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Introduction

1. In the usual theory of harmonic functions on a plane domain, the fact

that the boundary of the domain is realized relative to the complex plane plays

an essential role and supplies many powerful tools, for instance, the solution

of Dirichlet problem. But in the theory of harmonic functions on a general

domain, i.e. on a Riemann surface, the main difficulty arises from the lack of

the "visual" boundary of the surface. Needless to say, in general we cannot

expect to get the "relative" boundary with respect to some other larger surface.

In view of this, we need some "abstract" compactification. It seems likely that

we cannot expect to get the "universal" boundary which is appropriate for any

harmonic functions since there exist many surfaces which do not admit some

classes of harmonic functions as the classification theory shows. Hence we need

many compactifications corresponding to what class of harmonic functions we

are going to investigate.

There are two typical compactifications, as Royden [10] pointed out, Martin's

compactification and Royden's compactification. The former seems appropriate

for the study of //"^-functions and the latter aims to be used for the study of

HBD-ίunctions, which we are going to investigate in this paper. Λ similar

investigation is carried out by Kuramochi in the direction of Martin.

2. Royden's compactification is first introduced by Royden and has been

studied by Mori, Mori-Ota, Kusunoki-Mori and the present author. But these

investigations seem to be restricted for ffi?D-functions.

The first aim of the present paper is to show that Royden's boundary is

powerful not only for HBD-functions but also for i/D-functions and we shall

show that the elementary theory of i/D-f unctions can be systematically developed

by using the Royden's boundary. The main tool is the " harmonic decompo-

sition".
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The second aim is to show that a maximum principle holds for ϋj3-functions

and HD-ίunctions, that is, the range of values of an HB (or HD-) function is

determined by the range of values on an arbitrarily small neighborhood of the

harmonic boundary (or on the harmonic boundary) which is an essential part

of the Royden's boundary.

These are discussed in Chapter 1.

3. Comparing with Martin's boundary, we feel the lack of tools for the

investigation of Dirichlet problem with given boundary values on the harmonic

boundary. Aiming to supply this, we define a measure on the harmonic boundary

which seems very natural. This is an analogy of Poisson's representation of

harmonic functions in the unit circle. We shall discuss the elementary properties

of this measure or integral representation of harmonic functions in Chapter 2.

In the integral representation of some harmonic functions, the boundary behavi-

our is not solved but in a special case and we believe that this is a very

important problem left to be solved.

In the final Chapter 3, we give a characterization of //p-minimality con-

sidered by Constantinescu-Cornea as an application of our measure mentioned

above.

At the end, we should like to express their warmest thanks to Professor

K. Noshiro for his kind guidance and suggestion and also to Professor T. Kuroda

for his valuable discussion.

1. Harmonic boundary and a maximum principle

1. Roy dens algebra MiR). Let R be a Riemann surface. Suppose that a

complex-valued function f(z) defined on R satisfies the following three con-

ditions :

(M.I) J\z) is absolutely continuous in the sense of Tonelli υ

(M.2) f(z) is bounded in the absolute value;

(M.3) Dirichlet integral of f(z) taken over R is finite.

We denote by MiR) the totality of complex-valued functions f(z) defined on R

X) A complex-valued function f{x, y) defined on a rectangle la, b c, d] is said to be
absolutely continuous in the sense of Tonelli (abreviated as a.c.T) iί fix, y) is absolutely
continuous as a function of x for almost every fixed y in [c, d] and the corresponding
fact holds if x and y are interchanged and further df/dx and df/dy are locally integrable
in [α, b c, d']. This notion is carried over Riemann surfaces by using local parameters.
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satisfying the above three conditions. By the usual algebraic operations, M{ R)

becomes an algebra over the complex number field. We call M(R) Royderis

algebra associated with R. Royden's algebra M(R) determines the quasi-con-

formal structure of R (cf. [7]).

We shall use the following norms (or semi-norm) in M{R), i.e.

uniform norm : | |/ | | = sup 1/(2) |
R

, r> r> v 1/2

Dirichlet semi-norm : (D[/]) 1 / 2 = (J J df Λ *df)

M-norm: /

We denote by M1(R) the totality of complex-valued (^-functions f(z) defined

on R satisfying (M.2) and (M.3). Then M\R) is an subalgebra of M(R).

We have

LEMMA 1.1 ([6]). Roy dens algebra M{R) is a Banach algebra under the

norm !|/IU and M1(R) is dense in M{R) with respect to this norm.

In virtue of this Lemma, we may freely use Green's formula and the Diri-

chlet principle for functions in M{R).

We shall use some convergence topologies in M(R) denned by the follow-

ing: a sequence {fn(z)} of functions in M(R) converges to a function f(z) in

C-topology if it converges uniformly on any compact subset of R. If a sequence

{fn(z)} is bounded and converges to f(z) in C-topology, we say that {fn(z)}

converges to f(z) in B-topology. Finally we say that a sequence {fn(z)} con-

verges to f(z) in CD (or BD)-topology if it converges in C (or B)-topology

and at the same time in D-topology, where D-topology is the topology defined

by Dirichlet semi-norm. These topologies above mentioned, i.e. C-, B-, D-, CD-

and Z?ίλtopology are purely algebraic notion in the sense of von Neumann in

M(R), since the algebraic structure of M{R) determines (and is determined by)

the quasi-conformal structure of R, which determines these topologies.

It is proved that M(R) is complete with respect to Z?/>topology ([6]).

We denote by Mo(R) the totality of functions in M{R) with compact support

and we denote by MA(R) the closure of M0(R) in M(R) with respect to BD-

topology. Now we have

LEMMA 1.2. The set MA(R) is an ideal of M(R).

Proof. It is clear that MA(R) is a submodule of M{R). So we have only
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to prove g(z)f(z) belongs to MΛR) if g(z) is in M(R) and f(z) is in MA(R).

We choose a sequence ifn(z)} in Mo(R) which converges to f(z) in BD-topology.

Then the sequence ig{z)fn(z)} is contained in Mo(7?) and converges to g{z)f{z)

in Z?-topology. So we have to prove that the sequence {g(z)/n(z)} converges

to g(z)f{z) in D-topology. Replacing fn{z) by fn(z) - f(z), we may assume that

{fn(z)} converges to 0 in J5D-topology and we have to prove that {g(z)fn(z)}

converges to 0 in D-topology. Let K be an arbitrary compact subset of R.

We have

Dίgfnl = (f (gdfn Λ-fndg) Λ (g* d/n+?~n~dg)

g\'dfn Λ •'dfn +

+ 2 sup \fn(z)\2Dίg3 + 2\\fnf \{ dgN*dg.

From this we get

lim Dίg/nl s£ (2 lim !!/nj|
2) j'ί dg Λ *dg.

Letting K 1 R, we have the required property. This completes the proof.

2. Roy dens compactification R* and the harmonic boundary Δ. Let R be a

Riemann surface. Here we give a definition of Royden's compactification of R

which is similar to that of Cech's compactification of locally compact spaces.

A set Rι is said to be Roy dens compactification of R if the following two con-

ditions are satisfied:

(R.I) i?* is a compact Hausdorff space containing R as its open and dense

subset

(R.2) any function in M(R) can be extended to R* so as to be a continuous

function defined on /?*.

From the general theory of compactifications of Cech type, it is shown that

i?* always exists and unique up to a homeomorphism and this homeomorphism

can be always chosen so as to fix R element-wise (cf. Chapter I in [73).

From (R.2), any f(z) in M(R) may be considered to be defined on R as

a continuous function on RA. From (R.I), this extension is unique. So there

occurs no confusion if we use the same letter / for this extended function.

Further | |/| | = sup | / U ) | = sup \/(p)\ by (R.I). Thus we may consider that
E R*

M(R) is a subalgebra of C(R*) which is the totality of continuous functions

https://doi.org/10.1017/S0027763000002142 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002142


A MEASURE ON THE HARMONIC BOUNDARY 185

defined on R* with the norm | |/j | - sup \f(β)\. From Weierstrass-Stone's ap-

proximation theorem (cf. Bourbaki [1]\ M(R) is dense in C(R*) with respect

to the uniform norm.

Now we put Δ^{p; p is in R* and f(p) = 0 for all / in MA{R)}. It is

clear that the set Δ is a compact subset of R' - R. Following Royden [9] we

call Δ the harmonic boundary of R. We set

CA(R*) = {f{p) / belongs to C(/?*) and vanishes on Δ).

Evidently MAR) is contained in CA(R']:). The following simple fact plays an

important role and has a significant function theoretic meaning which will be

clarified later.

