
3

Pinch technique to all orders

In this chapter, we present the generalization of the pinch technique (PT) beyond
one loop. The key observation is that the one-loop PT rearrangements described
in Chapter 1 constitute the lowest-order manifestation of a fundamental cancella-
tion taking place between graphs of distinct kinematic nature. This cancellation
is encoded in the Slavnov–Taylor identity satisfied by a special Green’s function,
which serves as a common kernel to all higher-order self-energy and vertex dia-
grams. This allows for the collective treatment of entire sets of diagrams, providing
a compact way of extending the PT construction to higher orders. In addition, we
will show that, quite remarkably, the correspondence between the pinch technique
and the background Feynman gauge established in Chapter 1 is not accidental but
persists to all orders.

3.1 The s-t cancellation to all orders

The generalization of the pinch technique to all orders relies on the following basic
observations. The vast PT cancellations between one-loop Feynman diagrams,
studied in Chapter 1, are in fact encoded in the Slavnov–Taylor identity obeyed
by the kernel AμAνqq̄ (with the gluons off shell and the quarks on shell). In
the Feynman gauge, this Slavnov–Taylor identity is triggered by the longitudinal
momenta k

μ

1 and kν2 contained in �P
αμν(q, k1, k2). The tree-level version of this

Slavnov-Taylor identity gives rise precisely to the s-t cancellation discussed in
Section 1.7.2 (but with the gluons on shell) for the tree-level process gg → qq̄,
namely, the lowest-order contribution to the aforementioned amplitude AμAνqq̄.

Indeed, as explained in Section 1.7.2, at tree-level, the preceding amplitude, denoted
by T mn

μν is the sum of two distinct parts: an s-channel subamplitude, T mn
s,μν , given

in Figure 1.16(c) and t- and u-channel subamplitudes containing an internal quark
propagator, T mn

t, μν , shown in diagrams (a) and (b) of the same figure.
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Figure 3.1. The one-loop pinch technique seen in terms of the fundamental s-t
cancellation. The self-energy-like contribution coming from the vertex cancels
exactly against the contribution coming from the propagator. Notice that none of
the effective vertices induced after the cancellation is contained in the original
Lagrangian of the theory; their field-theoretic interpretation will be presented in
Chapter 4.

When T mn
μν is contracted by k

μ

1 or kν2 , a characteristic cancellation takes place
between Tsmnμν and Ttmnμν . To see this, use the elementary Ward identity satisfied
by �α

μν(q, k1, k2) and note that the term proportional to q2 cancels the d(q), thus
allowing communication with the t-channel graphs (in Section 1.7.2, we used �F

instead, but this makes no difference; see the comment following Eq. (1.130)).
Using, in addition, current conservation, qαVc

α = 0, and keeping the gluons off
shell (i.e., not setting k2

1 = k2
2 = 0, as we did in Section 1.7.2), we have

k
μ

1 Tsmnμν = g2f mncVc
α(k2

2g
α
ν − k2νk

α
2 )d(q2) − g2f mncVc

ν

k
μ

1 Ttmnμν = g2f mncVc
ν , (3.1)

so that

k
μ

1 T mn
μν = g2f mncVc

α(k2
2g

α
ν − k2νk

α
2 )d(q2). (3.2)

The important point to realize is that one can recast the entire one-loop PT con-
struction in terms of the s-t cancellation. The precise way in which the preceding
cancellation is realized inside the one-loop self-energy and vertex graphs, giving
rise to the PT rearrangements described in Chapter 1, is shown schematically in
Figure 3.1.

It turns out that the pinch technique may be extended to higher orders simply
by pursuing the preceding cancellations beyond tree level [1, 2]. Specifically, the
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Figure 3.2. The fundamental amplitude receiving the action of the longitudinal
momenta stemming from �P. The shaded blob represents the (connected) kernel
corresponding to the process AA → qq̄.

all-order version of the Slavnov–Taylor identity satisfied by T mn
μν , appropriately

interpreted, allows the generalization of the PT construction to all orders.

