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Trivial Units for Group Rings with
G-adapted Coefficient Rings

Allen Herman, Yuanlin Li, and M. M. Parmenter

Abstract. For each finite group G for which the integral group ring ZG has only trivial units, we give

ring-theoretic conditions for a commutative ring R under which the group ring RG has nontrivial

units. Several examples of rings satisfying the conditions and rings not satisfying the conditions are

given. In addition, we extend a well-known result for fields by showing that if R is a ring of finite

characteristic and RG has only trivial units, then G has order at most 3.

Let R be a ring, and G be a group. We say that the group ring RG has only trivial

units if U (RG) = U (R)G. In the case where R = F is a field, the group algebra FG

is known to have only trivial units if F = Z2 and |G| ≤ 3, or F = Z3 and |G| ≤ 2,
or if F is any field and G is a u.p. group (see [6, 8]). It is a famous open problem
whether or not the group algebra over any field of a torsion-free group G has only

trivial units. (This is known for torsion-free nilpotent groups but not known for
torsion-free supersolvable groups [1]).

The current study was motivated by the study of the normalizer property for
group rings of finite groups and we will assume from now on that G is finite. This

is the question of which finite groups have the property that the only inner auto-
morphisms of ZG which normalize G are induced from inner automorphisms of G.
The question becomes more difficult when Z is replaced by an arbitrary G-adapted
ring—an integral domain of characteristic 0 with the property that no prime divisor

of the order of G is invertible. If R is a G-adapted coefficient ring, then in the pres-
ence of an abelian normal subgroup N of G such that R[G/N] has only trivial units,
the proof that G has the normalizer property in ZG in [5, Proposition 2.20] can be
extended to show that G has the normalizer property in RG. But for which groups G

and G-adapted rings R does RG have only trivial units?

Since G-adapted rings contain Z, this can only occur if ZG contains only triv-
ial units, and such groups were classified by Higman [3]. These groups are abelian
groups of exponent dividing 4 or 6, and Hamiltonian 2-groups. Our approach is

to analyze what happens if Z is replaced by a G-adapted ring R in these families of
groups, following the elementary proof of Higman’s classification given in [4]. We
also discuss more general rings R—in particular, the final section of the paper is con-
cerned exclusively with rings of finite characteristic. We observe, however, that if R is

an integral domain of characteristic 0 which is not G-adapted, then RG must always
contain nontrivial units. To see this, note that in such a situation G must contain an
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element x of prime order p where p is invertible in R. If p ≥ 5, RG contains a non-
trivial Bass cyclic unit [7, p. 237]. If p = 3, 1

3
+ 2

3
x is a nontrivial unit (with inverse

1

3
− 2

3
x + 4

3
x2). If p = 2,− 1

2
+ 3

2
x is a nontrivial unit (with inverse 1

4
+ 3

4
x).

One example of a G-adapted ring R which properly contains Z and for which

U(RG) is trivial whenever U(ZG) is trivial is the polynomial ring Z[t]. This is because
(Z[t])G ∼

= (ZG)[t] and, since ZG contains no non-zero nilpotent elements whenever
U(ZG) is trivial [7, p. 231], it follows [2] that U((ZG)[t]) = U(ZG) = ±G in these
cases. Hence U((Z[t])G) = ±G = (U(Z[t])) · G, as claimed. Other similar examples

are easy to construct, but we have been unable to find “interesting” examples of G-
adapted rings satisfying this condition.

1 Abelian Groups of Exponent 2

In this section we start by focussing on the case when G is cyclic of order 2. The first

result gives a pair of ring-theoretic conditions on R that are necessary and sufficient
for RC2 to possess nontrivial units.

Proposition 1 Let R be a commutative ring with unity. The following are equivalent.

(i) RC2 has nontrivial units.

(ii) There exist a, b 6= 0 in R such that a2 − b2 ∈ U (R).

(iii) There exists a 6= 0, 1 in R such that 2a − 1 ∈ U (R).

