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ON THE NUMBER OF p-REGULAR ELEMENTS
IN FINITE SIMPLE GROUPS
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Abstract

A p-regular element in a finite group is an element of order not
divisible by the prime number p. We show that for every prime
p and every finite simple group S, a fair proportion of elements
of S is p-regular. In particular, we show that the proportion
of p-regular elements in a finite classical simple group (not
necessarily of characteristic p) is greater than 1/(2n), where
n− 1 is the dimension of the projective space on which S acts
naturally. Furthermore, in an exceptional group of Lie type
this proportion is greater than 1/15. For the alternating group
An, this proportion is at least 26/(27

√
n), and for sporadic

simple groups, at least 2/29.
We also show that for an arbitrary field F , if the simple

group S is a quotient of a finite subgroup of GLn(F ) then for
any prime p, the proportion of p-regular elements in S is at
least min{1/31, 1/(2n)}.

Along the way we obtain estimates for the proportion of el-
ements of certain primitive prime divisor orders in exceptional
groups, complementing work by Niemeyer and Praeger (1998).
Our result shows that in finite simple groups, p-regular ele-
ments can be found efficiently by random sampling. This is
a key ingredient to recent polynomial-time Monte Carlo algo-
rithms for matrix groups.

Finally we complement our lower bound results with the
following upper bound: for all n � 2 there exist infinitely many
prime powers q such that the proportion of elements of odd
order in PSL(n, q) is less than 3/

√
n.

1. Introduction

1.1. Main results
Let S be a finite simple group and p a prime number. Our objective is to show that
a fair proportion of the elements of S is p-regular (i. e., its order is not divisible
by p).
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On the number of p-regular elements in finite simple groups

Theorem 1.1. For a prime p and a group G let G(p′) denote the set of p-regular
elements of G. Let S be a finite simple group and p any prime number. Then

(a) |S(p′)|/|S| � 26/(27
√

n) if S = An is the alternating group of degree n;

(b) |S(p′)|/|S| > 1/(2n) if S is a classical simple group naturally acting on a
projective space of dimension n − 1;

(c) |S(p′)|/|S| > 1/15 if S is an exceptional group of Lie type;

(d) |S(p′)|/|S| > 2/29 when S is sporadic.

Remark 1.2. For some classes of classical simple groups, the value of n is not
uniquely defined, e. g., Ω2k+1(2e) ∼= Sp2k(2e). In such cases, we can use either
definition in item (b), so for example for S = Ω2k+1(2e) we obtain the stronger
lower bound S(p′)/|S| > 1/(4k).

The following compact corollary is particularly convenient for applications to the
polynomial-time analysis of algorithms.

Corollary 1.3. There exists a constant c > 0 such that for all finite simple groups
S and for every prime p, the proportion of p-regular elements in S is � c/

√
log |S|.

This result allows p-regular elements to be discovered in S efficiently by random
sampling, a key ingredient to several recent algorithms for matrix groups [2, 4, 3].
We emphasize that p may or may not be equal to the characteristic of the field of
definition of S when S is of Lie type. We note that if p is the characteristic of the
field of definition then almost all elements of S are p-regular; in fact the proportion
of p-singular elements (i. e., of those of order divisible by p) is O(1/q) where q is
the order of the field of definition. More precisely, their proportion is less than
3/(q − 1) + 2/(q − 1)2 (Guralnick and Lübeck [12]; see also Neumann and Praeger
[22] and Fulman, Neumann, and Praeger [10] for certain classical groups).

In some applications, all we know about our simple group is that it is a section
of a linear group. We can then give a lower bound on the proportion of p-regular
elements in terms of the dimension of the linear group. In the following theorem,
F is an arbitrary field.

Theorem 1.4. Let F be a field and S a finite simple group which is a quotient of
a finite subgroup of GLn(F ). Let γ(n) = max{31, 2n}. Then for any prime r, at
least a 1/γ(n) fraction of the elements of S is r-regular.