The subset of all graphs that receive the action of the longitudinal momenta con-
tained in �P

αμν(q, k1, k2) is shown in Figure 3.2: it comprises precisely the kernel
Am
μ (k1)An

ν(k2) → q(p1)q̄(p2), i.e., the all-order version of T mn
μν . In terms of Green’s

functions,

T mn
μν = ū(p1)

[
Cmnρσ (k1, k2, p1, p2)
ρ

μ(k1)
σ
ν (k2)

]
u(p2). (3.3)

Clearly, the two internal gluons are off shell, whereas the two external quarks are
on-shell, satisfying ū(p1)S−1(p1)

∣∣
/p1=m

= S−1(p2)u(p2)
∣∣
/p2=m

= 0, where S(p) is
the full-quark propagator.

Let us focus on the Slavnov–Taylor identity satisfied by the amplitude T mn
μν . Fol-

lowing standard techniques [3], one exploits ghost charge conservation to write the
trivial position space identity:〈

T [c̄m(x)An
ν(y)q(z)q̄(w)]

〉 = 0, (3.4)

with T denoting the time-ordered product of fields. Rewriting the fields in terms of
their BRST-transformed counterparts, using their equations of motion and equal-
time commutation relations, and Fourier transforming the final result to momentum
space, we find

k
μ

1 C
mn
μν − k2νG

mn
1 + igf nrsQmrs

1ν − gXmn
1ν − gX̄mn

1ν = 0, (3.5)

where the various Green’s functions appearing on the right-hand side (rhs) are
defined in Figure 3.3. Note that the terms X1ν and X̄1ν vanish on shell because
they are missing one fermion propagator; at lowest order, they are simply the
terms proportional to the inverse tree-level propagators (/p1 −m) and (/p2 −m)
first encountered in the one-loop PT calculations of Chapter 1. After multiplying
Eq. (3.5) by the two inverse propagators S−1(p1)S−1(p2), we thus arrive at the
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Figure 3.3. Diagrammatic representation of the Green’s functions appearing in the
Slavnov–Taylor identity (Eq. (3.5)). Ghost Green’s functions receive a contribution
from similar terms with the ghost arrows reversed (not shown).

on-shell Slavnov–Taylor identity

k
μ

1 T mn
μν = Smn

1ν , (3.6)

with1

Smn
1ν = ū(p1)

[
gf nrsQmrs

1ν (k1, k2) − k2νGmn
1 (k1, k2)D(k2)

]
D(k1)u(p2), (3.7)

with Gmn
1 and Qars

1ν defined in Figure 3.3.

In perturbation theory, both T mn
μν and Smn

1ν are given by Feynman diagrams, which
can be separated into distinct classes according to their kinematic dependence and
topological properties (Figure 3.4). Graphs that do not contain information about
the external test quarks are self-energy graphs, whereas those depending on the
quantum numbers of the test quarks are vertex graphs. The former depend only on
the variable s, the latter on both s and the mass m of the test quarks; equivalently,
we will refer to them as s- or t-channel graphs, respectively. In addition to the s-t
classification, Feynman diagrams can be separated into 1PI and 1PR graphs. The
crucial point is that the action of the momentum k

μ

1 or kν2 on T mn
μν does not respect,

in general, the original s-t and 1PI-1PR separations furnished by the Feynman
diagrams. In other words, even though Eq. (3.6) holds for the entire amplitude, it
is not true for the individual subamplitudes, i.e.,

k
μ

1

[
T mn
μν

]
x,Y


= [
Smn

1ν

]
x,Y

x = s, t ; Y = I,R, (3.8)

1 In what follows, the only momenta we indicate in the Green’s functions are the ones corresponding to the gluons
(ki ); the quark momenta (pi ) will instead be omitted.
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[
T (n)
μν

]
t,I

= (n)

[
T (n)
μν

]
s,I

=
(n) [

T (n)
μν

]
s,R

=

[
T (n)
μν

]
t,R

=
(n3)

(n1)

(n2)

(n1)

(n2)

Figure 3.4. Decomposition at an arbitrary perturbative level n of the fundamental
amplitude T mn

