A MEASURE ON THE HARMONIC BOUNDARY
OF A RIEMANN SURFACE
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Introduction

1. In the usual theory of harmonic functions on a plane domain, the fact
that the boundary of the domain is realized relative to the complex plane plays
an essential role and supplies many powerful tools, for instance, the solution
of Dirichlet problem. But in the theory of harmonic functions on a general
domain, i.e. on a Riemann surface, the main difficulty arises from the lack of
the “visual” boundary of the surface. Needless to say, in general we cannot

¢

expect to get the “relative” boundary with respect to some other larger surface.

In view of this, we need some “abstract” compactification. It seems likely that

3

we cannot expect to get the “universal” boundary which is appropriate for any
harmonic functions since there exist many surfaces which do not admit some
classes of harmonic functions as the classification theory shows. Hence we need
many compactifications corresponding to what class of harmonic functions we
are going to investigate.

There are two typical compactifications, as Royden [10] pointed out, Martin’s
compactification and Royden’s compactification. The former seems appropriate
for the study of HB-functions and the latter aims to be used for the study of
HBD-functions, which we are going to investigate in this paper. A similar

investigation is carried out by Kuramochi in the direction of Martin.

2. Royden’s compactification is first introduced by Royden and has been
studied by Mori, Mori-éta, Kusunoki-Mori and the present author. But these
investigations seem to be restricted for HBD-functions.

The first aim of the present paper is to show that Royden’s boundary is
powerful not only for HBD-functions but also for HD-functions and we shall
show that the elementary theory of HD-functions can be systematically developed
by using the Royden’s boundary. The main tool is the “harmonic decompo-
sition”.
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The second aim is to show that a maximum principle holds for HB-functions
and HD-functions, that is, the range of values of an HB- (or HD-) function is
determined by the range of values on an arbitrarily small neighborhood of the
harmonic boundary (or on the harmonic boundary) which is an essential part
of the Royden’s boundary.

These are discussed in Chapter 1.

3. Comparing with Martin’s boundary, we feel the lack of tools for the
investigation of Dirichlet problem with given boundary values cn the harmonic
boundary. Aiming to supply this, we define a measure on the harmonic boundary
which seems very natural. This is an analogy of Poisson’s representation of
harmonic functions in the unit circle. We shall discuss the elementary properties
of this measure or integral representation of harmonic functions in Chapter 2.
In the integral representation of some harmonic functions, the boundary behavi-
our is not solved but in a special case and we believe that this is a very
important problem left to be solved.

In the final Chapter 3, we give a characterization of HD-minimality con-
sidered by Constantinescu-Cornea as an application of our measure mentioned
above.

At the end, we should like to express their warmest thanks to Professor
K. Noshiro for his kind guidance and suggestion and also to Professor T. Kuroda
for his valuable discussion.

1. Harmonic boundary and a maximum principle

1. Royden's algebra M(R). Let R be a Riemann surface. Suppose that a
complex-valued function f(z) defined on R satisfies the following three con-
ditions :

(M.1) f(2) is absolutely continuous in the sense of Tonelli;"

{M.2) f(z) is bounded in the absolute value;

(M. 3) Dirichlet integral of f(z) taken over R is finite.

We denote by M(R) the totality of complex-valued functions f(z) defined on R

D A complex-valued function f(x, y) defined on a rectangle [a, b; ¢, d] is said to be
absolutely continuous in the sense of Tonelli (abreviated as a.c.T) if f(x, y) is absolutely
continuous as a function of x for almost every fixed y in [¢, d] and the corresponding
fact holds if x and y are interchanged and further 9f/ox and df/dy are locally integrable
in [a, b; ¢, d]. This notion is carried over Riemann surfaces by using local parameters.
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satisfying the above three conditions. By the usual algebraic operations, M(R)
becomes an algebra over the complex number field. We call M(R) Royden’s
algebra associated with R. Royden’s algebra M(R) determines the quasi-con-
formal structure of R (cf. [7]).

We shall use the following norms (or semi-norm) in M(R), ie.
uniform norm: | fl= sup 17215

Dirichlet semi-norm: (D[f]D"= (”Rdf A ’Fa}’)uz;
Maorm: || fllu=7I+ (DLFD™.

We denote by M'(R) the totality of complex-valued C'-functions f(z) defined
on R satisfying (M.2) and (M.3). Then M'(R) is an subalgebra of M(R).
We have

Lemma 1.1 ([6]). Royden’s algebra M(R) is a Banach algebra under the
norm | flln and M*(R) is dense in M(R) with respect to this norm.

In virtue of this Lemma, we may freely use Green’s formula and the Diri-
chlet principle for functions in M(R).

We shall use some convergence topologies in M(R) defined by the follow-
ing: a sequence {fx(z)} of functions in M(R) converges to a function f(z) in
C-topology if it converges uniformly on any compact subset of R If a sequence
{fa(z)} is bounded and converges to f(z) in C-topology, we say that {fn(z)}
converges to f(z) in B-topology. Finally we say that a sequence {f.(z)} con-
verges to f(z) in CD (or BD)-topology if it converges in C (or B)-topology
and at the same time in D-topology, where D-topology is the topology defined
by Dirichlet semi-norm. These topologies above mentioned, i.e. C-, B-, D-, CD-
and BD-topology are purely algebraic notion in the sense of von Neumann in
MI(R), since the algebraic structure of M(R) determines (and is determined by)
the quasi-conformal structure of R, which determines these topologies.

It is proved that M(R) is complete with respect to BD-topology ([6]).

We denote by My(R) the totality of functions in M(R) with compact support
and we denote by Mi(R) the closure of My(R) in M(R) with respect to BD-

topology. Now we have
LemMma 1.2. The set My(R) is an ideal of M(R).

Proof. 1t is clear that M\(R) is a submodule of M(R). So we have only
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to prove g(z)f(2) belongs to M.(R) if g(z) is in M(R) and f(z) is in Mi(R).
We choose a sequence {fx(z)} in M,(R) which converges to f(z) in BD-topology.
Then the sequence {g(z)fn(z)} is contained in M(R) and converges to g(2)f(2)
in B-topology. So we have to prove that the sequence {g(z)/f.(z)} converges
to g(2) f(z) in D-topology. Replacing f»(2) by f.(2) — f(z), we may assume that
{fs(2)} converges to 0 in BD-topology and we have to prove that {g(z)f.(2)}
converges to 0 in D-topology. Let K be an arbitrary compact subset of R.
We have

=2{ lglafunarat2\ 17.0dg 1 *dg
=21 gI" DL/ +2 sup | 7a(2) DLl + 27l [ dg n *de.

From this we get
lim DLgfl= (2Lim 1Al [} dg n *dg.

Letting K * R, we have the required property. This completes the proof.

2. Royden’s compactification R™ and the harmonic boundary 4. Let R be a
Riemann surface. Here we give a definition of Royden’s compactification of &
which is similar to that of Cech’s compactification of locally compact spaces.
A set R" is said to be Royden's compactification of R if the following two con-
ditions are satisfied :

(R.1) R* is a compact Hausdorff space containing R as its open and dense
subset ;

(R.2) any function in M(R) can be extended to R™ so as to be a continuous
function defined on R*.

From the general theory of compactifications of Cech type, it is shown that
R™ always exists and unique up to a homeomorphism and this homeomorphism
can be always chosen so as to fix R element-wise (cf. Chapter I in [7]).

From (R.2), any f(z) in M(R) may be considered to be defined on R" as
a continuous function on R*. From (R.1), this extension is unique. So there
occurs no confusion if we use the same letter f for this extended function.
Further | /] =sup|/(2)| =suPlf(1>)| by (R.1). Thus we may consider that
M(R) is a subz:lgebra of CI‘Q(R*) which is the totality of continuous functions
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defined on R* with the norm Ilfiizsg‘pl./'(j))i. From Weierstrass-Stone’s ap-
proximation theorem (cf. Bourbaki [1j\, M(R) is dense in C(R™) with respect
to the uniform norm.

Now we put 4={p; p isin R* and s (p) =0 for all / in M.(R)}. It is
clear that the set 4 is a compact subset of R* — R. Following Royden [9] we
call 4 the harmonic boundary of R. We set

C:(R*) ={f(p); f belongs to C(R*) and vanishes on 4}.

Evidently M,.(R) is contained in C.(R™). The following simple fact plays an
important role and has a significant function theoretic meaning which will be

clarified later.

LEmMA 1.3. The closure of M.(R) in C(R¥) with respect to the wuniform

norm coincides with Ci(R™).