LEMMA 1.3. The closure of M^iR) in C(R*) with respect to the uniform

norm coincides with CAR*).

Proof Let MA{R) be the closure of MAR) in C(R^) with respect to the

uniform norm. By Lemma 1.2, MAR) is a closed ideal of C(#*). Hence it is

well known in the theory of function algebra that there exists a compact subset

F of R* such that MA'R) is the totality of functions in C(R*) which vanishes

on F. From MAR) CCAR'Ί, F must coincides with Δ. This completes the

proof.

For later use, we state the following criterion due to Royden [8]

LEMMA 1.4. The folloiving statements are mutually equivalent' (a) R is of

parabolic type; (b) the constant function 1 belongs to MAR); (c) the constant

function 1 belongs to CAR/'); (d) Δ is empty.

Proof As for the equivalence of (a) and (b), we refer to Royden [8]. The

equivalence of (b) and (d) is evident. Thus we have only to show the impli-

cation (c)->(b) since the inverse implication is trivial. By Lemma 1.3, there

exists a function f(z) in MAR) such that f(z) > 1/2 on R since 1 belongs to

CAR*). AS 1//(Z) belongs to M(R) and MAR) is an ideal of M(R) (Lemma

1.2), so 1 = (1/f(z))f(z) belongs to MAR).

This completes the proof.

3. Double of normal subdomains. Let D be a subdomain of a Riemann

surface R. Assume that the relative boundary Γ of D with respect to R consists

of at most enumerably many analytic Jordan curves {γ}. The curves {r) are
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assumed to be closed or open with no end points in R. Fur thermore {γ} has

no point of accumulation in R. In this case we say that D is a normal subdo-

main of R.

Let A and D2 be two copies of D. We put D = ftU ftU 7". We introduce

a conformal structure into D as follows. We give A the relative conformal

structure of R and extend this structure t o A U Γ by the symmetrization with

respect to Γ. We say that D is the double of Z) with respect to Γ. A function

/( ε) on D U 7" is naturally extended to a function f(z) on I) by defining f(z)

= f(z) if i corresponds to z in DU 71

Let a function /U) be in M{R) (or 0(7?*)). Restrict f(z) to DU Γ and

consider a function f(z) on ί) defined as above. We denote by M(R) (or

C(7?+)) the totality of such functions / ( z ) on D. Similarly MA(R) and CΔ(R*)

are defined. Then from the definition, we get (cf. S. Mori [4])

LEMMA 1.5. MΛR) C MA(D) and 6Δ(/?*) C CΔ(7)*).

4. Harmonic decomposition. In this section, we exclude the trivial case that

A is empty, i.e. we assume that R is of hyperbolic type.

First we prove the following lemma which plays an important role in our

argument of this section:

LEMMA 1.6. Suppose that a sequence {/n(z)} of real-valued functions in

Mo(R) and a real-valued function f(z) satisfying the conditions (M.I) and (M. 3)

are given. Tf {fn(z)} converges to f(z) in CD-topology, then f(z) vanishes

continuously on Δ.

Proof. We put g(z) - f(z)\l + f(z)2)"1 and gn(z) =/«(z)2(H-/«(z)2)"1.

Clearly gn(z) is in MQ(R) and bounded and g(z) belongs to M(R). We shall

show that {gn(z)} converges to g(z) in BZλtopology. It is evident that it con-

verges in Z?-topology. So we have to prove that it converges in D-topology.

By an easy computation, we get

+ {an ξj (/ -fn) + bnCn ̂

where an = an(z), bn-bn{z) and cn = cn(z) are bounded functions uniformly for

all n and
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cn(z) = (f(z) -/,,<Z)M:U + /ω ί>u +/n(zY-)T\

Hence we get

D ίgn - gl ίg 2 ( f a\ d(f- fn) Λ *d( / - / » ) + 2 f f bl ci, df Λ *df.

Let K be an arbitrary compact subset of R. Then we have

Dlgn - gl ^ 2k2Dίf -fn\ + 2kι sup cn(z)2D[fl + 2k* ίf
K JJli-K

where k = sup (\\aJu \\bn\\, lk«li; w = 1, 2, . . . ). Thus we get

1 Im D ίgn -g\<2kΛ f # A *<//.

Letting K t Ry we obtain the required property. This shows that g(z) belongs

to MA{R) or g{z) vanishes on A. Hence fiz) vanishes continuously on A.

This completes the proof.

Now we introduce a new class of functions on R, i.e. we denote by F{R)

the totality of functions on R satisfying (M.I) and (M. 3). We also denote by

F]'(R) the totality of positive members in FiR).

Here we remark the following elementary fact. Let fix) be a real-valued

and absolutely continuous function defined in an interval (a, b). Then by the

definition of absolute continuity, it is easy to see that g(x) = max (/(#), 0) is

also absolutely continuous and satisfies

dx < \ -£-

From this we get

LEMMA 1.7. The totality of real-valued members in F(R) forms a vector

lattice under the operatio?ίs fiz) V0 = max (fiz), 0) and f(z) A0 = min (fiz), 0).

Moreover

Dlf(z)Vg(z)~], Dίf(z) /\g(z)l^Dίf(z) - g(z)3 + Dlg(z)l.

LEMMA 1.8. Any function f(z) in F(R) is continuous on R* admitting the

infinite values.

Proof. We may assume that f(z) is real-valued. If g(z) is in F+(R), then

h(z) — g{z)(l i-giz))'1 is in M{R) and so continuous on RΫ. Hence g(z) is con-

tinuous on /?* admitting the infinite value. Thus the same is true for f(z) V0
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and f(z)/\Q (cf. Lemma 1.7). Note that if /(z)V0= °° (or /(z)Λ0 = - 00)

at a pointy in iT, then f(z)>0 (or f(z)<0) and / U ) Λ 0 = 0 (or /(z) V0 = 0)

on a. neighborhood of jί>. This excludes the case /(z)V0 + /(z)A0= °° - oc.

Hence /(z) = f(z) VO-f- /(z) ΛO is continuous on i?" admitting the infinite values.

We denote by FA(R) the totality of functions in F(R) which vanish con-

tinuously on Δ. Now we prove the following

THEOREM 1.1 (Harmonic decomposition). Any junction f(z) in F(R) is de-

composed into the following form:

= u(z) + g(z),

ivhere u(z) is in HD(R) and g(z) is in F&(R).

Proof. By Lemma 1.7, we may assume that f(z) is non-negative. Let

{Rn)n--o be an exhaustion of R, i.e. the closure of Rn is contained in Rn~i and

Rn is compact domain in R with the boundary consists of a finite number of
CO

analytic closed Jordan curves and R = Ui?«. Further we assume that Rς> is
72 = 0

a parameter neighborhood of a point z0 in R. By Harnack's inequality there

exists a finite and positive constant number k such that for any viz) in HP(R),

v(zo) <kinίv(z), where U=Ro.
u

Let Uniz) be the solution of Dirichlet problem in Rn with the boundary value

f(z) on BRn. We put

ί M«(z) on /?M

1 /(z) on R-Rn

and gn(z) = f(z) - tin(z). Note that Mn(2)>0 on i?. By Green's formula and

Dirichlet principle, we have

and if n > m

Now we define wn(z) as the solution of Dirichlet problem in Rn—U with

the boundary values 1 on dU and 0 on 3Rn. We put

in U;

'n(z) in Rn- U;

0 in R-Rn.

The sequence {^^(s)} converges to a function w(z) on i? in £.D-topology. By

https://doi.org/10.1017/S0027763000002142 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002142


A MEASURE ON THE HARMONIC BOUNDARY 189

our assumption that A is not empty, we get

By Green's formula, we have

dgn Λ *dlϋn = gn*dWn = gn*dwn

JJR Jd(R-U) JdU

= f*dWn~ Un*dWn,
J dU J dU

since gn(z) vanishes on BRn. From this we get

mf Un(z)[ *dWn ^ SUP f(z)[ *dWn+ ff fe A *rfWn|.

By Green's formula and Schwarz's inequality, we obtain

DZwn~] -• \ diVn Λ *dwn = wn*dιvn = \ *i/zi;«
JJ.R •/θ(Bn-t ) 9̂C7

and

ff ίfen A *rfιι;Λ|^ (D[^:DDι;»])1 / 3

From these, we get by putting a = sup f(z)
u

inf un(z) Dίwnl ^ aDίwnl + (DZflDlwnl)112.
dU

Hence we have

This shows that the sequence {un(zo)} is bounded. Thus {un(z)} forms a nor-

mal family and we may assume that {un(z)} converges to a harmonic function

u(z) in C-topology. Hence ign(z)} converges to g(z) = fiz) - u(z) in C-topology.