μν in terms of s and t channels and 1PI and 1PR components.

where I (R) indicates the one-particle irreducible (reducible) parts of the amplitude
involved. Evidently, whereas the characterization of graphs as propagator- and
vertex-like is unambiguous in the absence of longitudinal momenta (e.g., in a
scalar theory or in QED), their presence in non-Abelian gauge theories tends to
mix propagator- and vertex-like graphs. Similarly, 1PR graphs can be effectively
converted into 1PI graphs (the opposite cannot happen). The inequality between
the two sides of Eq. (3.8) is precisely due to propagator-like terms, such as those
encountered in the one-loop PT calculations; they have the characteristic feature
that, when depicted by means of Feynman diagrams, contains unphysical vertices,
i.e., vertices that do not exist in the original Lagrangian (Figure 3.5). All such
terms cancel exactly against each other. Thus, after the PT cancellations have been
enforced, we have [

k
μ

1 T mn
μν

]PT

t,I
≡ [

Smn
1ν

]
t,I
. (3.9)

The nontrivial step for generalizing the pinch technique to all orders is then the
following: instead of going through the arduous task of manipulating the left-
hand side of Eq. (3.9) to determine the pinching parts and explicitly enforce their
cancellation, use directly the rhs, which already contains the answer! Indeed, the rhs
involves only conventional (ghost) Green’s functions expressed in terms of standard
Feynman rules with no reference to unphysical vertices. Thus, its separation into
propagator- and vertexlike graphs can be carried out unambiguously because all
possibility for mixing has been eliminated.

3.2 Quark-gluon vertex and gluon propagator to all orders

The considerations just presented can be used to generalize the PT construction to
all orders. In what follows, we will denote with a caret superscript the PT boxes,
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kμ
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→

+→ −

→ − −

→
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kμ
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kμ
1 ×

Figure 3.5. Some schematic two-loop examples of PT terms containing unphysical
vertices, together with the Feynman diagrams from which they originate. Notice
that the sum of all these terms is zero.

self-energies, and vertices and with a tilde the corresponding background Feynman
gauge objects; the conventional renormalizable Feynman gauge terms will not carry
any superscript.

To begin, it is immediate to recognize that in the renormalizable Feynman gauge,
box diagrams of arbitrary order n,B(n), coincide with the PT boxes B̂(n) because all
three-gluon vertices are internal; that is, they do not provide longitudinal momenta
because inside the loops there is no preferred direction. Thus, they coincide with
the background Feynman gauge boxes, B̃(n), i.e.,

B̂(n) = B(n) = B̃(n) (3.10)

for every n. The same is true for the PT quark self-energies; for exactly the same
reason, they coincide with their renormalizable Feynman gauge (and background
Feynman gauge) counterparts, i.e.,

�̂ij (n) = �ij (n) = �̃ij (n). (3.11)
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Figure 3.6. The Feynman diagrams contributing to the quark-gluon vertex �a
α in

the Rξ gauge. Diagram (b) has a similar contribution (b′) with the ghost arrow
reversed. Kernels appearing in these diagrams are t-channel and 1PI with respect
to s-channel cuts.

For the construction of the quark-gluon 1PI vertex �̂a
α, start by noting that of all

diagrams contributing to this vertex in the renormalizable Feynman gauge (shown
in Figure 3.6), the only one receiving the action of the pinching momenta is diagram
(a). Thus, we carry out the PT vertex decomposition of Eq. (1.41) in diagram (a)
and concentrate on the �P part only; specifically,

(a)P = gf amn

∫
k1

(gναk
μ

1 − gμα k
ν
2 )
[
T mn
μν (k1, k2)

]
t,I
. (3.12)

Following the discussion presented in the previous subsection, the pinching action
amounts to the replacements

k
μ

1

[
T mn
μν

]
t,I

→ [
k
μ

1 T mn
μν

]PT

t,I
= [

Smn
1ν

]
t,I (3.13)

kν2
[
T mn
μν

]
t,I

→ [
kν2T mn

μν

]PT

t,I
= [

Smn
2μ

]
t,I
, (3.14)

or equivalently,

(a)P → gf amn

∫
k1

{[
Smn

1α (k1, k2)
]
t,I − [

Smn
2α (k1, k2)