Proof. Let M.(R) be the closure of M.(R) in C(R") with respect to the
uniform norm. By Lemma 1.2, Mi(R) is a closed ideal of C(R*). Hence it is
well known in the theory of function algebra that there exists a compact subset
F of R™ such that M,(R) is the totality of functions in C(R*) which vanishes
on F. From M,(R) C C.(R¥), F must coincides with 4. This completes the
proof.

For later use, we state the following criterion due to Royden [8];

LemMa 1.4. The following statements are mutually equivalent: (a) R is of
parabolic type; (b) the constant function 1 belongs to Mi(R); (c¢) the constant
Sunction 1 belongs to C,(R™); (d) 4 is empty.

Proof. As for the equivalence of (a) and (b), we refer to Royden [8]. The
equivalence of (b) and (d) is evident. Thus we have only to show the impli-
cation (c)- (b) since the inverse implication is trivial. By Lemma 1.3, there
exists a function f(z) in M.(R) such that f(z) > 1/2 on R since 1 belongs to
C:a(R*). As 1/f(2) belongs to M(R) and M,(R) is an ideal of M(R) (Lemma
1.2), so 1=(1/7(2))f(2) belongs to Mi(R).

This completes the proof.

3. Double of mnormal subdomains. Let D be a subdomain of a Riemann
surface R. Assume that the relative boundary I" of D with respect to R consists

of at most enumerably many analytic Jordan curves {r}. The curves {r} are
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assumed to be closed or open with no end points in R Furthermore {r} has
no point of accumulation in R. In this case we say that D is a normal subdo-
main of R.

Let D; and D be two copies of D. Weput D =D, U D,UT. We introduce
a conformal structure into D as follows. We give D, the relative conformal
structure of R and extend this structure to D.\U I" by the symmetrization with
respect to /. We say that D is the double of D with respect to I. A function
/(2) on DU is naturally extended to a function /(%) on D by defining f (2)
= f(z) if 2 corresponds to z in DU I

Let a function f(z) be in M(R) (or C(R¥)). Restrict f(z) to DU /" and
consider a function /(%) on £ defined as above. We denote by A7(R) (or
C(R*)) the totality of such functions £ (%) on . Similarly #Z:(R) and Ca(R*)
are defined. Then from the definition, we get (cf. S. Mori [4])

LemMa 1.5, AL(R) C Mx(D) and Ca(R™) T Cu(D™).

4. Harmonic decomposition. In this section, we exclude the trivial case that
4 is empty, i.e. we assume that R is of hyperbolic type.
First we prove the following lemma which plays an important role in our

argument of this section:

LemMA 1.6. Suppose that a sequence {fn(2)} of real-valued functions in
M R) and a real-valued function f(z) satisfying the conditions (M.1) and (M. 3)
are given. If {fa(2)} converges to f(2) in CD-topology, then f(z) vanishes

continuously on 4.

Proof. We put g(2) =721+ f(2)")™" and gu(2) =fu(2)*(1+ ful(2)®) 7\
Clearly g.(z) is in M,(R) and bounded and g(z) belongs to M(R). We shall
show that {g.(z)} converges to g(z) in BD-topology. It is evident that it con-
verges in B-topology. So we have to prove that it converges in D-topology.

By an easy computation, we get
e a : 2 of \*
DLgn "‘g] = SSR[ (dnax(f "fn) +anﬂ’é'x;‘)
) of \*

where an = ax(2), bn=5b,(2) and ¢, = ca(2) are bounded functions uniformly for

all » and
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Cn(2> = (f(f{) "‘fu(Z))[(l ’%‘f(Z):’H} +fn(2)2)]1/2.

Hence we get
Dlg.—gl= 25 s and(f =) NTAf = fu) +2 H bhchdf NVdf.
Jr VYR
Let K be an arbitrary compact subset of . Then we have
DUgn— gl 22k DLS — fr]+ 2k sup cx(2)°Dl 1+ 2k“Sjl df N df,
K -k
where k =sup (lla,l, |6al, lexl; n=1,2,...). Thus we get

lim Dl g, — g1 = 2k‘§'j’1€_de/\ *df.
Letting K * R, we obtain the required property. This shows that g(z) belongs
to MA(R) or g(z) vanishes on 4. Hence f(z) vanishes continuously on 4.

This completes the proof.

Now we introduce a new class of functions on R, i.e. we denote by F(R)
the totality of functions on R satisfying (M.1) and (M.3). We also denote by
F'(R) the totality of positive members in F(R).

Here we remark the following elementary fact. Let f(x) be a real-valued
and absolutely continuous function defined in an interval (a, ). Then by the
definition of absolute continuity, it is easy to see that g(x) =max (f(x), 0} is

also absolutely continuous and satisfies

2

y:! A g(x) ax< S:} -g;f(x)izdx.

From this we get

LemMa 1.7. The totality of real-valued members in F(R) forms a vector
lattice under the operations f(z) V0 =max (f(z), 0) and f(z) ANO=min (f(2), 0).

Moreovey
DLf(z)Vg(2)], DLf(2) Ag(2) 1< DLf(2) —g(2)]1+ Dlg(2)].

LEmMmA 1.8. Any function f(z) in F(R) is continuous on R* admitting the

infinite values.

Proof. We may assume that f(z) is real-valued. If g(z) isin F"(R), then
h(z) = g(z)(1+glz))" isin M(R) and so continuous on R*. Hence g(z) is con-
tinuous on R™ admitting the infinite value. Thus the same is true for f(z) VO
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and f(z)AQ (cf. Lemma 1.7). Note that if f(z)V0= o (or f(z) A0= — =)
at a point p in R”, then f(2)>0 (or f(z)<0) and f(z)A0=0 (or f(z) VO=0)
on a neighborhood of p. This excludes the case f(z)VO+ f(z) AO= o — oo,
Hence f(z) = f(2) V0+ f(2) A0 is continuous on R* admitting the infinite values.

We denote by F.(R) the totality of functions in F(R) which vanish con-

tinuously on 4. Now we prove the following

TueoreM 1.1 (Harmonic decomposition). Any junction f(z) in F(R) is de-

composed into the following form:

fl2)=ulz) +g(2),

where u(z) is in HD(R) and g(z) is in Fi(R).

Proof. By Lemma 1.7, we may assume that f(z) is non-negative. Let
{R.}n-0 be an exhaustion of R, i.e. the closure of R, is contained in R,-; and
R, is compact domain in R with the boundary consists of a finite number of

analytic closed Jordan curves and R= U R,. Further we assume that R, is
n=0

a parameter neighborhood of a point z, in R. By Harnack’s inequality there

exists a finite and positive constant number % such that for any »(z) in HP(R),
v(z) < kinfo(z), where U= R,.
U

Let #€.(z) be the solution of Dirichlet problem in R, with the boundary value
f(2) on 2R,. We put

() jﬁn(z) on Ry;
UnlZ) =
1f(z) on R— Rn

and gn(z) = f(2) — ux(z). Note that #,(z)=0 on R By Green’s formula and
Dirichlet principle, we have

DLf1=Dlu,]+ D[gs]
and if n> m

DlLu,]< DLuy].

Now we define @,(z) as the solution of Dirichlet problem in R,— U with

the boundary values 1 on oU and 0 on oR.. We put

1 in U;
ZUn(Z) = ﬁ)n(Z) in Rn - Uv
0 in R— Ry.

The sequence {wx(z)} converges to a function w(z) on R in BD-topology. By
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our assumption that 4 is not empty, we get
D[lr()n] Z D[ZU] > 0.

By Green’s formula, we have
If dguntawn={  guidwn={ gu*duwn
R A(R-U) oU

log

= deWn - j‘o Un *de,
oU
since gn(z) vanishes on 9R,. From this we get

inf un(z)jav Tdwn < sup f (Z)jau' dwn + USR dgn N *dwn|.

By Green’s formula and Schwarz’s inequality, we obtain

Dlw,]= ”R dwn N “dwn = jam o *dwn = Sav *dwn
and '

- [ 2
§J. dgn A *dwn < (DL DLwsD™ < (DLAIDLw:D™
From these, we get by putting @ =sup f(z)
U

i;(ljf wn(2) DLw,] < aDLwa1+ (DL f1DLw. D"

Hence we have

un(20) < ka+ k(DL F1/DLw])*.

This shows that the sequence {#.(z)} is bounded. Thus {u.(z)} forms a nor-
mal family and we may assume that {u#.(z)} converges to a harmonic function
u(z) in C-topology. Hence {g.(z)} converges to g(z) = f(z) — u(z) in C-topology.