Now we see by Fatou's lemma that

So we conclude that u(z) belongs to the class HD(R) and we may suppose

lim Dίu - Um] = lim Dlg-gnJ = 0.2)

2 ) Since D[w»] ^D{f\ and «»->« in C-topology, by choosing a suitable subsequence, we

may assume du,ι->du weakly. As D[f, «m]=Z)[«»»] and Z)[/, u]=D[un, u\ (w = l, 2, . . . ) ,

so lim £>[«»»] =!>[/, u\=D\un, u] and hence limZ)[«w]=Z)[M] by making Λ/OO. Thus
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This shows that {gn(z)} in MQ(R) converges to g(z) in CD-topology. Thus by

Lemma 1.6, g(z) belongs to FAR) and fiz) = uiz) -hg(z).

This completes the proof of Theorem 1.1.

COROLLARY, (a) (Royden L~8]). For the decomposition fiz) - u(z) -\-g(z)

in Theorem 1.1, uiz) is in HBD(R) and giz) is in MAR) and IM^J/i ! if fiz)

belongs to MiR).

ib) If fiz) is positive and subharmonic (or superharmonic), then uiz) 7^ fiz)

(or uiz) ^f(z)) on R.

(c) If viz) ^ fiz) > 0 (or fiz) >̂ 0 and fiz) ^ viz)) for some superharmonic

(or subharmonic) function defined on R, then uiz) ^ viz) (or u(z) ^> viz)) on R.

Remark. It will be proved in section 6 that any i/D-function defined on R

takes its maximum and minimum on ά. From this, we see at once that the

harmonic decomposition asserted in Theorem 1.1 is unique. Futhermore, the

unicity of harmonic decomposition implies that any function fiz) in FAR) is

represented as the limit in CD-topology of a sequence of functions belonging

to Mo(R). From this, FAR) is orthogonal to HDiR) in the sense that

if A *du = 0

for / in FAR) and u in HDiR). Hence in our harmonic decomposition fiz)

= uiz) +g(z), it holds

5. A maximum principle for half bounded functions. We use the following

notations for real-valued functions defined on R:

and

lim fiz) = inf sup f(z)
z-^v (CO UnE

Mm f(z) = sup inf fiz),
z-+v (CO UnR

where {U} is a neighborhood system of a point p in R*. Now we prove

THEOREM 1.2 (Maximum principle I). Suppose that uiz) is real-valued

harmonic function defined on R such that uiz) is bounded from above {or below)

and
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lim u(z) ^ M (or lim uiz) ^ m)

at any point C in A. Then it holds

uiz) ^ M (or uiz) 2 m)

on R*

Proof. We have only to prove the theorem under the assumption that u(z)
is non-negative on R Assume that

lim
zίξ

at any point C in J. We have to show that u(z)>m on R. Contrary to the

assertion, suppose that there exists a point zo in R such that ti(z^) is smaller

than m. We choose a real number t such that

U(ZQ) < t < m

and the level curve {z'f u(z) — t) has no point z at which du(z) = 0. We take

D the component of the open set U; u(.z) < t) which contains the point ZQ.

It is evident that D is a normal subdomain of R. It is also clear that viz)

= u(z) - 1 belongs to the class HB(D), i.e.

-t<v(z) < 0 .

We denote the relative boundary of D by Γ. Let D be the double of D with

respect to Γ. Then

I v(z) on Z)i
«o(2) = {

I -viz) on D2U7^

belongs to HB(D) and is non-constant, where D^DiUD2UΓ and 2 is the

corresponding point in D to 2. Hence, of course, D does not belong to the

class of parabolic Riemann surfaces.

On the other hand,

\ \ ^ m - t > 0

at any point C in A. So we can find a neighborhood U of A in i?'! such that

viz) > 0 in UΓ\ R. This shows that D is contained in R* - U. Thus we can

find a continuous function fiz) on /?* such that f(z) vanishes on Δ and 1 on

D. Then /(a) belongs to CΔ(7?*) and /(2) = 1 on /3*. By Lemma 1.5, C Δ ( ^ * )

is contained in CΔ(/5*), which shows that 1 belongs to CΛD*). Hence by
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Lemma 1.4, D is of parabolic type. This is absurd since we have seen that D

is not of parabolic type.

This completes the proof of Theorem 1.2.

This theorem will be extended in Theorem 2. 4.

COROLLARY, (a) Suppose that a real-valued HB-function u(z) defined on R

satisfies

m ^ lim M(z) ^ i i m u(z) ^ M

at any point C in Δ. Then it holds

rn ̂  u(z) ^ M

at any point on R.

(b) (Mori-Ota [5]). Any real-valued HBD-function defined on R takes its

maximum and minimum on Δ.

6. A maximum principle for harmonic functions with finite Dirichlet integrals.

In section 4, we have proved that i7Z)-functions are continuous on R:. In this

section, we shall prove

THEOREM 1.3 (Maximum principle II). Any real-valued ΉD-function u(z)

defined on R takes its maximum and minimum on Δ.

Proof. Let M^sup^^U) and m -mίRu(z). We have only to prove that

u(z) attains M on Δ since the assertion concerning m can be proved if we

replace u(z) by —u(z). Moreover we may assume M= °° For if M < °°, the

assertion is contained in Theorem 1.2.

Now consider the function u(z) V 0 on R. Then u(z) V 0 is in F+(R) and

we may apply Theorem 1.1 and (b) in Corollary of Theorem 1.1 to conclude

u(z) \J 0 = v{z) + g(z)

and

v(z)^u(z) VO,

where viz) belongs to HD(R) and g(z) vanishes continuously on Δ. From this

we have

supi?^) = sup2? ιι(z) V 0 = supi? u(z) = °°

and

v(C) = m a x i u(C) V 0 = m a x Λ u(C).
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Hence we have only to prove that maxΔ^(C) = °° if supR viz) = oo.

Contrary to the assertion, assume that

c = supΔz;(C) < oo.

Consider viz) A n for positive integers n > c. This belongs to MiR). By

Theorem 1.1 and Corollary (b) of Theorem 1.2, there exists wiz) in HBDiR)

such that IMI = c and

viz) A n-w(z) +gn(z) in> c),

where gniz) vanishes on ά and from the proof of Theorem 1.1 gn{z) are limit-

ing functions of functions in MoiR) in CD-topology since viz) A n ̂  0. Hence

we have

ff
for all hiz) in HD{R). Using this we easily get

Dίv{z) - w{z)l < Dίviz) - viz) A»]\0

as n / °°. Thus v - iv is a constant and vanishes on Δ. So v = w and hence

lkll = c, which contradicts to s\xpRviz)= oo.

This completes the proof of Theorem 1.3.

2. A measure on the harmonic boundary

1. Canonical measure. To investigate harmonic functions defined on the

unit disc U, the Poisson integral plays an important role. In this case, the

Lebesgue measure m on the unit circumference C is completely determined by

the following two properties:

(m. 1) m is a regular outer measure which makes compact sets measurable

(m.2) there exists a kernel function P(C, z) defined on C x i / which is

non-negative and ra-integrable for every fixed z such that

m{X) = f PiC, 0)dmiC)

for every m-measurable sets X in C and

C, z)dm(ζ)

for every u(z) in S which is an arbitrary fixed subset of H(D) such that S is
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dense in H(U) with respect to the uniform norm, where H(ϋ) denotes the

totality of continuous functions defined on U U C and harmonic on U.

In view of this, we shall define a measure on the harmonic boundary Δ of

a Riemann surface R along with the above direction.

Granting that R is U and Δ is C, we may take HBD(R) as S. Thus we

are led to the following definition.

Definition of the canonical measure μ on Δ. Fix a point 0 in R. A measure

μ on Δ is called the canonical measure on Δ with the origin at 0 if it satisfies

the following two conditions:

(μ.l) μ is a regular Borel measure on Δ

{μ.2) there exists a kernel function K(ζ, z) on Δ x R which is non-negative

and μ-integrable for all fixed z in R such that

M*) = ί iΠC, O)^(C)

for every Borel sets X in J and

= ί u{ζ)K(ζ> z)dμ(C)

for every w(z) in HBD(R). The kernel function K{ζ, z) is called a harmonic

kernel belonging to μ.

First we prove

THEOREM 2.1. There exists one and only one canonical measure μ on Δ

with the origin at 0.

Proof. Let H(R'1') be the totality of continuous functions defined on i?;

which are harmonic in R. Let M{Δ) be the totality of restrictions to Δ of func-

tions in M(R). As M(R) is dense in C(Rλ) with respect to the uniform norm,

M(Δ) is dense in C(Δ) with respect to the uniform norm. Let /(C) be contained

in C(Δ). We can find a sequence/*(C) in M{Δ) such that limM||/(C) -/«(C)|| = 0.