Proof Suppose u ∈ U (RC2) is a nontrivial unit in RC2. Let C2 = 〈x〉. Then u =

a + bx, for some a, b ∈ R with a, b 6= 0. Since u is a unit, for all s, t ∈ R there exists
v, w ∈ R such that (a + bx)(v + wx) = s + tx. Therefore, the system of equations

av + bw = s

bv + aw = t

always has a solution in R. This is equivalent to the matrix

[

a b

b a

]

having an inverse in M2(R). Since the determinant property holds over arbitrary
commutative rings with unity, this holds if and only if a2 − b2 ∈ U (R). So (i) is
equivalent to (ii).

For the other equivalence, suppose u ∈ U (RC2) is a nontrivial unit in RC2. As-

suming without loss of generality that u has augmentation 1, we can write u =

a + (1 − a)x, for some a 6= 0, 1 in R. The preceding proof shows that this is a
nontrivial unit of RC2 if and only if a2 − (1 − a)2

= 2a − 1 ∈ U (R). So (i) is also
equivalent to (iii).

For integral domains of characteristic zero, the next corollary shows that RC2 hav-
ing only trivial units forces a condition much stronger than R being C2-adapted.
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Corollary 1 Let R be a commutative ring with unity of characteristic 0. If RC2 has

only trivial units, then no integer prime p can be invertible in R. In particular, Z is the

unique subring R of Q for which RC2 has only trivial units.

Proof Suppose p is an integer prime which is invertible in a commutative ring R

containing Z. If p is odd, then there exists a positive integer s such that (s + 1)2 − s2
=

p, so RC2 will have nontrivial units by the preceding proposition. If p = 2, then
Z[ 1

2
] ⊆ R, and so 1

8
∈ R. But 32 − 12

= 8, so RC2 will have nontrivial units by the
above proposition. This proves the first statement.

If R is a subring of Q properly containing Z, then R contains a lowest terms frac-

tion m
n

/∈ Z. Since m and n are relatively prime, there exists integers k, ℓ such that
km + ℓn = 1. But then k( m

n
) + ℓ( n

n
) =

1

n
∈ R. If p is any prime divisor of n, then

1

n
∈ R implies that 1

p
∈ R, and so RC2 has nontrivial units by the first statement. On

the other hand, ZC2 has only trivial units, so the second statement follows.

Example 1 There are commutative rings R of characteristic 0 with no invertible
primes for which RC2 has nontrivial units.

Let d > 1 be a square-free integer, and let R = Z[
√

d]. Then the equation x2 −
(y
√

d)2
= 1 is exactly Pell’s equation x2 − dy2

= 1, which is well-known to have
infinitely many integral solutions. Therefore, Z[

√
d]C2 always has nontrivial units,

for any square-free positive integer d.

Example 2 Nevertheless there are C2-adapted rings R of algebraic integers which
properly contain Z with the property that RC2 has only trivial units.

Consider the case of R = Z[
√
−d] with d either 1 or a square-free positive integer.

If a = x + y
√
−d ∈ R with x, y ∈ Z, then 2a−1 is a unit in R if and only if its norm is

±1. But the norm of 2a− 1 is 4(x2 − x + dy2) + 1, so in order for this to equal ±1 we
must have x2−x+dy2

= − 1

2
or 0. The first of these is impossible, so we conclude that

x = 1 ±
√

1 − 4dy2/2 ∈ Z, and hence y = 0. But then a = 0, 1, so condition (iii)

is not satisfied. Therefore, Z[
√
−d]C2 has only trivial units. (Similar reasoning can

be used to show that if R is the ring of algebraic integers in the imaginary quadratic
number field Q(

√
−d), then RC2 also has only trivial units.)

The next result shows that, in almost all cases, the ring conditions of Proposition 1
apply to finite elementary abelian 2-groups.

Proposition 2 Let R be a commutative ring with unity. Assume that R 6= Z2 and also

that if R is of characteristic 3, then it contains some unit u 6= ±1. If RC2 and RG have

only trivial units, then R[G ×C2] has only trivial units.