Now we see by Fatou’s lemma that
Dlul <lim D[y,] < DIr1.

So we conclude that #(z) belongs to the class HD(R) and we may suppose

lim D[# — #n]=1lim D[ g — gnl=0."

2 Since D[#.] < D[f] and u.->u in C-topology, by choosing a suitable subsequence, we
may assume du,—>du weakly. As D[f, um]=D[un] and D[f, u]l=D[u», u] (n=1,2,...),

so lim D[un]=DI[f, u]=D[u., #] and hence lim D[un]=D[«#] by making n 7co. Thus

. m m
lim D[u '—Mm] =0,
m
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This shows that {g.(2)} in M(R) converges to g(z) in CD-topology. Thus by
Lemma 1.6, g(z) belongs to Fi(R) and f(z) = u(z) + g(z2).
This completes the proof of Theorem 1.1.

CororLary. (a) (Rovden [81). For the decomposition f(z)=u(z)+ g(2)
in Theorem 1.1, u(z) is in HBD(R) and g\z) isin My(R) and \ul=<|rl if /(2)
belongs to M(R).

(b) If f(2) is positive and subharmonic (or superharmonic), then u(z) = [(z)
(or u(2) £ f(2)) on R.

(¢) If v(2) = f(2) >0 (o7 f(2) =0 and f(z2) = v(z)) for some superharmonic

(or subharmonic) function defined on R, then u(z) < v(2) (or u(z) =v(2)) on R.

Remark. Tt will be proved in section 6 that any HD-function defined on R
takes its maximum and minimum on 4. From this, we see at once that the
harmonic decomposition asserted in Theorem 1.1 is unique. Futhermore, the
unicity of harmonic decomposition implies that any function f(z) in Fi(R) is
represented as the limit in CD-topology of a sequence of functions belonging
to My(R). From this, F.(R) is orthogonal to HD(R) in the sense that

ﬂRdf A Fdu=0
for / in Fi(R) and » in HD(R). Hence in our harmonic decomposition f(z)
=u(2) + g(z2), it holds
D[ fl=D[ul+ D[g].

5. A maximum principle for half bounded functions. We use the following
notations for real-valued functions defined on R:

lim f(z) = inf sup f(z)

2D Uy Unk

and
lim £(z) = sup inf f(2),
zop U) UnR

where {U} is a neighborhood system of a point p in R*. Now we prove

TaeEOREM 1.2 (Maximum principle 1).  Suppose that u(z) is real-valued
harmonic function defined on R such that u(z) is bounded from above (or below)

and
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limu(z) = M (o7 lim »(2) = m)

z->¢ g
at any point ¢ in 4. Then it holds

uw(z) M (or u(z) =m)
on R.

Proof. We have only to prove the theorem under the assumption that z(z)
is non-negative on R Assume that

lim g(z) = m

z>¢
at any point ¢ in 4. We have to show that «(z)=m on R. Contrary to the
assertion, suppose that there exists a point z, in R such that u(z) is smaller

than m. We choose a real number # such that
wl(z) <t <m

and the level curve (z; #(z) =1%) has no point z at which du(z) =0. We take
D the component of the open set (z; u(z) <t#) which contains the point zo.
It is evident that D is a normal subdomain of R. It is also clear that v(z)
= u(z) — t belongs to the class HB(D), i.e.

-t <v(z) <0.

We denote the relative boundary of D by I. Let D be the double of D with
respect to I. Then
j' v(z) on Di;

(2) =
PEIEY 0 on DaUT

belongs to HB(D) and is non-constant, where D= DU D,U1I and z is the
corresponding point in D to 2. Hence, of course, /> does not belong to the
class of parabolic Riemann surfaces.

On the other hand,

limy(z)=m—-¢t>0

¢
at any point ¢ in 4. So we can find a neighborhood {7 of 4 in R" such that
v(z) >0 in UN R. This shows that D is contained in R* - U. Thus we can
find a continuous function f(z) on R* such that f(z) vanishes on 4 and 1 on
D. Then f(z) belongs to Cs(R*) and f£(2) =1 on D*. By Lemma 1.5, Ca(R*)
is contained in Cs(D*), which shows that 1 belongs to C.(D*). Hence by
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Lemma 1.4, D is of parabolic type. This is absurd since we have seen that D
is not of parabolic type.

This completes the proof of Theorem 1.2.

This theorem will be extended in Theorem 2.4.

CororLrary. (@) Suppose that a real-valued HB-function u(z) defined on R

satisfies

m =< 1img(2) < limu(z) < M

z=¢ z¢
at any point ¢ in 4. Then it holds

m=uz) =M

at any point on R.

(0) (Mori-Ota [51). Any real-valued HBD-function defined on R takes its

maximum and minimum on A.

6. A maximum principle for harmonic functions with finite Dirichlet integrals.
In section 4, we have proved that HD-functions are continuous on R*. In this

section, we shall prove

Tueorem 1.3 (Maximum principle 11). Any real-valued HD-function u(z)

defined on R takes its maximum and minimum on A.

Proof. Let M =supru(z) and m =infru(z). We have only to prove that
u(z) attains M on 4 since the assertion concerning m can be proved if we
replace #(z) by — u(z). Moreover we may assume M= «. For if M < o, the
assertion is contained in Theorem 1.2.

Now consider the function #(z) V 0 on R. Then #(z) V 0 is in F"(R) and
we may apply Theorem 1.1 and (b) in Corollary of Theorem 1.1 to conclude
u(z) V0 =0(z) + g(z)

and

v(z) = u(2) VO,
where v(z) belongs to HD(R) and g(z) vanishes continuously on 4. From this
we have

suprv(z) =supr#(2) V 0 =suprul(z) = «
and

max, v(¢) = max, #(£) V 0 =max, u({).
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Hence we have only to prove that max,2(¢) = o if suprv(z) = «.
Contrary to the assertion, assume that
¢ =supav({) < oo,

Consider v(z) A n for positive integers # >c¢. This belongs to M(R). By
Theorem 1.1 and Corollary (b) of Theorem 1.2, there exists w(z) in HBD(R)
such that [lw|=¢ and

v(2) A n=w(z)+ g.(z) (n>c¢),

where gn(z) vanishes on 4 and from the proof of Theorem 1.1 g,(z) are limit-
ing functions of functions in M,(R) in CD-topology since v(z) A »=0. Hence

we have

§J an n tag =0

for all 2(z) in HD(R). Using this we easily get
Dlv(z) —w(z)]1 < Dlov(z) —v(z) Anl 0

as n o, Thus v-—w is a constant and vanishes on 4. So v =w and hence
o]l = ¢, which contradicts to supzv(z) = oo.

This completes the proof of Theorem 1.3.

2. A measure on the harmonic boundary

1. Canonical measure. To investigate harmonic functions defined on the
unit disc U, the Poisson integral plays an important role. In this case, the
Lebesgue measure # on the unit circumference C is completely determined by
the following two properties :

(m.1) m is a regular outer measure which makes compact sets measurable ;

(m.2) there exists a kernel function P(¢, z) defined on C x U which is

non-negative and m-integrable for every fixed z such that
m(X) = | _P(¢, 0)am()
for every m-measurable sets X in C and
u(z) = L u(C) P(¢, z)dm(¢)

for every #(z) in S which is an arbitrary fixed subset of H(U) such that S is
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dense in H(I7) with respect to the uniform norm, where H(U) denotes the
totality of continuous functions defined on U U C and harmonic on U.

In view of this, we shall define a measure on the harmonic boundary 4 of
a Riemann surface R along with the above direction.

Granting that R is U and 4 is C, we may take HBD(R) as S. Thus we
are led to the following definition.

Definition of the canonical measure 2 on 4. Fix a point 0 in R A measure
© on 4 is called the canonical measure on 4 with the origin at 0 if it satisfies
the following two conditions :

(#.1) p is a regular Borel measure on 4;

(2.2) there exists a kernel function K(¢, z) on 4 X R which is non-negative

and p-integrable for all fixed z in R such that
MX) = | K(C, 0)du(e)
for every Borel sets X in 4 and
uz) = | WO K 2)dp@)

for every u(z) in HBD(R). The kernel function K(¢, z) is called a harmonic
kernel belonging to u.

First we prove

TueoreM 2.1. There exists one and only one canonical ineasure p on 4

with the origin at 0.