Let fn(z) be an extension of /«(C) to /?*. Apply the harmonic decomposition

to get

where un(z) is in HBD(R) and gn vanishes on Δ. Hence un(C) -ΛΛC) and
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by maximum principle. Thus there exists a function uiz) in H(RΫ) such that

\ϊmn\\un - u\\ = 0. Clearly w(C) = /(O on Δ. Again by applying maximum

principle, we see that such u(z) is unique. Thus we may use the notation

u/{z) to denote this uiz).

Now ux an arbitrary point z in R. Then u/{z) is a positive linear functional

on C{Δ): for / and £ in C(Δ) and a complex number a,

Uaftg(z) — aufiz) + ug(z)

«/(2)^0 if /(C)gO on J.

By Riesz-Markofΐ-Kakutani's theorem (cf. [3]), there exists a regular Borel

measure μz such that

u/iz) =

Thus we get a family (μz 2 is in R) of regular Borel measures on Δ. Clearly,

μz(Δ) = 1 for all z in R.

Let if be a compact subset of i?. By Harnack's theorem, we can find a

positive number k = kiK)'S) such that

for every uiz) in HP{R) and every pairs (2', 2") of points in K.

Let F be a compact subset of J and U be an arbitrary open subset of Δ

containing F. Define a function /(C) in C(Δ) as follows:

} 1 on F;

1 0 on Δ - U

and 0 ^ / ( 0 ^ 1 on j . For this /, we get

As we have

and

so we get

3 } For convenience, we shall say that such a possibly small number k(K) as Harnack's

constant of K.
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As μz>> is a regular Borel measure and U is an arbitrary open subset of Δ con-

taining K, so we can conclude that

From the above inequality, we obtain

for every Borel set X in Δ.

Now we put μ — μj. By the Radon-Nikodym theorem, there exists a μ-

integrable non-negative function K(ζ, z) to every z in R such that

dμz(ζ)=K(ζ, z)dμ(ζ).

It is clear that μ and K(ζ, z) thus defined satisfy the conditions (μ. 1) and

(μ. 2). Hence we have shown the existence of canonical measure.

Next we have to prove the unicity of μ. Let μ' be another canonical measure

and K'(C,y z) be the harmonic kernel belonging to μ'. We denote

dμf

2 = K'{C, z)dμ'.

As we have seen above, HBD(R) is dense in H(R*) with respect to the uniform

norm, so we can easily conclude that

Hence μz = μz for all z in R. In particular, μ1 = // = μ, = μ.

This completes the proof of Theorem 2.1.

From the proof, we easily get

COROLLARY, (a) The harmonic kernel belonging to μ is unique in the follow-

ing sense. If K(C, z) and K'(C, z) are harmonic kernels belonging to μ, then

K{C, z) = Kf(ζ, z) μ-almost everywhere for each fixed z.

(b) Let μk be canonical measures on Δ with the origin at Ok in R (k = l, 2)

and Kk(£, z) be their harmonic kernels. Then there exists a system (ψijl i, j

= 1, 2) of non-negative and integrable Borel functions such that ψij(ζ)ψji{ζ) = 1

except a set of measure zero and

dμi(ζ)=ψij(ζ)dμj(ζ)
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and

Kdζ, z)=KjiC, z)ψji(C)

except a set of measure zero for each fixed z.

Now we fix an origin 0 in R and consider the canonical measure μ on A

with the origin 0 and the harmonic kernel K(ζ, z) belonging to μ.

PROPOSITION 2.1. (a) μ(A) = l. (b) If G is a non-empty open subset of A,

then μ(G) > 0. (c) if /(C) belongs to C{A), then

= \ f(ζ)K(C, z)dμ(C)

is in H(R*), which is the class of functions continuous on Rλ and harmonic in

R. id) Let k be the HarnacKs constant of a compact set K in R and X be an

arbitrary Borel set in A. Then

) χ C , z')dμ(ζ)

for any points z and z' in K.

Proof, (a), (c) and (d) are clear from the proof of Theorem 2.1. To

see (b), we choose a non-empty closed set F contained in G. Let /(C) be in

C(A) with 0 ̂  /(C) ̂  1 on A such that /(C) - 1 on F and 0 outside G. Then

uf(z) is non-zero and non-negative. Hence

ζ, 0)dμ(ζ)=uf(0)>Q.
Δ

Our proof is completed.

2. Elementary properties of integral representation. Let μ be the canonical

measure on A with the origin 0 and K(ζ, z) be the harmonic kernel belonging

to μ. Now we prove the following fundamental

THEOREM 2.2. Suppose that /(C) is an μ-integrable Borel function on A.

Then the function u(z) defined by

u(z) = j /(O/iΠC, z)dμ(ζ)

is a harmonic function defined on R.
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Proof. First we assume that 0 ̂  /(C) ̂  1. Fix an arbitrary point zQ in R.

Let U be a neighborhood of zo whose closure is compact in R. We denote by

k the Harnack's constant of the compact set UU (0). By (d) in Proposition

2.1, we see that

f \ , 0)dμ(ζ) = kμ(X)

for any Borel set X in A and for any point z in U. By Lusin's theorem, there

exists a compact subset FM of A such that

μ(Δ-Fn) < IIΠ

and /(C) is a continuous function defined on Fn. Now by the extention theorem

of Tychonoff, there exists a continuous function fn(O defined on A such that

on J and
/«(C)

on Fn. We put

M n ( Z ) = ί fn(ζ)K(C,
J A

Then ««(2) belongs to the class H(R*) and 0^un(z)^l on i?.

Let z be an arbitrary point in U. Then we get

U(z)-Un(z)=

( (/(C)-

As I/(C)-/«(C)| is not larger than 1 on J - F * and ί K(ζ, z)dμ(C)^kμ{A - F«)
J Δ - F M

so we get

Hence the sequence {w«(2)} of harmonic functions converges to uiz) uniformly

on a neighborhood of zo. Since zo was arbitrary, {un(z)} converges to uiz) in

C-topotogy. Thus uiz) is harmonic on R.

Next we assume that / ( O ^ O . We put /(C) Λ w = min(/(C), w). Then

by the above, we see that
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Vn(z) = \ (/(C) Λ n)K(ζ, z)dμ(C)

J A

is harmonic on R and

Vn(z) ^ Vn + i(z)

at every point in R. Furthermore,

u(z)= f /(C)JRΓ(C, 2)^(C) = f limn(/(C) A n)K(ζ9 z)dμ(C)
JA JΔ

= limn Vn(z).

Hence u{z) is harmonic on R.

In the general case, /(C) can be represented as a linear combination of

positive μ-integrable functions. Hence by reducing to the above, the proof of

Theorem 2.2 is over.

Remark. As is easily seen from the above proof, the function u(z) in

Theorem 2.2 is represented as a limit of a sequence of HBD-ίunctions in C-

topology.

As for the boundary behaviour of u(z) in Theorem 2.2, we can prove the

following (see also Lemma 3.3)

THEOREM 2.3. If /(C) is a bounded Borel function defined on Δ and con-

tinuous at a point Co in J, then

lim
z +ζo

ivhere

u(z)= f f(C)K{C,
J A

Proof. We may assume that 1/(01 £ 1/2 on Δ. Let e be an arbitrary posi-

tive number. Let U and V be open neighborhoods of Co in /?* such that U con-

tains the closure of V in /?* and

|/(C)-/(Co)l <ε

for any C in J Π U. We choose a function g{ζ) in C( J) such that 0 £ g{C) £ 1

on J and
10 on VΠΔ;

σ(ζ) =

1 on (R^-U) Π J.

As /(Co) = ί /(Co)ϋΓ(C, z)dμ{ζ), so we get
JΔ
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C, z)dβ(C)\

^ f 1/(0 -/(Co)lϋΓ(c,
J Ar\U

+ ( l/(C)-/(co)]/αc,
J An(E'-U)

By the definition of U and ^(C), we have

f !/(C)-/(Co)|iΠC, ̂ ) ^ ( C ) ^ f e/ΠC, z)dμ(C) = ε
JAnU * A

and

f 1/(0 -f(Co)\K{ζ, z)dμ(C)^ f K(ζ, z)dμ{O
J An(R*-U) JAn{R*-U)

^ ί ^(C)ϋΓ(C, z)dμ(C).
J A

As ^(C) is continuous on Δ and vanishes on a neighborhood of Co, so the func-

tion viz) defined by

υ(z) = f ^(C)X(C, z)dμ(C)

is a positive harmonic function on R and vanishes continuously at Co. From

the inequality

and from lim v(z) = 0, we obtain

/(Co)l ̂ ε .

