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LATTICE VIBRATIONS WITH RAYLEIGH DISSIPATION
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Abstract

We approximate a linear array of coupled harmonic oscillators as a symmetric circular
array of identical masses and springs. The springs are taken to possess mass distributed
along their lengths. We give a Lagrangian formulation of the problem of finding the natural
frequencies of oscillation for the array. Damping terms are included by means of the
Rayleigh dissipation function. A transformation to symmetry coordinates as determined by
the group of rotations of the circle uncouples the equations of motion.

1. Introduction

Transformation to symmetry coordinates to separate coupled equations of motion for
systems of harmonic oscillators is an elegant application of the representation theory
of finite groups (see [8,9]). In the past, we have applied these methods to obtain
the natural frequencies of vibration for various symmetric configurations of point
particles interconnected with ideal springs ([1,2,4]). We have also found applications
for complex symmetry coordinates in other areas ([5,6]).

In this paper, we introduce frictional, damping terms proportional to velocity into
the equations of motion. By taking advantage of Rayleigh's dissipation function [7] to
preserve the Lagrangian formulation of our problem, we are able to fit the computation
of natural frequencies for underdamped systems into our previously developed scheme.

2. Springs with extended mass

Let us suppose that, in an array of particles connected by ideal springs, the i-th and
j -th particles are connected by a spring of force constant k. Further, let us suppose
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[2] Lattice vibrations with Rayleigh dissipation 245

that the mass M of the spring is uniformly distributed along the length of the spring.
We consider a motion of the two particles and spring in which all parts of the spring
move parallel to its length.

We must compute the contribution of the moving spring to the total kinetic energy
of the vibrating array. Let the undistorted length of the spring be L and denote the
displacements of the i-th and j -th particles with respect to their equilibrium locations
by xt and Xj, respectively.

In Figure 1, the i-th particle is shown at the left. The positive directions of motion
for both particles are to the right.

FIGURE 1. The spring with extended mass.

The length of the spring at any instant is given by L + (XJ — *,-). We take the
velocity of a bit of spring located at a distance t to the right of the i-th particle to be

i + r ( x j
L + (xj - xt)

The kinetic energy of this bit of the moving spring is

and the kinetic energy of the whole spring is

M fL+0Ci~Xi)

2(L
M

-x^) Jo
i +

(1)

Thus we have obtained the contribution of a connecting spring to the overall kinetic
energy of the array provided that the motions of all parts of the spring remain parallel
to its own length.
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3. Unitary transformations

In the symmetric arrays which we shall consider, all motion will be confined to a
fixed circle. As the number of particles (N) and connecting springs grows very large,
the circular arrangement may be taken to model a one-dimensional mechanical lattice
of identical particles coupled with harmonic forces.

The symmetry groups for the arrays are the rotation groups C(N) for N identical
point particles placed at the vertices of regular, plane N-sided polygons. The irre-
ducible, unitary representations of C(N) determine the unitary transformation matrix

1

where upq = exp(2nipq/N) with i2 = —1 [2,3]. We employ this matrix to ac-
complish the transformations to symmetry coordinates which separate the coupled
equations of motion for small vibrations of our circular arrangements of particles and
springs.

4. Rayleigh's dissipation function

To maintain the Lagrangian setting, we take advantage of Rayleigh's dissipation
function which we denote by & [7]. We assume that the damping force acting on each
particle is proportional to the particle's velocity. This damping force is not derivable
from any potential energy but arises from frictional effects and is nonconservative. Its
contribution to the total force acting on the i-th particle is —r)xh where the coefficient
of the velocity has the same value for all particles and all directions of motion. We
call r), which has a positive value, the damping coefficient.

In this case, Rayleigh's dissipation function is given by

; = i

where the sum is taken over the N particles in the array. The function may be
interpreted in terms of the rate of energy loss by the array as it does work against
friction. An increment in this work is

N N

dw = 2_]T]^i dx = y j r\x\dt.
i=\ i=l

Thus dw/dt = 2& so that & must be half the rate of energy dissipation resulting
from the action of friction upon the moving system.
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Since the frictional force upon the i-th particle may be obtained from & by partial
differentiation (—dF/dxt), the Lagrangian equation of motion for the array may be
taken as

() £0 (2,
at \ OXiJ aXi axt

f o r / = 1 ,2 , 3 , . . . ,N.