Proof. Let H(R™) be the totality of continuous functions defined on R’
which are harmonic in 2. Let M(4) be the totality of restrictions to 4 of func-
tions in M(R). As M(R) is dense in C(R™) with respect to the uniform norm,
M(4) is dense in C(4) with respect to the uniform norm. Let f(¢) be contained
in C(4). We can find a sequence /»(¢) in M(4) such that limx| /(&) — fu(&) = 0.
Let 7»(2z) be an extension of f»(¢) to R*. Apply the harmonic decomposition
to get

Fu(2) = un(2) + gn(2),

where #,(z) is in HBD(R) and g, vanishes on 4. Hence %,(¢) = f»() and

” Mn(Z) - um(Z) “ = Hf)z(C) “f)n((:) “
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by maximum principle. Thus there exists a function #(z) in H(R*) such that
limp |2y — ul] = 0. Clearly «(¢) = f({) on 4. Again by applying maximum
principle, we see that such u(z) is unique. Thus we may use the notation
##(2) to denote this u(z).

Now fix an arbitrary point z in R. Then us(z) is a positive linear functional

on C(4): for ¥ and g in C(4) and a complex number a,

Uaf-g(2) = aur(2) +ugs(2);
ur(z)=0 if f({)=0 on 4.

By Riesz-Markoff-Kakutani’s theorem (cf. [3]), there exists a regular Borel

measure u. such that

up(z) = L‘Aft.C)duz(C).

Thus we get a family (u,; z is in R) of regular Borel measures on 4. Clearly,
#(d4) =1 for all zin R.

Let K be a compact subset of R By Harnack’s theorem, we can find a
positive number %= k(K)® such that

u(2') < ku(z")

for every u(z) in HP(R) and every pairs (2, 2'') of points in K.
Let F be a compact subset of 4 and U be an arbitrary open subset of 4

containing F. Define a function f(¢) in C(4) as follows:
7O ]1 on F;

“lo on4-U
and 0 < f(£) =<1 on 4. For this f, we get

urlz2 ) < kus(2").
As we have

oK) = j'Kf(c)duz,(C) gj 7O duz(8) = us(2)

and
) = | A ©) 2] 1) dprant ) = sz,

so we get

%) For convenience, we shall say that such a possibly small number £(K) as Harnack's
constant of K.
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#z'(K) = kﬂz'/(U).

As p.n is a regular Borel measure and U is an arbitrary open subset of 4 con-

taining K, so we can conclude that

vz(K) < by (K).
From the above inequality, we obtain

wz(X) < kpan (X)

for every Borel set X in 4.
Now we put z#=p,. By the Radon-Nikodym theorem, there exists a u-

integrable non-negative function K(¢, z) to every z in R such that
du(¢) = K(¢, z) du($).

It is clear that 2 and K(¢, z) thus defined satisfy the conditions (x.1) and
(#.2). Hence we have shown the existence of canonical measure.

Next we have to prove the unicity of x. Let #' be another canonical measure

and K'(¢, z) be the harmonic kernel belonging to . We denote
duy=K'(¢, z)duy.

As we have seen above, HBD(R) is dense in H(R™) with respect to the uniform

norm, so we can easily conclude that
wr(2) = | 1) dui(©).
A

Hence ;b = p. for all z in R. In particular, z' = #\'= u, = p.
This completes the proof of Theorem 2.1.

From the proof, we easily get

CoroLLARY. (@) The harmonic kernel belonging to u is unique in the follow-
ing sense. If K(C, z) and K'(C, z) are harmonic kernels belonging to u, then
K(¢, 2) = K'(¢, 2) u-almost everywhere for each fixed z.

(b) Let pw be canonical measures on 4 with the origin at Or in R (k=1, 2)
and Kip(&, 2) be their harmonic kernels. Then there exists a system (¢;; i,
=1, 2) of non-negative and integrable Borel functions such that ¢i;()¢;(¢) =1
except a set of measure zero and

dpi(€) = ¢45(¢) dpi ()
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and
Ki(¢, 2) = K;(¢, z)¢;i(£)

except a set of measure zero for each fixed z.

Now we fix an origin 0 in R and consider the canonical measure x on 4

with the origin 0 and the harmonic kernel K(¢, z) belonging to s.

Prorosition 2.1. (@) w(4)=1. (b) If G is a non-empty open subset of 4,
then n(G) > 0. (¢) if £(&) belongs to C(4), then

w(2) =§Af<C)K(c, 2)du(0)

is in H(R™), which is the class of functions continuous on R* and harmonic in
R. (d) Let k be the Harnack's constant of a compact set K in R and X be an

arbitrary Borel set in 4. Then
| K@ 2)du@) s k] K& 2)du)

for any points z and 2 in K.

Proof. (a), (c¢) and (d) are clear from the proof of Theorem 2.1. To
see (b), we choose a non-empty closed set F contained in G. Let f(¢) be in
C(4) with 0= f(¢)<1 on 4 such that f({)=1 on F and 0 outside G. Then

u#f(z) is non-zero and non-negative. Hence
w6 2| FOKE 0)du©) =ur0) > 0.
A

Our proof is completed.

2. Elementary properties of integral representation. Let ;. be the canonical
measure on 4 with the origin 0 and K(¢, z) be the harmonic kernel belonging

to u. Now we prove the following fundamental

THEOREM 2.2. Suppose that f(&) is an p-integrable Borel function on 4.
Then the function u(z) defined by

w(z) =§\f(C)K<C, 2)du( <)

is @ harmonic function defined on R.
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Proof. First we assume that 0 < f(£) < 1. Fix an arbitrary point z, in R.
Let U be a neighborhood of z, whose closure is compact in R We denote by
k the Harnack’s constant of the compact set U U (0). By (d) in Proposition
2.1, we see that

LK(c, 2)du(0) ngYK(C, 0) dp(¢) = ku(X)

for any Borel set X in 4 and for any point z in U. By Lusin’s theorem, there

exists a compact subset F, of 4 such that
md=Fp) < 1/n

and f(¢) is a continuous function defined on F,. Now by the extention theorem

of Tychonoff, there exists a continuous function f,({) defined on 4 such that

0=/a(0)=1
on 4 and

fn(C) zf(C)
on F,. We put

sn(2) = jAfn(C)K(c, 2) dulo).

Then u.(z) belongs to the class H(R™) and 0 < u,(z) <1 on R.

Let z be an arbitrary point in U. Then we get
u(2) = wn(2) = | (/(0) = /20 K(&, 2)dul©)
=§ (0 = £ul€) K, 2)dnt@).

As [f(&) —f»(€)] is not larger than 1 on 4—F, and S K¢, 2)du(Q)Zku(d - Fy),

A=Fy

so we get

w2~ un(2) [ 1£(0) = 1) | K, 2) dn()

=< K(¢, 2)du(C) <k/n.

A=Fy
Hence the sequence {u,(z)} of harmonic functions converges to #(z) uniformly
on a neighborhood of z. Since z, was arbitrary, {#.(z)} converges to #(z) in
C-topotogy. Thus #(z) is harmonic on R.

Next we assume that F({)=0. We put f(¢) A m=min (f(¢), n). Then
by the above, we see that
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oa(2) =jA (F(&) A n) K, 2) du(C)

is harmonic on R and
va(2) £ Vnra(2)

at every point in R. Furthermore,

wz) = jAme(c, 2)du(C) = SAum,. (F() A m) K2, 2)du(&)
= lim, Un(z).

Hence #(z) is harmonic on R.
In the general case, f(¢) can be represented as a linear combination of
positive u-integrable functions. Hence by reducing to the above, the proof of

Theorem 2.2 is over.

Remark. As is easily seen from the above proof, the function #(z) in
Theorem 2.2 is represented as a limit of a sequence of HBD-functions in C-

topology.
As for the boundary behaviour of #(z) in Theorem 2.2, we can prove the

following (see also Lemma 3.3)

TaeoreM 2.3. If f(&) is a bounded Borel function defined on 4 and con-

tinuous at a point &y in 4, then

lim u(z2) = f(&),

280

where

u(z) =Lf(C)K(C, 2)du(C).

Proof. We may assume that | f(£)| <1/2 on 4. Let ¢ be an arbitrary posi-
tive number. Let U and V be open neighborhoods of ¢, in R* such that U con-

tains the closure of V in R* and
[F(Q) = f(&) <e

for any ¢ in 4N U. We choose a function g(£) in C(4) such that 0 < g(¢) £1

on 4 and
JO on VN4,

©)
& on (R =1 N 4.