As ε is arbitrary, so we conclude that lim uiz) =/(Co).

This completes the proof of Theorem 2.3.

3. A maximum principle {an extension of Section 5 fw Chapter 1). In Chapter

1, we have proved that an HP-function uiz) defined on R with limu(z)^m at

every point C in A satisfies u{z)^m on R. In this section, we shall weaken the

assumption on the boundary behaviour at Δ of uiz) as follows: the same con-

clusion as above holds if we assume merely that \\vcίU{z)^m at every points

C in A except a set of /^-measure zero.

Let D be a subdomain of R whose relative boundary consists of at most

countably many disjoint Jordan curves which have no point of accumulation in

R. In this case, we say that D is a Jordan subdomain of R. The boundary of
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a Jordan subdomain D relative to i?* is decomposed into the following three

parts:

Γ = the relative boundary of D with respect to R)

A = the totality of boundary points of D relative to /?* which are contained

in Δ

Γo = the totality of boundary points of D relative to R* which are not con-

tained in f o r A .

First we show that Γo is inessential for bounded harmonic functions.

LEMMA 2.1. Suppose that u(z) is a real-valued harmonic function defined

on a Jordan subdomain D and bounded from beloiv (or above). If u(z) satisfies

lim u(z) >,m (or lim u(z) ^ M)41

at every point ζ in Γ\J A, then u(z) satisfies

u(z)^m (or u(z) S M)

on D.

Proof. We have only to prove the lemma in the case that u(z) is bounded

from below and m = 0. Contrary to the assertion, suppose that there exists a

point Zo in D such that u(zo) < 0. Then we can find a number λ such that

wUo) < A < 0 and du(z) does not vanish at any point on the level curve (z\

u(z) = Λ). Let G be a component of the open set (z\ u(z) < λ) containing ZQ.

Then clearly G is a normal subdomain of R and contained in D.

Now let C be a point in Δ. If C belongs to I\, then by the assumption

lim u(z) Ξ>0 > Λ, we can find a neighborhood £/(C) of C in 7?* such that U(C)

Π G is empty. If C does not belong to A, then we can find a neighborhood

Z7(C) of C in /?* such that U(ζ) Π D is empty and so U(ζ) ΠG is empty, since

G is contained in D. Thus we can find a neighborhood U of C such that U (ΛG

is empty. Then we can find a continuous function f(z) such that / vanishes

on Δ and 1 on G. So / belongs to CA(R*) and the restriction of / to D is

identically 1. By Lemma 1.5, CA(G*) contains C Δ ( # * ) and so contains f(z)

= 1. Thus by Lemma 1.4, G is of parabolic type.

4) lim u{z) =sup inf u(z), where {£/} is a neighborhood system of ζ in /?*. Similarly,

ίirn wU) =inf sup
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On the other hand, viz) - / — uiz) satisfies

0< viz) <λ-'mUuiz) < °°

and vanishes on the relative boundary of G with respect to R. So G admits

a non-constant bounded harmonic function viz) defined by

ί viz) on Gx'y
viz) =

I -viz) on G2UΓ,

where z corresponds to z. Hence G is not of parabolic type. This is absurd.

This completes the proof.

LEMMA 2.2. Let D be a Jordan domain of R such that μ(l\) = 0. Then D

belongs to the class SOΠB, that is} there exists no non-constant bounded positive

harmonic function defined on D vanishing on Γ.

Proof. We may assume that the origin 0 of μ is in D (cf. (b) in Corollary

to Theorem 1.1). Contrary to the assertion, suppose that there exists a non-

constant positive harmonic function uiz) defined on D and vanishing on /'. By

multiplying a suitable positive constant, we may assume

1 = sup lim uiz).

Now ΓA- A Π Z3, where D denotes the closure of D in i?*. Hence /Ά is a com-

pact subset of Δ whose measure is 0. So we can find a sequence {Un, Vn)n^ι

of open subsets of A such that

Un 3 Vn D Un+i and Un D Vn,

where Vn denotes the closure of Vn in A, for all n = 1, 2, . . . and

μiϋn) < IIΠ.

We choose a function fn(C) in C(Δ) such that 0 ̂ /Λ(C) ̂  1 on A and

ί 1 on Vn
/Λ(C) =

i 0 outside C7n in J.

Define a function #»(2) on /? by

uniz) = f MOKiζ, z)dμ(ζ).

Then #»U) belongs to EiR*) and is positive on #. Put ̂ ( 2 ) = ^(2)
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Then

lim ιvn(z) ^ 1 - lim u(z) ^ 0

at each point C in ΓΔ. For each point C in Γ,

Hence applying Lemma 2.1, we conclude that wn(z) ^ 0 on D or

Un(0)^u(0)> 0.

On the other hand,

un(0)= \ fn(ζ)K(ζ, 0)dμ(ζ)^\ K(ζ, O)dμ(ζ) =μ(Un)< l/n.

Thus we obtain

l/n >u(0)>0

for all n = 1, 2, . . .. This is absurd. So G belongs to the class SOHn.

This completes the proof.

Now we prove an extension of Theorem 1.2:

THEOREM 2.4 (Maximum principle Γ). Suppose that uiz) is real-valued

harmonic function defined on R such that uiz) is bounded from above {or below)

and

lim uiz) ^ M (or lim u(z) ^ m)

at any point C in Δ except a set of μ-measure zero. Then it holds on R

uiz) ^ M ior u(z) ^m).

Proof. We have only to prove the theorem in the case that u(z) > 0 on R.

Assume that

lim uiz) > m

at any point C in Δ except a set X of measure zero. Contrary to the assertion,

suppose that there exists a point zo in R such that uizo) < m. We can choose

a number λ such that u(z0) < λ < m and the level curve (z\ uiz) - λ) has no

point z with du(z) = 0. We take D the component of the open set (uiz) < λ)

which contains the point z0. It is clear that D is a normal subdomain of R

and so a Jordan subdomain of R. Furthermore
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is clearly contained in X. Hence /ιiΓΔ) = 0. Thus by Lemma 2.2, D belongs

to the class SOHn.

On the other hand, viz) = λ - ιι{z) satisfies 0 < viz) < λ on D and vanishes

on the relative boundary Γ of D with respect to D. Thus D does not belong

to the class SOHB. This is a contradiction.

This completes the proof of Theorem 2.4.

As a direct consequence of this theorem, we obtain the following

COROLLARY. Suppose that a real-valued HB-function u(z) on R satisfies

m ^ litti uiz) ^ lim uiz) S M

at any point ζ in ά except a set of μ-measure zero. Then it holds on R

m <: uiz) ^ M.

3. Some positive minimal harmonic functions

1. Notations. Functions considered in this chapter are all assumed to be

real-valued. We denote the totality of real-valued members in a class £ of func-

tions by the same notation 36. For example, MiR) denotes the totality of real-

valued functions contained in Royden's algebra MiR) associated with R. By

using this convention, there will occur no confusion.

Let 36 be a class of functions defined on R. By # f we denote the totality

of non-negative functions in 36. Suppose that 36 forms a vector space. Then 36Γ

forms a half-vector space, i.e. afiz) -{-giz) belongs to 36+ if f(z) and giz) are

in #+ and a is a non-negative number. By ordering / ^ g in 36, we always

mean that fiz)^giz) at any point z in R. By this ordering, # (or X+) be-

comes an ordered vector (or half-vector) space.

An element fiz) in #+ satisfying the following property is said to be mini-

mal in % or ^-minimal', if fiz) is not identically zero and f(z)^giz) on R

for some giz) in #+, then there exists a non-negative number c such that giz)

= cfiz) on R.

Let HiR) be the totality of harmonic functions on R. Then HiR) is an

ordered vector space. For functions uiz) and viz) in HiR), suppose that there

exists a function wiz) in HiR) such that

iviz) ̂ uiz) and viz) (or ιv(z)^u{z) and viz))

and if w'iz) in H(R) satisfies the same relation as above, then
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iviz) ^ ιv'(z) (or w(z) <̂  i&iz)).

In this case, we use the following notations:

ιv(z) = (u A f)(z) (or M (Z) = iu V

As before, we also use the notation uiz) A 0(2) (or u(z) V 0(2)) to denote the

function min (11(2), #(2)) (or maxiu(z), v(z)).

It is easy to see that a necessary and sufficient condition for the existence

of iu V v)(z) (or (u A tOU)) is that there exists a function tv(z) in //(/?) such

that wiz)^u(z) and 0(2) (or iviz) ^ uiz) and #(2)).