Proof Let u ∈ U (R[G × C2]). Without loss of generality, assume u has augmenta-

tion 1. Then u = a + bx, where C2 = 〈x〉, a, b ∈ RG, and ω(a) + ω(b) = 1, with ω
denoting the augmentation map into R. Similarly, u−1

= c+dx, and ω(c)+ω(d) = 1.
Then (a + bx)(c + dx) = 1 implies that

ac + bd = 1 and ad + bc = 0
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has a solution in RG. As in the proof of Higman’s Lemma this leads to the equations
(a + b)(c + d) = 1 and (a − b)(c − d) = 1 in RG. It follows that a + b is a unit of

augmentation 1 in RG, so since RG has only trivial units we have a +b = g ∈ G. Also,
a− b ∈ U (RG), so a− b = vh, for some v ∈ U (R) and h ∈ G. Since v = 2ω(a)− 1 is
a unit in R and RC2 has trivial units, we conclude from Proposition 1 that ω(a) must
equal 0 or 1, and hence v = ±1.

Now 2a = g + vh and 2b = g − vh in RG. If g = h, then either 2a = 0 or 2b = 0.
Since our assumptions that R 6= Z2 and RC2 has only trivial units imply that 2 is not
a zero divisor in R (Proposition 1), we have that a = 0 or b = 0. If b = 0, then
u ∈ U (RG), so u is a trivial unit. If a = 0, then ux ∈ U (RG), so ux is a trivial unit,

and hence u is also a trivial unit.
If g 6= h, then 2a = g + vh implies that the coefficient of g in a is 2−1, so 2 is

invertible in R. But then setting a = −2−1 in Proposition 1(iii) yields that −2−1
= 1

so char(R) = 3. However, we can then set a = 2−1(1 + u) where u is as described in

the hypothesis, giving a contradiction.

To see that both conditions of Proposition 2 are necessary we observe

(a) Z2C2 has only trivial units but Z2(C2 ×C2) has nontrivial units.
(b) If char(R) = 3 and R has only ±1 as units, then RC2 has only trivial units but

R(C2 ×C2) has nontrivial units.

2 Abelian Groups of Exponent 3

In the case when the group G is cyclic of order 3, we again give a ring-theoretic con-
dition equivalent to RC3 having nontrivial units.

Proposition 3 Let R be a commutative ring with unity. Then RC3 has nontrivial units

if and only if there exist a, b ∈ R such that (a, b) 6= (0, 0), (−1, 0), or (−1,−1) and

1 + 3a + 3a2 + 3b2 − 3ab ∈ U (R).

Proof Let RC3 = R〈x〉. Let u be a unit of RC3 with augmentation 1. Then u =

1 + (1 − x)(a + bx), for some a, b ∈ R, and u is a nontrivial unit if and only if
(a, b) 6= (0, 0), (−1, 0), (−1,−1). In the quotient ring R〈x〉/〈1 + x + x2〉 ∼

= R[y],

where y3
= 1, y 6= 1, and y2 + y + 1 = 0, we have that the image of u is the unit

v = 1 + (1 − y)(a + by) = (1 + a + b) + (2b − a)y.
Now, for any element s+t y ∈ R[y], we can find p+qy such that v(p+qy) = s+t y.

Since

v(p + qy) =

(

(1 + a + b) + (2b − a)y
)

(p + qy)

=

(

(1 + a + b)p − (2b − a)q
)

+
(

(2b − a)p + (1 − b + 2a)q
)

y,

this implies that the system

(1 + a + b)p − (2b − a)q = s

(2b − a)p + (1 − b + 2a)q = t
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in the variables p and q has a solution in R for any s, t ∈ R. Therefore, the determi-
nant d of the coefficient matrix arising from the above system must be a unit of R.

This d is equal to (1 + a + b)(1 − b + 2a) + (2b − a)2
= 1 + 3a + 3a2 + 3b2 − 3ab, so

the above condition is necessary for the existence of nontrivial units.

Now assume that a and b are elements of R satisfying the condition. Let e =

a2 + b2 + a − ab, and let d = 1 + 3e. We are assuming that d ∈ U (R). Let u =

1 + (1 − x)(a + bx), and let w = d−1((1 + a + e) + (e − b)x + (e + b − a)x2). Then it
is straightforward to check that uw = 1, and hence u is a nontrivial unit of RC3.

One can prove easily that Z does not satisfy the condition. The equation 3e + 1 =

±1, has the unique integer solution e = 0. Now solving e = a + a2 + b2 − ab = 0 for
b in terms of a gives

b =

a ±
√
−3a2 − 4a

2
.