Il
—

As (&) =5‘Af(CO)K(C, z)dp(8), so we get
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u(z) = £(@) = [(£(Q) = £(@) K&, 2)dul€),
= {170 = FEIKE, 2 du@)
5 LSO = S, 2)du@).
By the definition of U and g(¢), we have

[ 1@ - relxe, 2dpe) gj'Aamc, 2 dp(¢) =«
AnU

and
[ 1@ - f@IEE Dan@ = [ K& 2)du©)
An(R*-U) BA(R—T)

= | g@ K€ Daue.
A

As g(¢) is continuous on 4 and vanishes on a neighborhood of &, so the func-

tion »(z) defined by

(2) =5Ag(C)K(C, 2)du()

is a positive harmonic function on R and vanishes continuously at . From

the inequality
lu(z) — F(C) < e+ 0v(2)

and from lim »(z) =0, we obtain

2->Cy

lim lu(z) - (&) Z e

2->Co

As ¢ is arbitrary, so we conclude that lim #(z) = f(&o).

z-8p

This completes the proof of Theorem 2.3.

3. A maximum principle (an extension of Section 5 in Chapter 1). In Chapter
1, we have proved that an HP-function %(z) defined on R with llin w(z)=m at
every point ¢ in 4 satisfies #(z)=m on R. In this section, we s};algl weaken the
assumption on the boundary behaviour at 4 of u(z) as follows: the same con-
clusion as above holds if we assume merely that lim 4(z) = at every points
¢ in 4 except a set of u-measure zero. e

Let D be a subdomain of R whose relative boundary consists of at most
countably many disjoint Jordan curves which have no point of accumulation in

R. In this case, we say that D is a Jordan subdomain of R. The boundary of

https://doi.org/10.1017/5S0027763000002142 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000002142

A MEASURE ON THE HARMONIC BOUNDARY 201

a Jordan subdomain D relative to R™ is decomposed into the following three
parts:

I' = the relative boundary of D with respect to R;

I'» = the totality of boundary points of D relative to R* which are contained
in 4;

T, = the totality of boundary points of D relative to R* which are not con-
tained in I" or I's.

First we show that I is inessential for bounded harmonic functions.

LeMMma 2.1. Suppose that u(z) is a real-valued harmonic function defined

on a Jordan subdomain D and bounded from below (or above). If u(2) satisfies

lim 4(z) =m (or lim u(z) < M)?®

N3z->¢ N3z->¢
at every point £ in I'U I's, then u(z) satisfies

uwlz) =m (or u(z) < M)
on D.

Proof. We have only to prove the lemma in the case that #(z) is bounded
from below and m=0. Contrary to the assertion, suppose that there exists a
point z in D such that u(z) <0. Then we can find a number 4 such that
u(z9) <1< 0 and dul(z) does not vanish at any point on the level curve (z;
u(z) =1). Let G be a component of the open set (z; u(z) <2) containing zo.
Then clearly G is a normal subdomain of R and contained in D.

Now let £ be a point in 4. If ¢ belongs to I'i, then by the assumption
DIEiTIQ w(z) = 0> 1, we can find a neighborhood U(%) of ¢ in R* such that U(%)
ng,‘ is empty. If ¢ does not belong to Iy, then we can find a neighborhood
U(¢) of ¢ in R* such that U(¢) N D is empty and so U({) NG is empty, since
G is contained in D. Thus we can find a neighborhood U of ¢ such that UN G
is empty. Then we can find a continuous function f(z) such that f vanishes
on 4 and 1 on G. So f belongs to Ca(R™) and the restriction of f to D is
identically 1. By Lemma 1.5, Ca(G™) contains Ga(R*) and so contains f (2)
=1. Thus by Lemma 1.4, G is of parabolic type.

4 lim u(z)=sup inf #(z), where {U} is a neighborhood system of { in R*. Similarly,
D332>¢ {Uxyuvann

lim #(z) =inf sup u(z).
D3z->¢ W) unD
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On the other hand, v(z) = 4 — u(2) satisfies
0<ov(z) <i—infpulz) <=

and vanishes on the relative boundary of G with respect to R.  So G admits

a non-constant bounded harmonic function #(2) defined by

v(2) on Gi;

p(2) =
l —v(z) on G, U T,

where z corresponds to 2. Hence G is not of parabolic type. This is absurd.

This completes the proof.

LEMMA 2.2. Let D be a Jordan domain of R such that p(1's) =0. Then D
belongs to the class SOgy, that is, there exists no non-constant bounded positive

harmonic function defined on D vanishing on I

Proof. We may assume that the origin 0 of x is in D (cf. (b) in Corollary
to Theorem 1.1). Contrary to the assertion, suppose that there exists a non-
constant positive harmonic function #(z) defined on D and vanishing on /. By

multiplying a suitable positive constant, we may assume

1=sup lim «(z).
2ET A DDz

Now I's= 4N D, where D denotes the closure of D in R*. Hence /s is a com-
pact subset of 4 whose measure is 0. So we can find a sequence {Un, Va}n-

of open subsets of 4 such that
U D VaDUpsi and UnpD Vi,
where V, denotes the closure of V, in 4, for all =1, 2, . .. and
(Up) < 1/n.
We choose a function f,,(£) in C(4) such that 0 < fx(¢) <1 on 4 and

Il on Vn;

(§) =
In lO outside U, in 4.

Define a function #,(z) on R by
un(2) = | 1l&) K&, 2) dpu0).

Then wua(z) belongs to H(R™) and is positive on R. Put w,(z) = un(2) — u(3),
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Then

lim 9,(2) =1~ lim #(z) =0
D3z-¢ D 3z¢

at each point ¢ in I's. For each point ¢ in 7,
wn(&) = un(C) — u() > 0.
Hence applying Lemma 2.1, we conclude that w,(z)=0 on D or

u(0) = u(0) > 0.
On the other hand,

w0 = | FAOKE 0@ = K 0)du(@) = U < 1.
b Y Up

Thus we obtain
1/n>u(0)>0
for all w=1, 2, . ... This is absurd. So G belongs to the class SOg;.
This completes the proof.

Now we prove an extension of Theorem 1.2:

TueoreMm 2.4 (Maximum principle 1').  Suppose that ulz) is real-valued
harmonic function defined on R such that u(z) is bounded from above (or below)

and
limu(z) = M (or im 4(z) = m)

z-¢ z¢
at any point ¢ in 4 except a set of p-measure zero. Then it holds on R
u(lz) <M (or u(2) =m).

Proof. We have only to prove the theorem in the case that #(z) > 0 on R.

Assume that
lim 4(z) = m

3¢
at any point ¢ in 4 except a set X of measure zero. Contrary to the assertion,
suppose that there exists a point z in R such that «(z,) <m. We can choose
a number 4 such that #(z) <4 < m and the level curve (z; #(2) =2) has no
point z with du(z)=0. We take D the component of the open set (u(z)<2)
which contains the point z,. It is clear that D is a normal subdomain of R

and so a Jordan subdomain of R. Furthermore

I'n=DN4
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is clearly contained in X. Hence ,(7,) =0. Thus by Lemma 2.2, D belongs
to the class SOys.

On the other hand, v(z) =1 — u(2) satisfies 0 < v(z) <1 on D and vanishes
on the relative boundary I" of D with respect to D. Thus D does not belong
to the class SOni. This is a contradiction.

This completes the proof of Theorem 2.4.

As a direct consequence of this theorem, we obtain the following
CoROLLARY. Suppose that a real-valued HB-function u(z) on R satisfies

m<limy(z) <limu(z) < M

z-g z-¢
at any point & in 4 except a set of p-measure zero. Then it holds on R

m< ulz) < M.

3. Some positive minimal harmonic functions

1. Notations. Functions considered in this chapter are all assumed to be
real-valued. We denote the totality of real-valued members in a class ¥ of func-
tions by the same notation ¥. For example, M(R) denotes the totality of real-
valued functions contained in Royden’s algebra AM(R) associated with R. By
using this convention, there will occur no confusion.

Let X be a class of functions defined on R. By X" we denote the totality
of non-negative functions in X. Suppose that X forms a vector space. Then X~
forms a half-vector space, i.e. af(z) +g(z) belongs to X" if f(z) and g(z) are
in X" and @ is a non-negative number. By ordering f =g in X, we always
mean that f(z)=g(z) at any point z in R. By this ordering, ¥ (or ¥*) be-
comes an ordered vector (or half-vector) space.

An element f(z) in X" satisfying the following property is said to be mini-
mal in X or X-minimal: if f(z) is not identically zero and f(z)=g(z) on R
for some g(z) in X’, then there exists a non-negative number ¢ such that g(z)
=¢f(2) on R.