2. Lattice property of HDiR). First we prove

THEOREM 3.1. The class HDiR) (or HBDiR)) is a vector lattice under the

operations u V v and u A v.

Proof. We shall only prove the theorem for HDiR). The proof for HBDiR)

is quite similar to that for HDiR).

First we prove that u\l v exists and belongs to HD{R) if u(z) and viz)

belong to HDiR). We may assume that viz) =0. In fact, if w'VO exists and

belongs to HDiR) for any u' in HDiR), then iu-v) V0 + υ is nothing but

uV v and belongs to HDiR).

Apply the harmonic decomposition to uiz) V 0. Then we get uiz) V 0

= wiz) -\-giz), where w is in HD(R) and g(z) vanishes continuously on Δ. By

(b) in corollary of Theorem 1.1, wiz) ^ uiz) V 0 ^ uiz) and 0. If ιv'(z) satisfies

tv'iz)^uiz) and 0, then Λ ) > Λ ) V 0 . By (c) in Corollary of Theorem 1.1,

we get ιv'iz)^ιviz). Hence wiz) = iu V v)iz) and belongs to HDiR).

As for the existence of u /\ v, we note that - ( - u) V ( - v) is nothing but

u ί\ υ. Hence we have proved that HDiR) is a vector lattice under u V z; and

COROLLARY 1. Suppose that uiz) and viz) belong to HDiR). Then

uiz) V

and

uiz) /\viz) = (u /\v)(z) +g'(z),

tvhere giz) and g'iz) vanish continuously on Δ. In other word,

( « V t ; ) ( z ) = ί (uiC) V v(Z))K(ζ, z)dμ(Q)
J A
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and

(u Λ v)iz) = \ (u(ζ) Λ v(ζ))K(ζ, z)dμ(C).
J Δ

Proof. By the proof of Theorem 3.1, we have

(u(z) - viz)) V 0 = ( ( « ( * ) - v(z))V 0)(z)+g(z),

where g(z) vanishes continuously on Δ. On the other hand,

(u(z) - v(z))V 0 = (u(z) - viz)) V 0+ viz)

and

(UW v)(z) = i(u-v)V 0)iz) + viz).

Hence we get the first identity. Similarly, the validity of the second identity

can be shown.

As for the integral representation, we have only to show that a function

u(z) in HD+(R) can be represented as

u(z) = ί u(ζ)K(ζ, z)dμ(ζ).
J A

In fact, as {(u Λ n)(z)} is a non-decreasing sequence, so there exists a har-

monic function viz) such t h a t v{z)=\\m(u Λ n){z). From

Dίiu Λ n)(z)l £ Dίuiz) Λ rί] S D[_u]

and (u A n)(z) ̂  u(z) on Rf we get D\_v~] ^ Dlu] and u{Q) A w ̂  vlC) ^ «(C)

on J for all ^ and so u(C) - v(C) vanishes on the harmonic boundary. Hence

by maximum principle II, we get u(z) ~ v{z) on R.

Assume that u{z) is non-negative. Then we get

u(z) =lim(«ΛΛ)U) = limf (u(ζ) Λ n) KiC, z)dμiθ
n J A

= { (lim(u(ζ)/\n)K(ζ, z)dμiθ

= [ u{C)K(ζ, z)dμiζ).
J A

In the general case, apply the Jordan decomposition to uίz). Then we get the

required identity. This completes the proof.

COROLLARY 2 {Precise form of Virtanen's theorem). For any u{z) in HDiR),

there exists a sequence {un} in HBDiR) converging to uiz) in CD-topology.
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Proof. First we assume that u(z) >; 0. By the proof of Corollary 2, we see

that (u/\n)(z) in HBD converges to u(z) in C-topology and by using u(z)

-h n = (U\J n)(z) + (u An)(z), we get Dίuiz) - (u Λ n)(z)l = DUu V w)(z)]

^ Dίu(z) V w ] - ^ 0 a s w - ^ ^ .

In the general case, let wU) = Z/(Z)-MM2) be the Jordan decomposition in

HD. Then un(z) = (ι»Λ w)(;z) - (w Λ H ) ( Z ) (w = 1, 2, . . . ) satisfy our assertion.

This completes the proof.

Let F(Δ) and M(Δ) be the totality of restrictions on Δ of functions in F(R)

and M(R) respectively. We obtain

COROLLARY 3. The classes F(Δ) and MiΔ) are vector lattices under the oper-

ations max (/, g) and min (/, g) and are isomorphic to HD(R) and HBD(R)

respectively as vector lattices.

As an application of this, we get

LEMMA 3.1 (S. Mori [4]). Suppose that Δ is decomposed into the disjoint

open and closed subsets Δ\> . . . , Δn and a system (au . . . , an) of real numbers

ak is given. Then there exists a function /(C) in Mi A) such that /(C) = au on Δk.

Proof. We have only to prove the lemma in the case (au • - , CLΠ) - (1, 0,

. . . , 0). Put g(ζ) --=2 on Δι and - l o n i - i i . Then g(z) is in C(Δ). As

M(Δ) is dense in C(Δ) with respect to the uniform norm, we can find a func-

tion /z(C) in M(Δ) such that MO is arbitrarily close to giC). Hence we may

assume that MO > 1 on Δι and MO < 0 o n J - J i . Then

/ V0) Λ 1

is the required function. This completes the proof.

3. HD-minimal functions. If Δ contains an isolated point Co, then by Lemma

3.1, we can find in M(Δ) a function Z(C; Co) which equals 1 at Co and vanishes

elsewhere on Δ. We shall denote by ιv{z Co) the function HBD(R) whose

boundary value on Δ is %(C', Co). We may call w(z; Co) as the harmonic

measure of Co.

Now we state the following topological characterization of //Iλminimality:

THEOREM 3.2. If viz) is HD-minimal, then there exists an isolated point Co

in Δ and a positive number c such that

viz) = civiz Co),
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Conversely, if Co is an isolated point in d, then tvizl Co) is HD-minimal

Proof. Suppose that viz) is #D-minimal. We denote by viζ) the boundary

function of viz) on A. Suppose that there exist two points Ci and Co in A such

that viCk) > 0 (# = 1, 2). Let U be a neighborhood of Ci such that £7 does not

contain ζ2 and viζ) > c > 0 on U. As MiA) is dense in C(J) and is a vector

lattice, so we can find a function giζ) in MiA) such that c>giC)^0 on J and

giCi)>0 and vanishes outside U. Then viζ) > giζ) on J and by the minimality

of viz) in iZD and by the maximum principle IT, the //BD-function uiz) whose

boundary value giζ) must be represented as

Uiz) = ΎjViz)

for some positive number -η. Hence uiζ2) ~Ύ/viζ2) = 0, which is absurd. Hence

viz) vanishes on A except a point Co. Since viζ) is continuous on A, Co is neces-

sarily isolated. Moreover, lim (v Λ n)iz) = viz) in C-topology, iv/\n)iz)^0
n

for some n and viz)7>iv f\ n)iz). Hence there exists a positive number d such

that (v An)(z)=dviz). Thus fl(Co) is finite and v(ζ) =υ(ζ*)w(z\ Co).

Conversely, suppose that Co is an isolated point in A and wiz] ζo)~>uiz) for

some uiz) in HD+iR). Then w(C; C 0 ) ^ w ( C ) ^ 0 shows that u(ζ) vanishes on

A except possibly Co. Hence uiC) = uiζo)ιviζ Co) and by the maximum principle,

uiz) = uiζo)wizm, Co) on R. Thus z^(^; Co) is ϋΓD-minimal.

This completes the proof of Theorem 3.2.

Remark. The totality HiR*) of continuous functions on i?* which are har-

monic on R coincides with the closure of HBD{R) in C(/?*) with respect to

the uniform norm. It is easy to see that HiR*)-minimality is characterized by

the isolatedness of a point in A. By the above proof, it is clear that HD-mini-

mality coincides with //J9Z>minimality.

Hence the concepts "i7Z>minimaΓ\ "JTOD-minimal" and "HiR')-minimal"

coincide with each other.