In order for −3a2 − 4a to be positive, we must have −4

3
≤ a ≤ 0. So the only

integer solutions for a are 0 and −1, which correspond to the three pairs of disallowed

solutions for the condition.

Corollary 2 Suppose R is a commutative ring with unity of characteristic 0. If RC3 has

only trivial units, then no integer prime p can be invertible in R.

Proof Assume RC3 has only trivial units, and let p be an integer prime such that p

is invertible in R. If p = 3, then the conclusion follows from remarks in the intro-
duction. If p 6= 3, then let n be the least power of p so that pn ≡ 1 mod 3, and let
m be the positive integer for which pn

= 1 + 3m. Then p2n
= 1 + 3(2m + 3m2),

and p2n is invertible in R. Letting a = 2m and b = m, we have a2 + b2 + a − ab =

4m2 + m2 + 2m − 2m2
= 2m + 3m2. Thus the condition in Proposition 3 is satisfied,

and so RC3 has nontrivial units.

Using the condition of Proposition 3, we have been able to show that if R is the ring
of algebraic integers in a quadratic number field Q(

√
d), d a square-free integer, then

RC3 has nontrivial units unless d = −3. (Our arguments are based on an analysis
of solutions to certain Pell equations, as in Example 1.) The fact that RC3 has only

trivial units, where R is the ring of algebraic integers of Q[
√
−3], is a consequence of

[3, Theorems 2 and 3].

No problem is encountered extending the condition of Proposition 3 to elemen-
tary abelian 3-groups in almost all cases.

Proposition 4 Let R be a commutative ring with unity such that R is not of character-

istic 2, and assume that RC3 has only trivial units. Let G be a finite elementary abelian

3-group. Then RG has only trivial units.

Proof Induct on the rank r of the elementary abelian 3-group G. The case r = 1
holds by assumption.
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If r ≥ 2, then write G = A × 〈a〉 × 〈b〉, where A is either a trivial group or an
elementary abelian 3-group of rank r − 2. Let u be a unit in RG.

Then R[G/〈b〉] has only trivial units, so by multiplying by a trivial unit we may
assume u = 1 + (1 − b)(x + yb), for some x, y ∈ R[A × 〈a〉] satisfying the condition
(x, y) 6= (0, 0), (−1, 0), or (−1,−1) and 1 + 3x + 3x2 + 3y2 − 3xy ∈ U (R[A × 〈a〉]).
Write x = x0 + x1a + x2a2 and y = y0 + y1a + y2a2 with xi , yi ∈ RA.

We also have that R[G/〈a〉], R[G/〈ab〉], and R[G/〈ab2〉] all have only trivial units.
Reducing u modulo 〈a〉 gives

ua = (1 + x0 + x1 + x2) + (y0 + y1 + y2 − x0 − x1 − x2)b + (−y0 − y1 − y2)b2,

which is a unit of augmentation one in R[G/〈a〉]. Since R[G/〈a〉] has only trivial
units, we must have that two of the expressions in parentheses are 0 and the other
is 1. This gives us three possibilities, either x0 + x1 + x2 = 0 and y0 + y1 + y2 = 0, or
x0 + x1 + x2 = −1 and y0 + y1 + y2 = −1, or x0 + x1 + x2 = −1 and y0 + y1 + y2 = 0.

On the other hand, reducing u modulo 〈ab〉 results in

uab = (1 + x0 − x1 + y1 − y2) + (−x0 + x2 + y0 − y1)b + (x1 − x2 − y0 + y2)b2,

and reducing modulo 〈a2b〉 results in

ua2b = (1 + x0 − x2 − y1 + y2) + (−x0 + x1 + y0 − y2)b + (−x1 + x2 − y0 + y1)b2.

For each of these we must have that two of the coefficients in RA are 0 and the other
is 1.

Suppose uab = 1. Then x0 = x2 + y0 − y1 and x1 = x2 + y0 − y2, so substituting
these into ua2b we have

ua2b = (1 + y0 − 2y1 + y2) + (y0 + y1 − 2y2)b + (−2y0 + y1 + y2)b2.