]
t,I

}
. (3.15)

At this point, the construction of the effective PT quark-gluon vertex has been
completed, and we have

�̂a
α(q, p2,−p1) = (a)F + (b) + (b′) + (c)

+ gf amn

∫
k1

{[
Smn

1α (k1, k2)
]
t,I − [

Smn
2α (k1, k2)

]
t,I

}
. (3.16)

We emphasize that in the construction presented thus far, we have never resorted
to the BFM formalism but have only used the BRST identity of Eq. (3.6) and the
replacements (3.13) and (3.14).

The next important question is whether the one-loop correspondence between the
pinch technique and the background Feynman gauge persists to all orders. This is
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Kmrs
σ

Aa
α

(d)

Aa
α

(e)

Qmrs
1ν =

m

+

m

ν
r

s

ν
r

s

(d) (e)

Figure 3.7. (Top) The decomposition of the auxiliary function Qmrs
1ν in terms of

its 1PI and 1PR components. Notice that the kernel Kmrs
σ is 1PI with respect to

s-channel cuts. (Bottom) Additional topologies present in the BFM quark-gluon
vertex and dynamically generated in the PT procedure. Both diagrams have similar
contributions (d ′) and (e′) with the ghost arrows reversed.

indeed so, as can be seen by comparing directly the PT vertex �̂a
α just constructed

and the quark-gluon vertex �̃a
α written in the background Feynman gauge. We start

by observing that all inert terms contained in the original renormalizable Feynman
gauge �a

α vertex carry over to the same subgroups of background Feynman gauge
graphs. To facilitate this identification, we recall (see also the Feynman rules
reported in the appendix) that to lowest order, one has the identities �F = �ÂAA

and �AAAA = �ÂAAA, so that

(a)F = (̃a) (c) = (̃c), (3.17)

where a tilde means that the (external) gluon Aa
α has been effectively converted

into a background gluon Âa
α.

As should be familiar by now, the only exception to this rule are the ghost dia-
grams (d) and (d ′): they must be combined with the remaining terms from the PT
construction to arrive at the characteristic ghost sector of the background Feyn-
man gauge (see Figure 3.7), namely, the symmetric ghost-gluon vertex�Âcc̄ and the
four-particle ghost vertex�ÂAcc̄, absent in the conventionalRξ gauge fixing. Indeed,
using Eq. (3.7), we find (omitting the spinors)

gf amn

∫
k1

[
Smn

1α (k1, k2)
]
t,I = −gf amn

∫
k1

k2αD(k1)D(k2)
[
Gmn

1 (k1, k2)
]
t,I

+ g2f amnf nrs

∫
k1

D(k1)
[
Qmrs

1α (k1, k2)
]
t,I , (3.18)
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with a similar relation holding for the S2 term. Then we find

(b) − gf amn

∫
k1

k2αD(k1)D(k2)
[
Gmn

1 (k1, k2)
]
t,I

= gf amn

∫
k1

(k1 − k2)αD(k1)D(k2)
[
Gmn

1 (k1, k2)
]
t,I = (̂b), (3.19)

and using the decomposition for the Qmrs
1ν shown in Figure 3.2,

g2f amnf nrs

∫
k1

D(k1)
[
Qmrs

1α (k1, k2)
]
t,I

= ig2f amnf nrs

∫
k1

∫
k3

D(k1)D(k3)
σ
α (k4)

{[
Kmrs
σ (k1, k3, k4)

]
t,I

− i�grs
σ (−k2, k3, k4)D(k2)

[
Gmg

1 (k1, k2)
]
t,I

}
= (d̃) + (̃e), (3.20)

with Kmrs
σ representing the 1PI five-particle kernel shown in Figure 3.2, whereas

�
grs
σ is the usual ghost-gluon vertex.