Let H(R) be the totality of harmonic functions on R. Then H(R) is an
ordered vector space. For functions «(z) and v(z) in H(R), suppose that there

exists a function w(z) in H(R) such that
w(z) < u(z) and »(z) (or w(z)=wu(z) and v(z))

and if w'(z) in H(R) satisfies the same relation as above, then
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w(z) = w'(2) (or w(z) = w'(2)).
In this case, we use the following notations:
w(z) = (u N\ v)(z) (or wlz) = (uVv)(2)).

As before, we also use the notation #(z) A v(z) (or u(z) V v(2)) to denote the
function min (u(z), v(2)) (or max (u(z), v(z2)).

It is easy to see that a necessary and sufficient condition for the existence
of (#V v)(2) (or (# A v)(2)) is that there exists a function w(z) in H(R) such

that w(z) = u(z) and v(z) (or w(z) < u(z) and v(z)).
2. Lattice property of HD(R). First we prove

THeorREM 3.1. The class HD(R) (or HBD(R)) is a vector lattice under the

operations uN v and u N v.

Proof. We shall only prove the theorem for HD{(R). The proof for HBD(R)
is quite similar to that for HD(R).

First we prove that # V v exists and belongs to HD(R) if u(z) and v(z)
belong to HD(R). We may assume that v(z) =0. In fact, if «' V 0 exists and
belongs to HD(R) for any #' in HD(R), then (#— )V 0+v is nothing but
# V v and belongs to HD(R).

Apply the harmonic decomposition to #(z)V 0. Then we get u(z) V0
=w(z) +g(z), where w is in HD(R) and g(z) vanishes continuously on 4. By
(b) in corollary of Theorem 1.1, w(z) = u(2) V 0 = u(z) and 0. If w'(z) satisfies
w'(z) Zu(z) and 0, then w'(z) = u(z) V 0. By (c) in Corollary of Theorem 1.1,
we get w'(z) = w(z). Hence w(z) = (u#V »)(z) and belongs to HD(R).

As for the existence of # A v, we note that — ( —«)V ( —v) is nothing but

u N\ v. Hence we have proved that HD(R) is a vector lattice under # V v and

u N\ v.
CoroLLARY 1. Suppose that u(z) and v(z) belong to HD(R). Then

u(2) Vu(z) =(uV 0)(2)+g(z)

and
u(z) A viz) =(u A v)(2)+g'(2),

where g(z) and g'(z) vanish continuously on 4. In other word,

(wV 0)(z) =L(u(c> V (€)) K(¢, 2) dp(2)
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and

(N 0v)(2) =S (#(C) N (&) K&, z)dn(l).

Proof. By the proof of Theorem 3.1, we have
(#(z2) —v(2))VO=((u(z) —0v(2)) V0)(z)+ g(2),
where g(z) vanishes continuously on 4. On the other hand,

(u(z) —v(2)V 0= (u(z) —v(z)) VO+0(z)
and

(2 V 0)(2)=(u—2)V0)(z)+v(z2).

Hence we get the first identity. Similarly, the validity of the second identity
can be shown.

As for the integral representation, we have only to show that a function

u(z) in HD"(R) can be represented as
u(z) = | al©) K(&, 2)du(),

In fact, as {(# A n)(z)} is a non-decreasing sequence, so there exists a har-
monic function »(z) such that »(z)=Ilim (« A %)(z). From

D[(u A »n)(2)]1< DLu(z) A n] < D[]

and (z A n)(2) =u(z) on R, we get D[v]=< D[u] and «#(¢&) A n = 0(C) = u(l)
on 4 for all » and so #(¢) —v(£) vanishes on the harmonic boundary. Hence
by maximum principle II, we get u(z) =v(z) on R.

Assume that «(z) is non-negative. Then we get

w(z) = lim (# A n) (2) = nmjAfu(c) An) K(C, 2)du(C)
=j'A(1im(u(c> Am) K 2)dp(C)

:Sﬂu(C)K(C, 2)dp(0).

In the general case, apply the Jordan decomposition to #(z). Then we get the

required identity. This completes the proof.

CoROLLARY 2 (Precise form of Virtanen's theorem). For any u(z) in HD(R),

there exists a sequence {un} in HBD(R) converging to u(z) in CD-topology.
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Proof. First we assume that #(z) = 0. By the proof of Corollary 2, we see
that (# An)(z) in HBD converges to u(z) in C-topology and by using u(z)
+u=(uVn)(2)+ (e An)(2), we get D[u(z) —(u An)(2)]=D[(uV n)(2)]
ZDlu(z)Vnl->0as n- .

In the general case, let #(z) = v(z) —w(z) be the Jordan decomposition in
HD. Then u.(z2) =(v Am)(2)—(w An)z) (n=1, 2,...) satisfy our assertion.
This completes the proof.

Let F(4) and M(4) be the totality of restrictions on 4 of functions in F(R)
and M(R) respectively. We obtain

CoroLLARY 3. The classes F(4) and M(4) are vector lattices under the oper-
ations max (f, g) and min (f, g) and are isomorphic to HD(R) and HBD(R)

respectively as vector lattices.
As an application of this, we get

LemMa 3.1 (S. Mori [41). Suppose that 4 is decomposed into the disjoint
open and closed subsets 4,, . . ., dn and a system (a,, . . ., an) of real numbers

ay ts given. Then there exists a function (&) in M(4) such that f(C) = ar on dp.

Proof. We have only to prove the lemma in the case (ai, . .., a») = (1,0,

.,0). Put g(5)=2 on 4 and —1 on 4—4,. Then g(z) is in C(4). As
M(4) is dense in C(4) with respect to the uniform norm, we can find a func-
tion k(&) in M(4) such that h(¢) is arbitrarily close to g(¢). Hence we may
assume that %(¢) > 1 on 4, and A(¢) <0 on 4— 4,. Then

FO=(h(C)VO)AL
is the required function. This completes the proof.

3. HD-minimal functions. If 4 contains an isolated point £,, then by Lemma
3.1, we can find in M (4) a function 7(<; ¢)) which equals 1 at ¢, and vanishes
elsewhere on 4. We shall denote by w(z; ¢, the function HBD(R) whose
boundary value on 4 is 7(¢; ). We may call w(z; &) as the harmonic

measure of ;.

Now we state the following topological characterization of HD-minimality :

Taeorem 3.2. If v(z) is HD-minimal, then there exists an isolated point &,

in 4 and a positive number ¢ such that

v(2) =cwlz; %),
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Conversely, if & is an isolated point in 4, then w(z; &) is HD-minimal.

Proof. Suppose that v(z) is HD-minimal. We denote by »(£) the boundary
function of »(z) on 4. Suppose that there exist two points ¢; and ¢, in 4 such
that ©(¢) >0 (k=1, 2). Let U be a neighborhood of ¢; such that U does not
contain ¢ and »(¢)>¢>0 on U. As M(4) is dense in C(4) and is a vector
lattice, so we can find a function g(¢) in M(4) such that ¢ = g(£)=0 on 4 and
£(&1) > 0 and vanishes outside U. Then v(¢) > g(¢) on 4 and by the minimality
of »(z) in HD and by the maximum principle II, the HBD-function #(z) whose

boundary value g(£) must be represented as
u(z) =yv(z)

for some positive number 5. Hence #(¢:) = 7v(&) =0, which is absurd. Hence
v(z) vanishes on 4 except a point &,. Since v(¢) is continuous on 4, ¢, is neces-
sarily isolated. Moreover, lim (v A n)(2) =¥(z) in C-topology, (¥ A n)(z) =0
for some % and v(z) = (v A n;(z). Hence there exists a positive number d such
that (v A »)(2) =dv(z). Thus v(¢) is finite and ¢(&) = v(&) wlz; &).

Conversely, suppose that ¢, is an isolated point in 4 and w(z; &) = u(z) for
some #(z) in HD"(R). Then w(¢; &)= u(¢) =0 shows that «(¢) vanishes on
4 except possibly &. Hence #(&) = u(&) w(<; &) and by the maximum principle,
w(z) =u(C)w(z; &) on R Thus w(z; &) is HD-minimal.

This completes the proof of Theorem 3.2.

Remark. The totality H(R") of continuous functions cn R™ which are har-
monic on R coincides with the closure of HBD(R) in C(R") with respect to
the uniform norm. It is easy to see that H(R™)-minimality is characterized by
the isolatedness of a point in 4. By the above proof, it is clear that HD-mini-
mality coincides with HBD-minimality.

Hence the concepts “HD-minimal”, “ HBD-minimal” and “H(R”)-minimal”
coincide with each other.

