region shift parameter using the results of 6.5, the near-wall
mean temperature profile in the logarithmic region can be described fully as a modelled
analytical profile. This theoretical framework, by capturing the impact of select physical
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processes on characterizing the turbulence dynamics, thus guides the development of more
accurate turbulence models for wall-bounded transcritical flows.
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Appendix A. Grid resolution

To illustrate the grid resolution for the cases, we present grid analysis studies for Ax and
Ay. Typical channel DNS resolution requirements are approximately equivalent for x and
z; Ax > Az in our set-up, so conclusions in our study about the resolution for Ax are
also applicable to requirements on Az. Grid resolutions for each case are calculated and
discussed for three different length scales: (1) Kolmogorov length scales 7,, (2) thermal
Kolmogorov length scales 1, and (3) viscous wall units (plus units).

Grid spacing curves for the Kolmogorov lengths are presented in figure 22 for
n. and nr. Here, n, = (v3/é)!/* for the Kolmogorov length scale with turbulent

dissipation rate € = t; du;/dx;/p, and nr = n,/ VPr for the thermal Kolmogorov
length scale. Across the majority of the channel, Ax ~ (2.5-7.0)n, ~ (3.5-11)nr and
Ay =~ (0.4-3.2)n, =~ (0.5-8.3)nr — these resolutions are similar to those used in previous
studies (Patel et al. 2017; Wan et al. 2020). The larger outlying values of Ax >~ 12.7n ~
37.3n7 are localized to near the hot wall, where 1, and n7 are not the relevant scales to
characterize the flow. Even so, everywhere in the channel domain, the grid spacing in the
current study is in line with previous estimations that state that the majority of the turbulent
dissipation occurs at scales larger than 155, in channel flows (Moser & Moin 1987).

Using viscous wall units more appropriately characterizes the near-wall region, where
viscous effects set the dominant turbulent length scales that need to be resolved. Across
all cases, values of {AxT, AyT, Azt}are {7.0 < AxT < 11.4,0.29 < Ayt <0.47,4.7 <
Azt < 7.6} at the cold wall and {4.9 < AxT <25.1,0.20 < Ay" <1.0,3.3 < Az" <
16.7} at the hot wall; these values are comparable to those used in previous studies (Bae,
Yoo & Choi 2005; Ma et al. 2018; Toki et al. 2020).

To ensure that the relevant small scales are sufficiently resolved, figure 23 shows
the streamwise momentum energy spectrum, and figure 24 shows the enthalpy energy
spectrum; each spectrum has been premultiplied by the wavenumber to show the resolution
of the near-wall inner peak. Plots for case TR3 are shown to assess the grid resolution for
the largest values of heat transfer simulated across all cases. Plots for case TR1.3 are shown
to assess the grid resolution when the Widom line occurs very close to the wall, resulting
in steep gradients in thermodynamic properties in the near-wall regime. Contour plots
of the other four cases (TR1.9, TR1.4, TR1.25 and TR1) have been omitted for brevity,
as these cases are less stringent versions of cases TR3 and TR1.3 from a grid resolution
perspective. For both momentum and enthalpy, at least three decades of premultiplied
energy are resolved. As another important observation attesting to the well-resolvedness
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of the simulations, for all cases the pile-up of under-resolved dissipative energy at smaller
wavelengths (where under-resolution of dissipative scales is expected to occur, if present)
appears minimal for all ¢* distances. Spanwise spectra yield similar observations and thus
have been omitted.

From these findings, we conclude that the computational grid used for the current
simulations satisfies the requirements to be of DNS resolution.

Appendix B. Additional momentum and thermal field mean profiles: &, T, g and Pr*

We here present mean profiles for temperature (figure 25a), density (figure 25b), and
streamwise velocity (figure 25¢). Results are computed using Reynolds averaging, as
Reynolds- and Favre-averaged mean profiles for temperature and velocity are nearly
identical for all cases (not shown). Increasing asymmetry between the cold and hot walls
is observed with increasing temperature ratio.