If y0 + y1 + y2 = 0, then we have ua2b = (1 − 3y1) − 3y2b − 3y0b2. If any of
y0, y1, or y2 is non-zero, then 3 is either a zero divisor or invertible in RA. Either
conclusion contradicts Proposition 3 (if 3 is invertible, use a = −3−1 and b = 0). So
we have y0 = y1 = y2 = 0. This implies x0 = x1 = x2. If x0 + x1 + x2 = −1, then

3x0 = −1, so 3 is invertible in RA and we again get a contradiction. We conclude that
x0 = x1 = x2 = 0, which implies that u = 1, so u is a trivial unit.

On the other hand, if y0 + y1 + y2 = −1, then we have

ua2b = (−3y1) + (−1 − 3y2)b + (−1 − 3y0)b2.

This forces 3 to be invertible in R, a contradiction.
Using similar arguments, the case uab = b leads to the conclusion u = b, and the

case uab = b2 leads to the conclusion u = b2. Therefore, all units of RG are trivial,

and the result follows by induction.

We note that Z2C3 has only trivial units while Z2(C3 × C3) has nontrivial units,
explaining the condition in the proposition.

Combining the results so far using Proposition 3, we conclude that if R is a com-
mutative ring with unity, char(R) = 0, and RC2 and RC3 have only trivial units, then
RG has only trivial units for any finite abelian group of exponent dividing 6. The ring
R = Z[

√
−3] satisfies these conditions.
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3 Abelian Groups of Exponent 4

We start this section with a ring-threoretic condition equivalent to RC4 having non-
trivial units.

Proposition 5 Let R be a commutative ring with unity. Then RC4 has nontrivial units

if and only if either RC2 has nontrivial units or there exist a, b ∈ R such that 2a2 + 2b2 +
2a = 0 with (a, b) 6= (0, 0), (−1, 0).

Proof Let C4 = 〈x〉. Let f : RC4 → RC2 be the R-linear extension of the natural
group homomorphism C4 → C2. Suppose u is a nontrivial unit of RC4 and RC2

has only trivial units. By multiplying by a group element if necessary, we may assume
that f (u) = 1, u = 1+(1−x2)(a+bx) for some a, b ∈ R with (a, b) 6= (0, 0), (−1, 0).

Now u∗
= 1 + (1 − x2)(a + bx3) = 1 + (1 − x2)(a − bx), and so uu∗

= 1 + (1 −
x2)(2a + 2a2 + 2b2) ∈ U (R〈x2〉). Since R〈x2〉 has only trivial units, we must either
have 2a + 2a2 + 2b2

= 0 or 2a + 2a2 + 2b2
= −1. However the latter implies that 2

is invertible, contradictory to Proposition 1 unless R is of characteristic 3. But in that

case a = 1, b = 1 satisfy 2a2 + 2b2 + 2a = 0. So existence of nontrivial units in RC4

implies the condition.

On the other hand, if a, b ∈ R are such that 2a2 + 2b2 + 2a = 0 and (a, b) 6=
(0, 0), (−1, 0), then by the above u = 1+(1−x2)(a+bx) satisfies uu∗

= 1. Therefore,
u is a nontrivial unit of RC4.

Again using Pell equations, we have been able to use the condition of Proposition
5 to show that if R is the ring of integers in a quadratic number field Q(

√
d), d a

square-free negative integer, then RC4 has only trivial units if and only if d = −1.
(Note that cases where d > 0 are irrelevant by Example 1.)

Proposition 6 Let R be a commutative ring with unity. Assume that RC4 has only

trivial units, and G is the direct product of finitely many copies of C4. Then RG has only

trivial units.

Proof First note that Z2C4 and Z3C4 have nontrivial units by Proposition 5, so we
can assume char(R) 6= 2, 3. Induct on the rank r of the abelian group G of expo-

nent 4. The case r = 1 holds by assumption.

If r ≥ 2, then write G = A×〈a〉× 〈b〉, where A is either a trivial group or a direct
product of r − 2 copies of C4.