5. Example

The computations for the frequencies of oscillation can be illustrated quite simply
when the number of particles is small. Suppose that we have N = 3 identical particles
symmetrically arranged on a fixed circle as shown in Figure 2. The particles, which
have mass m and are connected to their neighbors by ideal springs, are constrained
to move on the circle. The springs have force constant it and possess uniformly
distributed mass M. The damping coefficient for each particle is JJ.

k,M

k, M

FIGURE 2. Three particles on a fixed circle.

We denote the tangential displacement from equilibrium of the j-th particle by xt

and its velocity by xt. The positive sense of the motion is counterclockwise on the
circle as indicated above.

The kinetic energy of the point masses is m{x\ + x\ + JC|)/2. Equation (1) implies
that the kinetic energy associated with the extended masses of the springs is M(2x\ +
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2x\ + 2x\ + xix2 + x2x3 + x3x{)/6. The elastic potential energy contributed by the
stretched or compressed springs is k(2x\ + 2x\ + 2x\ — 2xxx2 — 2x2x3 — 2x3x{)l2
and Rayleigh's dissipation function is y\(x\ 4- x\ + x\)/2.

Our goal is to write the equations of motion for the circular array in terms of sep-
arated symmetry coordinates. Having done that, we can easily list the frequencies of
the natural modes of vibration. The computations can be stated simply and compactly
in matrix notation. The correctness of the following matrix expressions can be easily
verified.

The total kinetic energy may be written as

1 . . . . 1 (M\(- •

2 l 2 3 1 2 3 2 \ 6 /

where / is the 3-by-3 identity matrix and

In passing, we note that V is the matrix representation for the projection of the vectors
of IR3 onto a plane in which xt + x2 + x3 is constant [2].

The elastic potential energy is

-

and the dissipation function is

& = -T](XiX2X3)I COl(XiX2X3).

The Lagrangian may now be written in the matrix form

L = -(m + M)(xix2x3)I

1 (M\ . .
- 2 \TJ (XlX2X: -k(x!X2x3)Vcol(xix2x3).

To obtain symmetry coordinates zi, z2, z3 as in [2], we choose the transformation
matrix for N = 3,

j -l/2-iV3/2 V
U=— 1-1/2-iV3/2 -l/2 + iV3/2

V 3 V 1 1 1,
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which has inverse

j / - l / 2 - i V 3 / 2 - 1 / 2 + I V 3 / 2 1\
U~l = — - 1 / 2 + 1V3/2 -1 /2 - iV3/2 1 .

V 3 \ 1 1 1/

The unitary matrix U is generated by the irreducible representations of the group of
plane rotations of the equilateral triangle. The transformation to complex symmetry
coordinates is accomplished by taking the products

l = (Z1Z2T3) and Ucol(xix2Xi) = col(ziZ2Z3>,

where I] denotes the complex conjugate of z,. The transformed Lagrangian is

M

L = - (

= -(m + M) (F,zi + Z2Z2 + Z3Z3) - — (FiZi + z2z2) - - * (FiZi +T2Z2)

and the dissipation function is

& = ^n (ziii + Z2Z2 + Z3Z3) •

The equations of motion (2) become

— -= _ + l ^ = o
dt dii dzi dii

for i = 1, 2, 3. These equations are

M
(m + M)l\ - — z'i + 3*2, + rjz, = 0,

2
M.. „,

(m •+• M)z2 z2 + 3KZ2 + nz2 = 0 and
2

(m + M)'z2 + r)z2 = 0.

The simplified equations take the form

+ ^ r ) Zi + r]Zi + 7>kzx = 0,

— I z2 + v)Z2 + 3kz2 = 0 and
2 /

(m + M)h + r\Z2 = 0.
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The natural frequencies of the underdamped harmonic variations in the symmetry
coordinates z, may be listed immediately:

1 yf 12k(m + M/2) - r,2

/ ' ~ / 2 ~ 2 J T 2(w + M/2)

and/3 = 0 .
If the radicand is less than or equal to zero, the vibrations disappear and the return

of the symmetry coordinates from their initial to their equilibrium values is described
by decaying exponential functions.

6. The general case for N identical particles

Let us consider N identical particles symmetrically arranged on a fixed circle with
each connected to its neighbors by springs having force constant k and extended
mass M. Each particle has mass m. The frictional force acting on each particle is
proportional to its velocity and is given by — IJJC,-. The circular arrangement may be
taken to be the result of identifying the first and (N + l)-th particles in a linear chain.
For large N, this identification yields a model of a one-dimensional crystal. The
replacement of the linear chain by the circular arrangement is an application of the
Born cyclic condition to the chain. A portion of the circular arrangement is indicated
in Figure 3.

FIGURE 3. The circle for large N.