To provide a quantitative evaluation of the relative importance of energy transport and
storage mechanisms, the local Prandtl number Pr* is plotted for each case in figure 26.
The behaviour of Pr* among different cases is quite distinct, especially in the region near
the hot wall. Because variations in ji/A are negligible compared to variations in cp, Pr*
captures closely the mean behaviour of ¢,. As a consequence, the locations of the peaks
in Pr* essentially coincide with the locations of the transition points of the Widom line;
for all cases whose temperature ranges straddle Ty, the location of the transition point
of the Widom line lies in the upper half of the channel (y/L, > 0). As noted by Toki
et al. (2020), spatial property variations in transcritical fluids are associated with volume
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Figure 23. Contour plots of pre-multiplied energy spectra for streamwise momentum fluctuations, k@ pu,
where k is the streamwise wavenumber, so that its inverse 1/k, is the streamwise wavelength. The energy
spectra values have been normalized using characteristic density scale p and characteristic velocity scale u} =
+/Tw/p. The wavelength on the x-axis is normalized with friction length i,/ /Ty 0. The y-axis gives the
semi-local wall-normal distance ¢*. Panel (a) shows contours for case TR3, and (b) shows contours for TR1.3.
For each case, (i) displays contour plots near the cold wall, and (ii) displays contour plots near the hot wall.
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Figure 24. Contour plots of pre-multiplied energy spectra for enthalpy fluctuations, k, @y, where k; is the
streamwise wavenumber, so that its inverse 1/k, is the streamwise wavelength. The energy spectra values
have been normalized using a characteristic specific energy scale u’r‘2 = 1,,/p. The wavelength on the x-axis
is normalized with friction length r,,/,/T, oy - The y-axis gives the semi-local wall-normal distance ¢*. Panel
(a) shows contours for case TR3, and (b) shows contours for TR1.3. For each case, (i) displays contour plots
near the cold wall, and (ii) displays contour plots near the hot wall.

expansions that lead to differences in turbulent structures and transport mechanisms, when
compared with the analogous features of constant-property turbulence. These differences
result in observable discrepancies in velocity and temperature profiles. The quantity
Pr* incorporates the effects of property variations on the temperature behaviour, shown
through mathematical manipulation of the mean energy equation in § 3.4.

As discussed in § 1, the behaviour of the mean temperature profile in the viscous
sublayer is well-characterized as a linear function of wall-normal distance, with slope
equal to Pr*. An observation of (3.21) and figure 20 shows that within the viscous sublayer,

where we can approximate 0* ~ 61 and (1 /Cp) (dh/df) ~ 1, the transformation indeed
collapses to the relation

0T =Prec*. (B1)
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Figure 25. Reynolds-averaged profiles as a function of wall-normal coordinate y, for (a) reduced temperature,
(b) reduced density, and (¢) mean streamwise velocity u normalized by the volume-averaged value ug. In (c),
the location of peak u is also provided as a vertical dotted line for each case.
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Figure 26. Profiles of local Prandtl number, Pr* =¢, 1 //_l, for (a) the full channel, and (b) a zoomed-in view
of the hot wall behaviour. Profiles in (b) are plotted against ¢ *.

We zoom in on this part of the near-wall region in figure 27. For most of the {* < 5

region, good collapse with (B1) is observed,

in agreement with previous studies in both

variable-property and constant-property turbulent flows.
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Figure 27. Profiles of mean temperature normalized by semi-local Prandtl number, 6 /Pr*, versus ¢*.
Dashed lines are profiles near the cold wall, and solid lines are profiles near the hot wall.
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Figure 28. Profiles of (a) é’*f and (b) the full transformation 6*, along with comparison with reference data
by Kim & Moin (1989) (shown with dotted lines). For our current calculation, dashed lines indicate cold
wall profiles, and solid lines indicate hot wall profiles. Note that because Kim & Moin (1989) used an internal
heating source to generate the passive scalar, the numerator in the integrands of both 0_’7*— and 6* were multiplied
by a factor 1 — y/Ly to account properly for the heat flux profile. The relatively low friction Reynolds number
Re; = 180 for the reference data limits the ¢* extent of the profiles.

Appendix C. Comparison of current transformation with constant-property results

To show that the current transformation is consistent with constant-property results
and with Kader’s correlation (Kader 1981), we compare the results of the current
simulation with data presented by Kim & Moin (1989). These reference data, which
have demonstrated good agreement with Kader’s correlation, are a set of three turbulent,
incompressible, constant-property channels at Re; = 180 and at three different values of
Pr:0.1,0.71 and 2.0. Comparisons of our final transformation (given by (3.21) and (3.23))
with the reference data are plotted in figure 28. Note that in the constant-property regime,
(1/cp) (dh/df) = 1. Overall, good collapse for 9_; is observed, demonstrating consistency
of the current proposed transformation with constant-property results.
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