Theorem 1.4 is a corollary to Theorem 1.20; both results will be derived in
Section 1.4 from our main technical result, Theorem 1.6 (below).

This paper has been a long time in coming; versions of its main results have been
quoted and applied in several papers, starting with [2] in 1999. Theorem 1.1 has
been quoted as ‘Theorem 4.9’ in the paper [4] in the following form.

Theorem 1.5. Let S be a finite simple group and p a prime number. Then at least
a c/d fraction of the elements of S is p-regular, where c > 0 is an absolute constant
and d = d(S) is defined as follows. For the alternating group At we set d(At) =

√
t,

for a classical simple group S we define d(S) to be the dimension of the projective
space on which S acts; for all other simple groups S, d(S) = 1.
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On the number of p-regular elements in finite simple groups

Theorem 1.5 follows from Theorem 1.1 with c = 1/15.
An earlier version of the result was mentioned in [2, Theorem 4.2], where the

estimate for the alternating groups was weaker, using d(At) = t instead of
√

t.
The heart of the proof of Theorem 1.1 is the following result about simple groups

of Lie type. For a group G and T ⊆ G we use the notation T G =
⋃

g∈G T g.

Theorem 1.6. Let S be a finite simple group of Lie type. Then S has two maximal
tori T1, T2 of relatively prime orders such that for each i the set T S

i has non-
negligible density: |T S

i |/|S| � 1/(2n) if S is a classical simple group naturally acting
on a projective space of dimension n−1, and |T S

i |/|S| � 1/31 if S is an exceptional
group of Lie type other than the Tits group 2F4(2)′. The tori Ti can be chosen to be
cyclic except for the case of the Tits group and the orthogonal groups S = PΩ+

n (q)
with 4 | n.

The bulk of this paper is devoted to proving this result.
Theorem 1.6 immediately implies part (b) of Theorem 1.1, in view of Proposi-

tion 1.12 (below). It also implies a weaker version of part (c) (with a lower bound
of 1/31 instead of the claimed 1/15). The improvement is based on finding sharp
(strongly self-centralizing, cf. Definition 1.13) tori in most classes of exceptional
simple groups of Lie type (Theorem 3.1) and using the strategy of Proposition 1.15.

Remark 1.7. This approach does apply to the Tits group as well, using the maximal
tori of types 13 and 52, and yields the lower bound of 1/50. We achieve the better
constant 1/15 in Theorem 1.1 (c) by treating the Tits group as sporadic (Section 5).

Theorem 1.6 will be proved for classical groups in Section 4 (Theorem 4.1) and
for exceptional groups in Section 3 (Theorem 3.4).

Remark 1.8. Theorem 1.6 was quoted somewhat inaccurately as Theorem 8.7
in [2]. Specifically, the exceptions 2F4(2)′ and PΩ+

n (q) were omitted in [2]. We
emphasize that these inaccuracies do not affect the validity of any of the applications
given in [2]; the cyclicity of the tori is never used in [2] and the Tits group can be
treated as sporadic.

Remark 1.9. The significance of Theorem 1.6 goes beyond proving Theorems 1.1
and 1.5. The principal motivation behind our results has been the analysis of algo-
rithms for matrix groups and quotients of matrix groups by efficiently recognizable
normal subgroups. The abundance of p-regular elements in simple groups was iden-
tified in [2] as central to the polynomial-time analysis of certain algorithms such
as factoring a product of simple groups into its simple factors. The scope of ap-
plications was broadened in [4] to include testing membership in a simple normal
subgroup and, in the case when G/Z(G) is simple, finding Z(G); and most recently,
in [3], to finding the radical of a matrix group of odd characteristic.

These applications work only under the assumption that a superset of prime
divisors of the order of G is given. This could be achieved if we knew the prime
factorization of |SLn(p)|, but this is not known, and not expected, to be doable in
time polynomial in n2 log(p) (the bit-length of an n × n matrix over GF(p)).