4. The class HD(R). Constantinescu and Cornea [2] introduced the class
HD(R) as follows: a function u(z) defined on R belongs to HD(R) (or HBD(R))
if there exists a decreasing sequence {u.(z)} of functions in HD (R) (or
HBD'(R)) such that u(z) —hm un(z) at every points z in R. Clearly HD(R)
(or HBD(R)) forms an ordered half-vector space and HBD(R) is contained in
HD(R).
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Suppose that there exists a decreasing sequence {#.(z)} of non-negative
functions in H(R™*). Then there exists a non-negative harmonic function #(z)
defined on R such that #(z) =limu.(z) at every points z in R. In this case,
we can conclude that #(z) belon;s to HBD(R). In fact, as HBD(R) is dense
in H(R¥) with respect to the uniform norm, so we can choose a sequence {vx(z)}
in HBD(R) such that [lun(z) —va(2)| <1/n. Let ws(z) =va(2) +1/n. Then
wn(z) is a decreasing sequence of functions in HBD"(R) and J|u.(2) — ws(2)])
<2/n. Hence u(z) =limw,(2) on R and «(z) belongs to the class HBD(R).
Thus we may write H_B“Q(R) =H(R").

Now let f(¢) be a function defined on 4. Suppose that there exists a de-
creasing sequence {f»(¢)} of functions in C(4) such that f(¢) =limf»(¢) on 4.
In this case, we say that f (&) is bounded upper semi-continuouns on A1 We denote
by U(4) the totality of non-negative bounded upper semi-continuous functions

defined on 4.

First we prove
Lemma 3.2. A function u(z) defined on R belongs to HBD(R) if and only
if there exists a function (%) in U(4) such that

u(z) = fAf(cuac, 2) dp(0).

Proof. Suppose that «(z) belongs to HBD(R). Then there exists a de-
creasing sequence {u,(z)} of functions in HBD"(R) such that #(z) = lim u.(z).
In particular, {#.(&)} is a decreasing sequence of non-negative functions in C(4).
Hence we can find a function £ (¢) in U(4) such that f(¢) =lim #,(¢) on 4. As

wn(2) = | Q) K(E, 2)du(c),
so we get
w(2) = lim | wn(@) K&, 2)dp(@) = | Tim un(€) K(&, 2)dpe(0)
A A
= [ re K@, 2ane.
Conversely, if #(z) = SAf(C)K(C, 2)du(¢) for some f(£) in U(4), then there

exists a decreasing sequence {/f,(£)} of non-negative functions in C(4) such
that (%) =lim f(¢). We put
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wnl2) = | (@ K(C, 2)dn(c).
A
Then u,(z) belongs to H(R™) and {u,(z)} forms a decreasing sequence and

lim #n(2) = li S IO K(C, 2) dp(©)

n

= [ lim £ K(2, 2)du(©) = ul2).
YA n

Thus #(z) belongs to HBD(R). This completes the proof.

Lemma 3.3. If u(z)=j F(OK(C, 2)du(C) for some f(E) in U(4), then it
A

holds that
lim u(z) = £(Z)

z¢

at every points C in 4 except a set of measure zero. Hence the function f(&)
uniquely determines (and is determined by) u(z) in HBD(R) except a set of

measure 2€e70.

Proof. We can find a decreasing sequence {fx(¢)} of non-negative functions
in C(4) such that lim /»(¢) = f(£). Put

un(Z) = s‘Afn(C)K(C, Z)d/,z(i;)

Then {u.(2)} forms a decreasing sequence of non-negative functions in H(R*)
and u,(2) = u(z) and #(z) =limu,(z). If we put #({) =lim #(2) on 4, then we
get ' o

u(C) < un(&) = fn(¢)
on 4. Hence we have

u(¢) = f(Q).

Contrary to the assertion, suppose that «#(¢) < £(£) on a subset of measure
positive. Then we can find a compact subset X of 4 with x(K) >0 and a posi-

tive number ¢ such that

u(C) +¢ < (&)
on K. We set

»(2) =jK K(C, 2)du(o).

Then by Theorem 2.2, v(z) is harmonic on R. Moreover v(z) is non-constant
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and 0<wv(z)<e on R, since u(K)>0. By Theorem 2.3, we see that lz—r)l’; v(z) =0
at each point ¢ in 4— K. Needless to say, limo(z) <e at £ in K. Hence we
have that 7

l:_{? (u(z) +v(2)) < u(¢) + I}ffg‘ v(z)

is not larger than #(¢) on 4— K and #({) +¢ on K. Thus we have

lirr;l (u(z2) +0(2)) = F(&) < unl€)

at every point ¢ in 4. From this, we get

Hm (#4(2) — (#(2) + (2)) = ualC) — liﬁ; (u(z) +v(2)) =0

2¢
in 4. Hence by the maximum principle I, we see that
un(2) = u(2) + v(2).
making » -» o, we finally obtain
u(z) Zu(z) +0v(2) =0

on R. Thus we see v(z) =0 on R, which is a contradiction.
This completes the proof.

Summing up these we state

THEOREM 3.3. There exists an order preserving half-vector isomorphism

between HBD(R) and U(4, ;1) and this correspondence u <> f is given by
w(z) = | FQKE 2)dn(@),

where U(d, n) denotes the totality of positive bounded upper semi-continuous
Sunctions on 4 in which two functions identical except a set of measure zero are
assumed to be the same. Furthermore lingl u(z)= f(&) on 4 except a set of

measure zero.

Remark. If we set V(4) be the totality of functions f on 4 such that there
exists a sequence {f,} of functions in F*(4) such that f»\, /. Identifying two
elements in V(4) which coincide on 4 except a set of measure zero, we get a
new class V(4, x). Then we get

(a) A function u belongs to HD(R) if and only if there exists a function f
in V(4) such that u(z) =5Af(C)K(C, 2)du(2).
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(b) If u(z)zXAf(C)K(C, 2)di(C) for some f(&) in V(4), then lim u(z)

z=¢

= f(&) on 4 except a sel of measure zero. Hence f uniquely determines (and

is. determined by) u in HD(R) except a set of measure zero.

By an obvious modification, the proofs of Lemma 3.2 and 3.3 prove the

validity of (a) and (b) respectively. Hence we may state
(¢) There exisis an order preserving half-vector isomorphism between HD(R)
and V(d, n) and this correspondence u <> f is given by

w@) = | FQOKE, 2)du(c).

Furthermore lim u(2) = f(&) on 4 except a set of measure zero.
z¢
Corresponding to Theorem 3.1, we prove

TaeoreEM 3.1'. The class HD(R) (or HBD(R)) is a vector lattice under

the operations uN v and u N\ v.

Proof. We shall only prove the theorem for HD(R). The proof for HBD(R)
is same to that for HD(R). It is clear that (u# A v)(z) exists and belongs to
HD(R) for any » and » in HD(R). So we have only to prove that («V )(z)
exists and belongs to HD(R).

By (a) and (b) in the above remark,

w(z) = § ()N () K(C, 2) du(C)

belongs to HD(R), where #(¢) = 11rr§1 u(z) and v(¢) =1ﬁi’rr§1 v(z). Clearly

w(z) = u(2), v(z)
on R.

Next suppose that there exists a function w' in H(R) such that
w'(2) = u(z), v(z)

on R. We now prove that w' =Zw on R If we can show
w(z)={ (@) Vi) An) K, 2)du)
A

on R, then making »n 7 o we get w' =w. Thus we may assume that

0= ull), 9(8) =k < oo,
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By Lusin’s theorem we can find a compact set K, in 4 with the following
properties :
w(d—Ky) <1/m;

there exists a system of continuous functions f» and g, on 4 such that

fn=u
and
gn =70
on K, and
0= fu, Gn=Fk

on 4. Let #s, v2 and w, be functions in H(R*) with (&) = fu(£), v(&) = gn(C)
and wx(8) = (&) V gn(&) on 4 respectively. Set

wh(2) =w(@) + | (£ + @l €K&, 2) dp(©),

By these definitions, it is easily seen that
win(z) = un(2), va(z)
on R. As u. and v, are continuous on R*, so we get from the above

Eﬂg wh(2) = un(C), v(0)

at any point ¢ in 4. Hence

lim ) (2) = 4a(C) V 04(8) = w,(C)

z-¢

or by using the continuity of w,(z) on R™

lim (w)(2) = wa(2)) =0

z=¢

at any point ¢ in 4. Hence by Theorem 1.2, w,(z) < wh(z) on R or
wiz) +28] K@ 2)duO = [ @& Va0) K, 2) dutd),

Hence by making # / o, w/(z) = w(z) on R. This completes the proof.

As a direct consequence of Theorem 3.1/, we get the followings.