In exactly the same way, the remaining S2 will generate in (b̃′) (when added to the
Rξ ghost diagram (b′)) as well as (d̃ ′) and (ẽ′) so that finally we get the relation

�̂a
α(q, p2,−p1) = �̃a

α(q, p2,−p1). (3.21)

The final step is to construct the all-order PT gluon self-energy �̂ab
αβ(q). Notice

that at this point, one would expect that it, too, coincides with the background
Feynman gauge gluon self-energy �̃ab

αβ(q) because the boxes B̂ and the vertices
�̂a
α do coincide with the corresponding background Feynman gauge quantities, and

the S-matrix is unique.

In what follows, we outline an indirect inductive proof of this result; the gluon
self-energy will not be constructed explicitly here but rather in Chapter 6, in the
more general context of the Schwinger-Dyson equations. We will use the strong
induction principle, which states that a given predicate P (n) on N is true ∀ n ∈ N,
if P (k) is true whenever P (j ) is true ∀ j ∈ N with j < k.2

To avoid notational clutter, we suppress all color, Lorentz, and momentum labels.
At one [4] and two loops (i.e., n = 1, 2) [5,6], we know from explicit calculations
that the PT and background Feynman gauge Green’s functions coincide. Let us
then assume that the PT-BFM correspondence

�̂(�) = �̃(�), �̂(�) = �̃(�), B̂ (�) = B̃(�) (3.22)

2 In simple terms, whereas in the normal induction, one assumes the validity of a property at order n− 1 (only)
and then demonstrates that it is true also at order n, the strong induction requires the property to be valid at all
previous orders 1, 2, . . . n− 1.
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holds for every � = 1, . . . , n− 1 (strong induction hypothesis). We will then show
that the PT gluon self-energy is equal to the background Feynman gauge gluon
self-energy at order n, i.e., �̂(n) ≡ �̃(n).

The S-matrix element of order n assumes the form

S(n) = {�
�}(n) + B(n). (3.23)

Moreover, because it is unique, whether written in the renormalizable Feynman
gauge or the background Feynman gauge, as well as before and after the PT
rearrangement, we have that S(n) ≡ Ŝ(n) ≡ S̃(n). Using then Eq. (3.10) (which is
valid to all orders, implying that Eq. (3.22) holds also when � = n), we find that

{�
�}(n) = {�̂
̂�̂}(n) = {�̃
̃�̃}(n). (3.24)

The preceding amplitudes can then be split into 1PR and 1PI parts; in particular,
because of the strong inductive hypothesis (3.22), the 1PR part after the PT re-
arrangement coincides with the 1PR part written in the background Feynman
gauge because

{�
�}(n)
R = �(n1)
(n2)�(n3)

{
n1, n2, n3 < n

n1 + n2 + n3 = n.
(3.25)

Then Eq. (3.24) states the equivalence of the 1PI parts, i.e.,

{�̂
̂�̂}(n)
I = {�̃
̃�̃}(n)

I , (3.26)

which implies

0 = [
�̂(n) − �̃(n)

]

(0)�(0) + �(0)
(0)

[
�̂(n) − �̃(n)

]
+�(0)
(0)

[
�̂(n) − �̃(n)

]

(0)�(0). (3.27)

At this point, we do not have the equality we want yet but have only that

�̂(n) = �̃(n) + f (n)�(0) (3.28)

�̂(n) = �̃(n) − 2iq2f (n), (3.29)

with f (n) being an arbitrary function of q2. However, from the explicit construction
of the PT quark-gluon vertex of the previous section, we have the all-order identity
(3.21) so that the second of Eqs. (3.22) actually holds true even when � = n, i.e.,
�̂(n) ≡ �̃(n). Therefore f = 0, and one immediately concludes that

�̂(n) = �̃(n). (3.30)

Hence, by strong induction, the preceding relation is true for any given order n.
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Reinstating the Lorentz and gauge group structures, we arrive at the announced
result3:

�̂ab
αβ(q) ≡ �̃ab

αβ(q). (3.31)

Similar techniques have been used in [7] to generalize to all orders the PT algorithm
in the electroweak sector of the standard model (we will briefly touch on this in
Chapter 9).
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