This difficulty is avoided by demonstrating the abundance not only of elements
of order relatively prime to prime numbers but also relatively prime to certain
composite numbers (cyclotomic and semicyclotomic factors of the numbers pj − 1),
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On the number of p-regular elements in finite simple groups

a consequence of the presence of two maximal tori of relatively prime orders. The
details are described in Section 1.4.

Finally, the paper [3] also proves that membership in and the order of a ma-
trix group over a finite field of odd characteristic can be computed in randomized
polynomial time using oracles for factoring and discrete log, thus completing, for
odd characteristic, the project started in [1] (1984). The abundance of p-regular
elements in simple groups, demonstrated in the present paper, is one of the key
ingredients of the analysis.

An anonymous referee asked how tight our lower bounds were. We discuss this
question in Section 6. Here we mention the main upper bound result (see in a more
detailed form as Theorem 6.1):

Theorem 1.10. For all n � 2 there exist infinitely many prime powers q such that
the proportion of elements of odd order in PSL(n, q) is less than 3/

√
n.

Acknowledgment. The authors wish to thank the organizers of the ‘Groups St
Andrews 1997 in Bath’ conference where the groundwork for this paper was done.
We are grateful to the anonymous referee for the question about upper bounds;
Sections 6 and 8 arose in response to that question. We wish to thank Ross Lawther
for the data about sporadic groups, reproduced in Remark 5.3.

1.2. Groups of Lie type: general strategy
For the classical simple groups our proof will follow the following general pattern.
Let G be a finite group. For a self-centralizing subgroup T � G, we define

Γ(T ) = {x ∈ T : CG(x) = T }. We shall call NG(T )/CG(T ) = NG(T )/T the
automizer of T .

Proposition 1.11. Let T be a self-centralizing subgroup of the finite group G. Then

|T G|
|G| >

v

u
,

where u = |NG(T )/T | and v = |Γ(T )|/|T |.
Proof. The sets Γ(T g) (g ∈ G) are pairwise disjoint and their number is |G :
NG(T )|. Therefore

|T G| > |G : NG(T )| · |Γ(T )| = |G| · |T |
|NG(T )| ·

|Γ(T )|
|T | .

The right hand side is then |G|v/u.

Proposition 1.12. Assume T1, T2 are subgroups of relatively prime orders in the
finite group G. Then, for any prime p, the proportion of p-regular elements in G is
at least

min
( |T G

1 |
|G| ,

|T G
2 |

|G|
)

. (1)

Proof. The coprimality of |T1| and |T2| ensures that at least one of T G
1 , T G

2 consists
of p-regular elements only.
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On the number of p-regular elements in finite simple groups

For the classical simple groups, the Ti will be maximal tori. We shall choose Ti

such that vi � 1/2 and ui � n, where n − 1 is the dimension of the projective
space on which the simple group acts in its natural representation. Note that our
lower bounds do not depend on the order q of the underlying finite field. Our
construction will be elementary and self-contained, using the geometry of classical
groups. We include all cases for the sake of completeness, although the estimate in
many, but not all, cases can be derived from results of Niemeyer and Praeger [23]
(see Section 1.5).

For the exceptional simple groups of Lie type, pairs of maximal tori of coprime
orders also exist, see Theorem 3.4. However, for these groups a different approach,
which relies on the existence of sharp tori, yields better estimates.

Definition 1.13. We call a nontrivial proper subgroup T of the group G sharp (or
strongly self-centralizing) if CG(t) = T for all t ∈ T× = T \ {1}.

In Theorem 3.1 we show that, with the exception of E7(q), all exceptional simple
groups of Lie type contain sharp tori.

We make the following simple observation about sharp subgroups.

Proposition 1.14. Let T be a sharp subgroup of the finite group G. Then
(a) T is a Hall subgroup;
(b) each element of G outside T G has order relatively prime to |T |;
(c) |NG(T )| divides |T |(|T | − 1);
(d) if G is simple then NG(T ) �= T .

Proof. Let p be a prime divisor of |T | and P a Sylow p-subgroup of G which
intersects T nontrivially. We claim that P � T ; this in turn implies that T is a Hall
subgroup, proving part (a).