It follows from the inductive hypothesis and Proposition 2 that R[G/〈b2〉] has only
trivial units. Therefore, if u is a nontrivial unit in R[G], then up to multiplication by
a trivial unit we have

u = 1 + (1 − b2)(x0 + x1a + x2a2 + x3a3 + y0b + y1ab + y2a2b + y3a3b),

for some xi , yi ∈ R[A].

Since R[G/〈a2〉] has only trivial units, by writing u with the ensuing factorization
we conclude that y2 = −y0, y3 = −y1, x3 = −x1, and x2 = −x0 or −x0 − 1. But
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R[G/〈a2b2〉] also has only trivial units, so in a similar fashion we also obtain y2 = y0,
y3 = y1, x3 = x1, and x2 = x0 or x0 + 1. Proposition 1(iii) now allows us to conclude

that x1 = x2 = x3 = y0 = y1 = y2 = y3 = 0 and x0 = 0 or −1. This is a
contradiction since it implies that u = 1 or b2, a trivial unit.

4 Hamiltonian 2-Groups

The last case to consider is where G is a Hamiltonian 2-group, i.e., the direct prod-
uct of the quaternion group Q8 with a finite elementary abelian 2-group. We start
with Q8.

Proposition 7 Let R be a commutative ring with unity. Then RQ8 has nontrivial

units if and only if either RC2 has nontrivial units or there exist a, b, c, d ∈ R with

(a, b, c, d) 6= (0, 0, 0, 0), (−1, 0, 0, 0) such that a + a2 + b2 + c2 + d2
= 0.

Proof Let Q8 = 〈x, y | x4
= y4

= 1, x2
= y2, yx = x−1 y〉 and assume RQ8

has nontrivial units. Note if char(R) = 2 or 3 it is easy to find suitable a, b, c, d,
so we assume this is not the case. We also assume RC2 has only trivial units. Since
Q8/〈x2〉 ∼

= C2 × C2, we have that R(Q8/〈x2〉) has only trivial units. Suppose u is
a nontrivial unit in RQ8. Multiplying by a trivial unit, we may assume that u =

1 + (1 − x2)(a + bx + cy + dxy), and (a, b, c, d) 6= (0, 0, 0, 0), (−1, 0, 0, 0). Note
that uu∗

= (1 + (1 − x2)(a + bx + cy + dxy))(1 + (1 − x2)(a − bx − cy − dxy)) =

1 + (1−x2)2(a + a2 + b2 + c2 + d2) is in R〈x2〉. However, R〈x2〉 has only trivial units, so
we must have 2(a + a2 + b2 + c2 + d2) = −1 or 0. The first implies that 2 is invertible

which is contradictory to Proposition 1. Thus we have 2(a + a2 + b2 + c2 + d2) = 0.
But then Proposition 1 again implies that 2 is not a zero divisor in R, and it follows
that a + a2 + b2 + c2 + d2

= 0.

Since the condition implies that u = 1 + (1 − x2)(a + bx + cy + dxy) satisfies

uu∗
= 1 and u 6∈ ±Q8, the proof is complete.

Extending the above conclusion to finite Hamiltonian 2-groups is immediate from
Proposition 2. Recall that Z2Q8 and Z3Q8 have nontrivial units by Proposition 5.

Corollary 3 Let A be a finite elementary abelian 2-group. Let R be a commutative ring

with unity such that RQ8 has only trivial units. Then R[Q8 × A] has only trivial units.

For R = Z[i], we have that Z[i]C4 has only trivial units. However, we can satisfy
the above condition by taking a = −1, b = 1 + i, c = 1 − i, and d = 0, since
(−1)2 − 1 + (1 + i)2 + (1 − i)2 + 02

= 1 − 1 + 2i − 2i = 0. So Z[i]Q8 has nontrivial
units.

5 Trivial Units in Finite Characteristic

Up until now, our primary interest has been G-adapted rings R (though some results
were proved in a more general setting), and we have focussed on Higman’s classifica-
tion of finite groups G for which U(ZG) is trivial. As described in the introduction,
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the other setting where this question has been settled is when R is a field, and it only
happens there in a very limited number of cases when R is of finite characteristic. In

this section, we extend these considerations to commutative rings of finite character-
istic which are not necessarily fields. The next result shows that it is still the case that
U(RG) trivial implies |G| ≤ 3.