4. The class HDiR). Constantinescu and Cornea [2] introduced the class

HDiR) as follows : a function uiz) defined on Rbelongs to HDiR) (or HBD(R))

if there exists a decreasing sequence {uniz)} of functions in HDiR) (or

HBD+iR)) such that uiz) = lim Uniz) at every points z in R. Clearly HDiR)
n

(or HBDiR)) forms an ordered half-vector space and HBDiR) is contained in

HDiR),
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Suppose that there exists a decreasing sequence {un(z)} of non-negative

functions in H(R*). Then there exists a non-negative harmonic function u(z)

defined on R such that u(z) = lim un(z) at every points z in R. In this case,

we can conclude that u{z) belongs to HBDiR). In fact, as HBD{R) is dense

in H{Rr) with respect to the uniform norm, so we can choose a sequence {vn(z)}

in HBDiR) such that \\un(z) - vn(z)\\<l/n. Let wn(z) =υn(z)+ l/n. Then

tt;Λ(2) is a decreasing sequence of functions in HBD+(R) and |U»0g) - w»(z)\\

<2/n. Hence u(z) = \imwn(z) on R and w(z) belongs to the class HBD(R).

Thus we may write HBD(R) = H(R*).

Now let /(C) be a function denned on A. Suppose that there exists a de-

creasing sequence {/«(£)} of functions in C(A) such that /(C) = lim/n(C) on A.
n

In this case, we say that f(ζ) is bounded upper semi-continuous on A. We denote

by C7(J) the totality of non-negative bounded upper semi-continuous functions

defined on A.
First we prove

LEMMA 3.2. A function u(z) defined on R belongs to HBDiR) if and only

if there exists a function f(ζ) in U(A) such that

u(z)= f /(ζ)ϋΓ(C, z)dμ(C).
J A

Proof. Suppose that u(z) belongs to HBDiR). Then there exists a de-

creasing sequence {un(z)} of functions in HBD+(R) such that u(z) =limw«(z).

In particular, {uniO} is a decreasing sequence of non-negative functions in CiA).

Hence we can find a function /(C) in U{A) such that fiC) = lim un(O on A. As

M w(2) = \ un(C)K(ζy z)dμ(ζ),

so we get

u(z) =lim[ Un(C)K(Cf z)dμ(ζ)^ f lim un(OK(ζ, z)dμ(ζ)

= f f(ζ)K(ζ, Z)dμ(ζ).
J A

Conversely, if uiz) = [ f(C)Kiζ, z)dμ(ζ) for some /(C) in U(A)f then there

exists a decreasing sequence {/W(O} of non-negative functions in C(J) such

that /(C) =lim/«(C). We put

https://doi.org/10.1017/S0027763000002142 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002142


210 MίTSURU NAKAΪ

ζ, z)dμ(Q).

Then Un(z) belongs to HiR*) and {un(z)} forms a decreasing sequence and

\im un(z) = l i m ί fn(ζ)K(C, z)dμ(ζ)
n n * A

= f \imfn(ζ)K(ζ, z)dμ(ζ) = u(z).

Thus u(z) belongs to HBD(R). This completes the proof.

LEMMA 3.3. // u(z) - [ f(ζ)K{ζ, z) dμ{ζ) for some /(C) in U(Δ), then it
J A

holds that

limw(z) =/(C)

at every points C in Δ except a set of measure zero. Hence the function /(C)

uniquely determines {and is determined by) u(z) in HBD(R) except a set of

measure zero.

Proof. We can find a decreasing sequence {fn(O} of non-negative functions

in C(Δ) such that lim/«(C) =/(C). Put

%n(z) = f fn{ζ)K(C, z)dμ
JΔ

( C ) .

Then {un(z)} forms a decreasing sequence of non-negative functions in H(R*)

and Un(z) > u(z) and u{z) = lim wΛ(z). If we put ΰ(ζ) = lim w(z) on J, then we

get

U(ζ) ^Un(O =/»(C)

on J. Hence we have

Contrary to the assertion, suppose that ΰ(ζ) < f{ζ) on a subset of measure

positive. Then we can find a compact subset K of Δ with μ{K) > 0 and a posi-

tive number e such that

on K We set

2>U) = ί ê Γ(C, z)dμ{ζ).
J K

Then by Theorem 2.2, αU) is harmonic on R. Moreover viz) is non-constant
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and 0<v(z) ^ ε on /?, since μ(K) > 0. By Theorem 2.3, we see that lim v(z) = 0

at each point C in Δ - K. Needless to say, lim v{z) ^ e at C in K. Hence we

have that

lim (u(z) + v(z)) ^ΰ

is not larger than ΰ(ζ) on Δ - K and ΰ(ζ) + e on K Thus we have

ίim («(z) + e (z)) ^ /(C) ^ »n(C)

at every point C in J. From this, we get

lim (un(z)- (u(z)+v{z))^un(θ -lim (u(z)
z->ζ z-+ζ

in Δ. Hence by the maximum principle I, we see that

Un(z) ̂ U(z) + V{z).

making w -> oo, we finally obtain

on R. Thus we see v(z) = 0 on R, which is a contradiction.

This completes the proof.

Summing up these we state

THEOREM 3.3. There exists an order preserving half vector isomorphism

between HBD(R) and U(Δ, /t) and this correspondence u<r>f is given by

ivhere U(Δ, μ) denotes the totality of positive bounded upper semi-continuous

functions on Δ in which two functions identical except a set of measure zero are

assumed to be the same. Furthermore lim u(z) = f{ζ) on Δ except a set of

measure zero.

Remark. If we set V(Δ) be the totality of functions f on Δ such that there

exists a sequence {/«} of functions in F+(Δ) such that /« \ / . Identifying two

elements in V(Δ) which coincide on Δ except a set of measure zero, we get a

new class V(Δ, μ). Then we get

(a) A function u belongs to HD(R) if and only if there exists a function f

in V(Δ) such that u(z) = ί f(Q)K(ζ, z)dμ(ζ).
J A
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(b) If uiz)= [ f(C)K(ζy z)dμ(ζ) for some /(C) in V(J), then \imu(z)
^ Δ z-+ζ

= /(C) on Δ except a set of measure zero. Hence f uniquely determines [and

is. determined by) u in HD(R) except a set of measure zero.

By an obvious modification, the proofs of Lemma 3.2 and 3.3 prove the

validity of (a) and (b) respectively. Hence we may state

ίc) There exists an order preserving half-vector isomorphism between HDiR)

and ViΔ, μ) and this correspondence u<^f is given by

= f f{OK(C, z)dμ(ζ).

Furthermore lim u(z) = /(C) on Δ except a set of measure zero.

Corresponding to Theorem 3.1, we prove

THEOREM 3.1'. The class HDiR) {or HBD(R)) is a vector lattice under

the operations MV' V and u Λ v.

Proof. We shall only prove the theorem for HDiR). The proof for HBDiR)

is same to that for HDiR). It is clear that (u A v)iz) exists and belongs to

HDiR) for any u and υ in HD(R). So we have only to prove that iu\J v)iz)

exists and belongs to HDiR).

By (a) and (b) in the above remark,

= ί (ΰ(0Vv(ζ))K(ζ,z)dM(ζ)
J Δ

belongs to HDiR), where u{C) ^lim&U) and υ(ζ) =\imviz). Clearly

wiz) ^ u(z)y viz)
on R.

Next suppose that there exists a function w' in HiR) such that

w'iz) ^ u{z)> viz)

on R. We now prove that w1 > w on R. If we can show

ζ9 z)dμ(ζ)

on R, then making n / °° we get zv' ̂  w. Thus we may assume that
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By Lusin's theorem we can find a compact set Kn in Δ with the following

properties:

fx(Δ-Kn)<lln\

there exists a system of continuous functions fn and gn on A such that

fn = U
and

gn = υ
on Kn and

on Δ. Let un, vn and w;M be functions in H(R*) with w»(C) = /»(£), flΛ(O =gn(C)

and WrcίO = /»(C) y gniO on J respectively. Set

By these definitions, it is easily seen that

WwU) ^ Un(z), Vn(z)

on i?. As un and v« are continuous on /?*, so we get from the above

at any point C in Δ. Hence

lim w'n(z) ^ un(O V vn(C) =

or by using the continuity of wn{z) on

lim ( ^ ( 2 )

at any point C in J. Hence by Theorem 1.2, a^u) ^ ^ ( 2 ) on i? or

\ K(C, z) dμ(C) S f («(C) V v(C)) K(ζ, z) dμ{ζ).

Hence by making n / °°, wf(z) ;> w(z) on R. This completes the proof.

As a direct consequence of Theorem 3.1', we get the followings.

COROLLARY 1. Let u and υ be in HD(R) and u(ζ) = lim u{z) and v{C)

= limv{z) on Δ. Then

= [ ΰ{ζ)K(ζ,z)dμ(ζ)
J A
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and

= ϋ(OK(ζy z)dμ(ζ)
J A

and'

(uΊυ)(z) = \ (ΰ(C) Vϋ(ζ))K(ζ, z) dμ(ζ)
J A

and

(ul\ v)(z) = I (ΰ(ζ) Λ v(ζ)) K(ζ} z)dμ(C).
JΔ

COROLLARY 2. // wig) belongs to HD(R), then (ul\n)(z) belongs to HBD(R)

and u(z) = lim (wΛwMz) ow i? in C-topology.