Writing the energies, Lagrangian and dissipation function for the general case is
every bit as straightforward as for the special case with N = 3 although the notation
becomes extensive.
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The combined kinetic energy of particles and springs is

" ' -2(7)*xvx,

where / represents the N-by-N identity matrix, V is the N-by-N matrix

f 2
_ j

0

- 1
2

- 1

0 . . .
- 1 . . .

2 . . .

0
0
0

-n
0
0

- 1 0 0 . . . - 1 2)

251

X = col(iii2^3 • • • *N) and X = (xiX2Xi... xN).
The elastic potential energy may be written as

-kXVX,

where X = CO1(XIX2JC3 . . .xN) and X = (xix2x3.. .xN). The dissipation function is

The Lagrangian becomes

L = )- IX -)-(— jkVX - -M)XIX kXVX.

T h e uni tary t r ans format ion to s y m m e t r y coord ina tes Z1 .Z2 .Z3 . - - - ,ZN is a c c o m -
pl i shed by a mat r ix s imi lar i ty t r ans format ion wi th

(exp(2ni/N) exp(4ni/N) txp(6ni/N) ... \\
exp(4ni/N) exp(8ni/N exp(\2ni/N) ... 1

exp(127r//A^) exp(187r//AO . . . 1U =

1 1 1

and its transposed complex conjugate U '. The matrix U is derived from the irre-
ducible representations of the plane rotations of a regular //-sided polygon.
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The transformed Lagrangian is

[9]

L = -(
2

-2U'Z

/4sin2^
0
0

0
0

2 \ 6

2("'
0

4sin2f

0
0

-M)ZZ

0
0

4sin2f

0
0

/4sin2£
0
0

0
0

0
in2

0
4sin2f

0
0

0
0

4sin2f

0
0

*+ &11

0
0
0

0

0
0
0

2 (A

0
N

0\
0
0

0

o)

0)
0
0

T n
o>

z,

where Z = col(z\Z2Z3 • • • ZN), Z = col(iiZ2Z3 • • • ZN), Z = (ziz2Z3 • • • ZN) and Z =

(Z1Z2Z3 ...ZN) and Ti, zt represent the complex conjugates of the coordinate z, and
velocity it-

The dissipation function becomes

& = \r)ZZ.

Again, the equations of motion are given by

dt

for i = 1, 2, 3 , . . . , N. Thus we have N equations in which coordinates are now
completely separated:

\m + (l - - sin2 ^ J M \ Z , + TJZ, + U&sin2 ^ J z, = 0.

The natural frequency associated with the underdamped harmonic vibration of the
f-th symmetry coordinate (i — 1, 2,3 N — I) is

(l-|sin2f)M]
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Note that to achieve a vibrating motion for the i-th symmetry coordinate, r\ must be
small enough that the radicand in the expression for/, remains positive. For i = N,
fN=0.

We also note that if rj = 0, the natural frequencies become those found in [1].

Acknowledgement

The authors thank Professor Reuben Farley of Virginia Commonwealth University
for reading this manuscript and for his valuable suggestions.

References

[1] J. N. Boyd and P. N. Raychowdhury, "A one-dimensional crystal with nearest neighbors coupled
through their velocities", J. Dynamic Systems, Measurement and Control 103 (1982) 293-296.

[2] J. N. Boyd and P. N. Raychowdhury, "An application of projection operators to a one-dimensional
crystal", Bull, of the Institute of Math., Academia Sinica 7 (1979) 133-134.

[3] J. N. Boyd and P. N. Raychowdhury, "Representation theory of finite Abelian groups applied to a
linear diatomic crystal", Internat. J. Math, and Math. Sci. 3 (1980) 559-574.

[4] J. N. Boyd and P. N. Raychowdhury, "A group theoretic approach to generalized harmonic vibrations
in a one-dimensional lattice", Internat. J. Math, and Math. Sci. 9 (1986) 131-136.

[5] J. N. Boyd and P. N. Raychowdhury, "A double chain of coupled circuits in analogy with mechanical
lattices", Internat. J. Math, and Math. Sci. 14 (1991) 403-406.

[6] J. N. Boyd and P. N. Raychowdhury, "A geometrical approach to maximizing a variance", Appl.
Math. Modelling 18 (1994) 697-700.

[7] H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1965) 21-22.
[8] M. Hamermesh, Group Theory and Its Application to Physical Problems (Addison-Wesley, Reading,

MA, 1962).
[9] A. Nussbaum, "Group theory and normal modes", Amer. J. Physics 36 (1968) 529-539.

https://doi.org/10.1017/S1446181100011895 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100011895