Proposition 8 Let R be a commutative ring with unity of finite characteristic ℓ > 1,

and let G be a finite group such that RG has only trivial units. Then G is cyclic of order

2 or 3.

Proof If G has a non-normal cyclic subgroup, then ZℓG has a nontrivial bicyclic

unit. (For a definition of bicyclic and Bass cyclic units, see [7, Section 8.1].) Suppose
H is a proper normal subgroup of G, and let Ĥ =

∑

h∈H h. If (|H|, ℓ) = 1, then

e =
1

|H| Ĥ is a central idempotent of RG, and for all g ∈ G \ H, e + g(1 − e) is a

nontrivial unit with inverse e + g−1(1 − e). If (|H|, ℓ) = r > 1 and ℓ = rm, then
mĤ 6= 0 in RG, (mĤ)2

= m2|H|Ĥ = 0, so 1 + mĤ is a nontrivial unipotent unit in

RG. So the only possibility is that G is cyclic of prime order p.

Suppose p is a prime greater than 3, and let G = 〈x〉. Then

u = (1 + g)p−1 − 2p−1 − 1

p
(1 + g + g2 + · · · + g p−1)

is a nontrivial Bass cyclic unit of ZG. Letting c := 2p−1 − 1/p, we have

u = (1− c) + (p−1− c)g +

((

p − 1

2

)

− c

)

g2 + · · ·+ (p−1− c)g p−2 + (1− c)g p−1.

Note that for any ℓ > 2, the ring homomorphism ZG → ZℓG induced by reducing
the coefficients mod ℓ sends u to a unit, which must also have augmentation 1. If the

image is a trivial unit, then the coefficient of each pair g i , g p−1−i must be sent to 0
for i = 0, 1, . . . , p−1

2
− 1. In particular, both 1 − c ≡ 0 mod ℓ and p − 1 − c ≡ 0

mod ℓ. Therefore, p − 2 ≡ 0 mod ℓ.

In the case p = 5 this would force ℓ = 3. But then Zℓ = Z3 is a field, and so from

the field case we know that Z3C5 has nontrivial units. So we may assume p > 5. Then
the coefficient of g2 and g p−3 in u, namely

(

p−1

2

)

− c, must also be congruent to 0

mod ℓ. But p−2 divides
(

p−1

2

)

, so
(

p−1

2

)

≡ 0 mod ℓ. It follows that c ≡ 0 mod ℓ. But
then it follows from 1 − c ≡ 0 mod ℓ that ℓ = 1, a contradiction, which completes
the proof of the proposition.

Propositions 1 and 3 can now be used to say more about which commutative rings
R of finite characteristic have the property that U(RG) is trivial when G = C2 or C3.

First assume G = C2. If char(R) is even then there exists a 6= 0 such that 2a = 0,
and Proposition 1(iii) guarantees the existence of a nontrivial unit in RC2 except for
the case where R = Z2 (recall Z2C2 has only trivial units). If char(R) = ℓ > 3 is odd,
then 2 is invertible and |U(R)| ≥ 3 (1, 2, ℓ−1 are all units in R), so again Proposition
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1(iii) shows U(RC2) is nontrivial. A similar remark applies when char(R) = 3 as long
as |U(R)| ≥ 3, but when char(R) = 3 and U(R) = ±1, RC2 has only trivial units.

Next assume G = C3. If char(R) is divisible by 3, then there exists r 6= 0 in R

such that 3r = 0, and a = 0, b = r in Proposition 3 guarantees the existence of a
nontrivial unit in RC3. But if char(R) is not divisible by 3, then 3 is invertible in R

and a = −3−1, b = 3−1 satisfies the condition of Proposition 3. The only time this

does not force nontrivial units in RC3 is when char(R) = 2. We do not know precisely
when U(RC3) is trivial if char(R) = 2; the result does hold for Z2 and Z2[t], but not
for finite proper extension fields of Z2 or for the rational polynomial field Z2(t).

Note that the remarks just made show that U(RC2) and U(RC3) can be trivial

(when R is commutative with unity and of finite characteristic) only in cases which
are excluded in Propositions 2 and 4. So these propositions are not helpful when
dealing with rings of finite characteristic.
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