5. Harmouic measure of Borel set in Δ. Let X be a Borel set in Δ. We

define a function w(z', X) by

X) = f HΓ(C, z)dμ(ζ).

By Theorem 2.1, ^(^ Z) is a harmonic function defined on R and

on R. We call wU; X) as the harmonic measure of X. It is clear that

w(z; X)=0 (or 1) ί/ and only if μ(X) = 0 (or 1).

First we begin with the following

LEMMA 3.4. Let K be a compact subset of Δ. Then w(z\ K) belongs to the

class HBD(R) and lim w(z\ K) = 0 at each point C in Δ- K and lim wiz K) = 1

C /« Λ" except a set of measure zero.

Proof. The first part of our Lemma is a direct consequence of Theorem

2.3. To prove the second part of our lemma, choose a sequence {Un} of open

subsets of A such that Un contains the closure of Un+ι and K and μ\Un-K)

< IIn. Suppose that /«(C) is in C(Δ) and 0 ^/ Λ (O ^ 1 on A and /n(C) = 1 on

Un+i and 0 outside £7W in Δ. Setting un(z) = /Λ(C)^L(C, z)dμ(ζ) and /(C)

= lin/Λ(C) on J, we see that {^U)} and {/Λ(C)} are decreasing sequences of

functions. Hence /(C) belongs to Z7(J) and

O^un(z) -ιv(z; K)^[ K(ζ, z)dμ(ζ)<k/n,
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where k is the Harnack's constant of the set {0, z). Thus we get

iv(z; K)= f f(ζ)K{ζ,z)dμ(C),
J A

which shows that u(z) belongs to HBΣKR). By Theorem 3.3,

ΰmwiz; ϋΓ)=/(C)

on Δ except a set of measure zero. As /(C) = 1 on K, so the proof is completed.

THEOREM 3.4. Let X be an arbitrary Borel subset in Δ. Then

ίϊm w(z X) = 1 a.e. on X5)

and
Inn w{z X) = 0 a.e. on Δ-X.

Proof. Assume that μ(ζ; ζ is in X and limwiz', X) < 1) > 0. Then we

can find a compact subset K of Δ contained in X such that lim w{z X) < 1

on K and ̂ (ϋΓ) > 0. As

l^tϋiz; X)>w(z; jff)SO,

so by Lemma 3.4, we see that lim w(z', X) = 1 almost everywhere on K. This
. *-+ζ

is a contradiction. Thus lim w(zl X) = 1 almost everywhere on X
*-*

Considering ^(^ J - i ί ) = 1-^(2; X), we get the second assertion of the

theorem. This completes the proof.

THEOREM 3.5. The harmonic measure wKz\ X) is in the class HD(R) if

and only if there exists a compact subset K of Δ such that

μ(XU K-XCΛK) =0.

Proof. The sufficiency of our condition is a direct consequence of Lemma

3.4. So we have only to prove the necessity of our condition.

Suppose that w(z\ X) belongs to HD(R). By Lemma 3.3, we can find a

function /(C) in U(Δ) such that

w(z; Z) = f f(C)K(ζ, z)dμ(ζ),

5> Abreviation of "almost everywhere on X", i.e. "on X except a set of ^-measure
zero".
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By Theorem 3.4, ΐϊmwiz; X)=l a.e. on X. By Theorem 3.3, limwiz; X)
z-+ζ z->ζ

= /(C) on A except a set of measure zero. Hence we see that

a.e. on X. Let K= {C C is in J and /(C) 2> 1}. As /(C) is upper semi-continu-

ous, so K is a compact subset of A. Let A = {C C is in X and /(C) = 1}. Then

μ{X-A) = 0 and A is contained in /f and so wiz\ X) = wiz; A)<wiz\ K)

^ [ fiOKiC, z)dμ{ζ)^w(z; X). Hence w(z; K)=w(z; A) and so μiK-A)
J K

= 0. Thus we obtain μ{X U K-XΓΛ K) = 0.

This completes the proof of Theorem 3.5.

6. HD-minimal functions. Corresponding to Theorem 3.2, we can prove

the following measure theoretic characterization of //D-minimality:

THEOREM 3.6. If viz) is HD-minimal, then there exists a point Co in ά with

positive measure and a positive number c such that

viz) -cwiz\ Co).

Conversely, if Co is a point in A with positive measure, then wiz\ Co) is HD-

minimal.

Proof. Suppose that viz) is iZD-minimal. By Corollary 2 of Theorem 3.4,

viz) = lim iv Λ n)iz) on R. So some iv f\n)(z) is not identically zero on R and

viz) > iv Λ n)(z). By the minimality of viz), we can find a positive number c

such that viz) = e(z; Λ w)U). Thus we may assume that sxxpnviz) = 1.

Let z (C) = ίϊϊn v(«) on J. Then v(C) is in Z7(J, μ). By Theorem 3.3, we

can write

= f viOKiC, z)dμiC).
J A

Now we set Kn = {C; C is in J and z (C) >l/w}. Then iΓn is a compact subset

of A and KnCKn+i. As 7^(2)^^(2; ϋΓ»), so we can find a non-negative

number cn such that w(z\ Kn) - cnv(z). By Maximum principle, the set {C;

C is in A and z (C) > 0} = U Kn is of positive measure. Hence we can find a
n = l

number n such that μ(Kn) > 0 and so cΛ > 0. By Theorem 3.4, sup wiz; Kn)
R

= 1. So cn = 1 and i U) = ̂ (2 ϋfn). For simplicity, we put K = iίw. Then we

obtain

https://doi.org/10.1017/S0027763000002142 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002142


A MEASURE ON THE HARMONIC BOUNDARY 217

υ(z)= f K(ζ,z)dμ(ζ).
J K

Next we show that K is atomic, i.e. there exists no decomposition such

that R= A + B, AΓιB = empty and μ(A) μ(B) > 0. Contrary to the assertion,

assume that K= A + B, A ίλ B = empty and μ{A) μ(B) > 0. Choose two com-

pact sets E and F in A such that E and F are contained in A and B respec-

tively and μ(E) μ(F) > 0. Then

υ(z) ^w(z E) and wU; F).

Hence we can find a positive numbers e and / such that

viz) =ew{z; E)=fw{z; F).

By Theorem 3.4, we see that e = f = l. Hence w(z\ E) = w(z\ F). As F is

contained in A — E, so by Lemma 3.4, w{z\ E) vanishes continuously on F.

Thus w(zl F) vanishes continuously on F. Also by Lemma 3.4, w{z; F)

vanishes continuously on A - F. Hence w(z F) vanishes continuously on A.

Thus by the maximum principle, w(zl F) is identically zero on R or μ{F) =0.

This is absurd.

As K is atomic, there exists a point Co in K of positive measure. In fact,

suppose that every point C in K has measure zero. Fix a point C in K. Then

there exists a neighborhood U=U(ζ) of C such that μ(UΓ\K)=0. To see

this, we choose a neighborhood V of C such that μ(F)<μ( lΠ. Then

= ^ ( ^ Π F ) + / i (^- iΓΠF) implies MiΓΠ V) = /*(#) or μ(K-KΓ) V) =

since i ί is atomic. As μ(F) < MJRL), SO we must have μ{KΓ\ V) - 0. Thus

we have only to take £7(C) = V. Now as iί is compact, so a finite number of

such U(C)'s cover iΓ, say U(d) Γ\ - Γ\ U(ζn) D K. Then

which is a contradiction. Hence there exists a point Co in K such that μ(Co) > ®

Again by using the fact that K is atomic, we get μ(K) = μ(ζ0). Thus we find

that

t;(z) = f K(ζ, z)dμ(C) = f /αc. 2 ) ^ ( 0 = ω U ; Co).

Conversely, suppose that Co is a point in A such that μ(Co)>0. If w(z\ Co)

for some u(z) in HD(R), then
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limtviz', Co) Slim u(z) = ΰ(C)

on Δ. By Lemma 3.4

lim w(z Co) = lim w(z Co) = 0

on A except at Co. Hence ΰ(ζ) =0 on Δ except at C
o
. As

u(z) = f u(ζ)K(ζ, z)dμ(ζ)
J A

by Theorem 3.3, so we get

Hence w{z\ Co) is iϊD-minimal.
This completes the proof of Theorem 3.6.
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