CoroLLARY 1. Let u and v be in HD(R) and u(¢) =limu(z) and ¥(¢)
z->gv

=1limv(z) on 4. Then

z={

u(z) = SAﬁ(C)K(c, 2)du(2)
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and
v(2) = | HOK(E 2)du(0)
and’
@V o)(2) = | (@& V) K, 2) du©)
and

(who)(2) = | (@(0) A5 K&, 2)du(0),

CorOLLARY 2. If u(z) belongs to HD(R), then (u/\n)(z) belongs to HBD(R)
and u(z) =lim (uAn)(z) on R in C-topology.

5. Harmouic measure of Borel set in 4. Let X be a Borel set in 4. We

define a function w(z; X) by
wiz; X) = [ K 2)du(c).
X

By Theorem 2.1, w(z; X) is a harmonic function defined on R and
0=sw(z; X)=1
on R. We call w(z; X) as the harmonic measure of X. It is clear that
w(z; X)=0 (or 1) if and only if n(X)=0 (or 1).

First we begin with the following

LemMma 3.4. Let K be a compact subset of 4. Then w(z; K) belongs to the
class HBD(R) and lim w(z: K) =0 at each point ¢ in 4— K and limw(z; K) =1
atl each point € in Izi:) gexcept a set of measure zero. e

Proof. The first part of our Lemma is a direct consequence of Theorem
2.3. To prove the second part of our lemma, choose a sequence {U,} of open
subsets of 4 such that U, contains the closure of U+ and K and p(U, — K)
< 1/n. Suppose that f»(¢) is in C(4) and 0 < f,({) <1 on 4 and f»({) =1 on
Tnvi and 0 outside Uy in 4. Setting un(2) = | /(O K (& 2)du(©) and 7(0)
=1lin /,(¢) on 4, we see that {u.(2)} and {f.(¢)} are decreasing sequences of
funztions. Hence f(¢) belongs to U(4) and

0= un(z) —w(z; K)= K¢, z)du(¢) < k/n,

Un=K
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where %k is the Harnack’s constant of the set {0, z}. Thus we get
wizs K) = £ K@ 2)du0),

which shows that #(z) belongs to HBD(R). By Theorem 3.3,
li?glw(z; K)=f()
on 4 except a set of measure zero. As f({) =1 on K, so the proof is completed.

TaeoreM 3.4. Let X be an arbitrary Borel subset in 4. Then

limw(z; X)=1 a.e. on X°

25§
and
lim w(z; X)=0 ae. on 4—X.

z=>¢

Proof. Assume that u(¢; ¢ is in X and ifrgiw(z; X)<1)>0. Then we

on K and u(K)>0. As
1zw(z; X)zw(z; K)=0,

so by Lemma 3.4, we see that lim w(z; X) =1 almost everywhere on K. This

z—->§

is a contradiction. Thus lim w(z; X) =1 almost everywhere on X.
24

Considering w(z; 4— K)=1—-w(z; X), we get the second assertion of the

theorem. This completes the proof.

TueEOREM 3.5. The harmonic measure w(z; X) is in the class HD(R) if

and only if there exists a compact subset K of 4 such that
MXUK-XNK)=0.

Proof. The sufficiency of our condition is a direct consequence of Lemma
3.4. So we have only to prove the necessity of our condition.

Suppose that w(z; X) belongs to HD(R). By Lemma 3.3, we can find a
function f£(¢) in U(4) such that

w(z; X) = jAﬂc)K(c, 2)du2),

5 Abreviation of ‘“‘almost everywhere on X", i.e. “on X except a set of g-measure
zero”.
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By Theorem 3.4, liTrglw(z; X)=1 ae. on X. By Theorem 3.3, Hf? w(z; X)

= f(¢) on 4 except a set of measure zero. Hence we see that
f&)=1

ae.on X. Let K={¢; ¢isin 4 and f(¢)=1}. As f(£) is upper semi-continu-
ous, so K is a compact subset of 4. Let A={¢; ¢ isin X and f(¢) =1}. Then
w(X—-A)=0 and A is contained in K and so w(z; X)=w(z; A)Zw(z; K)
éL_f(C)K(C, 2)du(Q) = w(z; X). Hence w(z; K) =w(z; A) and so u(K—-A)
=0. Thus we obtain #(X U K- XNK) =0.

This completes the proof of Theorem 3.5.

6. HD-minimal functions. Corresponding to Theorem 3.2, we can prove

the following measure theoretic characterization of HD-minimality :

Tueorem 3.6. If v(z) is HD-minimal, then there exists a point &y in 4 with

positive measure and a positive number ¢ such that
v(2) = cw(z; &).

Conversely, if G is a point in 4 with positive measure, then w(z; &) is HD-

minimal.

Proof. Suppose that v(z) is HD-minimal. By Corollary 2 of Theorem 3.4,
v(z) =lim (v An)(2) on R. So some (v An)(z) is not identically zero on R and
v(z) = (;/\ n)(z). By the minimality of #»(z), we can find a positive number ¢
such that v(z) =c(v A #)(z). Thus we may assume that suprv(z) =1.

Let 6(6):1521 v(z) on 4. Then ¥(¢) is in U(4, ). By Theorem 3.3, we

can write

v(z) = jAa(f:)K(c, 2)dplo).

Now we set K,={¢; ¢ is in 4 and #(¢) =1/n}. Then K, is a compact subset
of 4 and K, Ku+:. As nv(z)=Zw(z; K,), so we can find a non-negative
number ¢, such that w(z; K,) =c,v(z). By Maximum principle, the set {¢;

©

¢ is in 4 and #(¢)> 0} = U K, is of positive measure. Hence we can find a
n=1

number z such that u(X,)> 0 and so ¢, > 0. By Theorem 3.4, supw(z; Kp)
R

=1. So ¢,=1 and v(z) =w(z; K.). For simplicity, we put K= K,. Then we
obtain
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v(z) = jKK(c, 2) du(0).

Next we show that K is atomic, i.e. there exists no decomposition such
that K=A+ B, AN B=empty and p(A) * 2(B) > 0. Contrary to the assertion,
assume that K=A+ B, AN B =empty and u(A) « x(B)> 0. Choose two com-
pact sets £ and F in 4 such that £ and F are contained in A and B respec-
tively and p(E) « x(F)> 0. Then

v(2)2wl(z; E) and w(z; F).
Hence we can find a positive numbers e and f such that
v(z) =ew(z; E) =jfw(z; F).

By Theorem 3.4, we see that e= f=1. Hence w(z; E)=w(z; F). As F is
contained in 4—E, so by Lemma 3.4, w(z; E) vanishes continuously on F.
Thus w(z; F) vanishes continuously on F. Also by Lemma 3.4, w(z; F)
vanishes continucusly on 4—F. Hence w(z; F) vanishes continuously on 4.
Thus by the maximum principle, w(z; F) is identically zero on R or u(F) =0.
This is absurd.

As K is atomic, there exists a point ¢, in K of positive measure. In fact,
suppose that every point £ in K has measure zero. Fix a point ¢ in K. Then
there exists a neighborhood U= U(¢{) of ¢ such that uy(UNK)=0. To see
this, we choose a neighborhood V of ¢ such that #(V) < pu(K). Then u(K)
=uw(KNV)+pu(K—KNV) implies u(KNV)=wK) or yflK— KN V) = p(K)
since K is atomic. As u(V) < u(K), so we must have u(KN V)=0. Thus
we have only to take U({) = V. Now as K is compact, so a finite number of
such U(¢)’s cover K, say U(C)N - - NU,) D K. Then

u(K) S:Elp.(Kﬂ U&)) =0,

which is a contradiction. Hence there exists a point ¢, in K such that u(&) > 0.
Again by using the fact that X is atomic, we get u(K) = u(&). Thus we find
that

w(2) = jKK(c, 2 du(Q) = S,; K€ 2)dn() =w(z; &).

Conversely, suppose that ¢, is a point in 4 such that x(&) > 0. If w(z; &)
= u(z) for some u(z) in HD(R), then
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lim w(z; &)= lir? u(z) =u(Q)
z—»;‘ z=

on 4. By Lemma 3.4

lim w(z; €) =lim w(z; &) =0

z->¢ z>g

on 4 except at §. Hence #(£) =0 on 4 except at . As

u(2) = Sdﬁ(C) K(¢, 2)du(¢)

by Theorem 3.3, so we get
u(z) = ﬁ(Co)L K(¢, 2)du(&) = u(C) w(z; C).

Hence w(z; &) is HD-minimal.

This completes the proof of Theorem 3.6.
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