Indeed, let x ∈ T ∩ P have order p and let z �= 1 be a central element of P .
Then the centralizer condition implies that z ∈ T ; and then again the centralizer
condition implies that P � T .

It also follows that every p-element of S lies in a conjugate of T , so every p-
singular element is centralized by a nonidentity element in a conjugate of T . The
centralizer condition now implies that every p-singular element belongs to a conju-
gate of T , proving part (b).

To estimate the order of N = NG(T ), let us consider the action of N/T on
T× = T \ {1} by conjugation. The sharpness of T is equivalent to saying that this
action is semiregular (the stabilizer of every point is the identity) and therefore
|N/T | divides |T×|, proving part (c).

Part (d) is immediate from Burnside’s Normal Complement Theorem.

Sharp subgroups allow the following estimation.

Proposition 1.15. Let G be a finite group containing a sharp subgroup T such
that NG(T ) �= T , and let p be a prime number. Then the proportion of p-regular
elements in G is at least 1/(|NG(T )/T |+1). Moreover, if G contains pairwise non-
conjugate sharp subgroups T1, . . . , Tk, then the proportion of p-regular elements in
G is at least

min

(
k∑

i=1

1
|NG(Ti)/Ti| + 1

,
1
2

)
.
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Proof. If p does not divide |T | then every element in T G is p-regular. Hence the
proportion of p-regular elements in G is at least

� |T G|
|G| >

|Γ(T )|
|T | · 1

|NG(T )/T | =
1 − 1/|T |
|NG(T )/T | � 1

|NG(T )/T |+ 1
,

where the last inequality follows from the fact that since T is sharp, we have
|NG(T )/T | < |T | by Proposition 1.14(c).

If p divides |T |, then by Proposition 1.14, the proportion of p-regular elements
is at least

1 − |T G| − 1
|G| = 1 − |G : NG(T )|(|T | − 1)

|G| > 1 − 1
|NG(T )/T | � 1

2
,

since T is not self-normalizing by our assumption.
If there are several conjugacy classes of sharp subgroups in G and p does not

divide the order of any of them, then the proportion of p-regular elements is at least

1
|G|

∣∣∣∣∣
k⋃

i=1

T G
i

∣∣∣∣∣ >

k∑
i=1

|Ti| − 1
|NG(Ti)| �

k∑
i=1

1
|NG(Ti)/Ti| + 1

.

Remark 1.16. One advantage of using the quantity |NG(T )/T | in our estimates is
that for a family X(q) of finite simple groups of Lie type and the family of maximal
tori T (q) in these groups defined by a particular class C of the corresponding Weyl
group, the right hand side is independent of q (it depends only on the type X and
the class C).

Regarding the sporadic simple groups we observe that each sporadic simple group
has a self-centralizing subgroup of order r for some prime r, so every element of the
group is either r-regular or has order r (see Proposition 5.1).

Sometimes we shall use the language of probabilities. For a nonempty finite set
X and a subset Y ⊆ X we set ProbX(Y ) = |Y |/|X |. By a random element of a
finite nonempty set X we mean a uniformly distributed random element of X .

1.3. Erratum to a prior announcement of our results
The paper [2] announced the main results of the present paper and gave a number

of applications. Since the applications given in [2] served as the principal motivation
for the present work, we review the results used in [2], correcting some inaccuracies
and giving more detailed versions. We emphasize that none of the changes affect
the validity of the applications given in [2].

The two principal results used in [2] are Theorem 1.6 and Theorem 1.20. Theo-
rem 1.6 corrects some inaccuracies of its [2]-version (see Remark 1.8). Theorem 1.20
gives a more detailed version of the result stated as Corollary 8.10 in [2] and fixes
an omission in its proof.

In Section 8.3 of [2] a summary form (k1k2)/(k3k4), with appropriate constraints
on the ki, has been given for the orders of the tori constructed. From the list of
possible values of ki, [2] erroneously omitted the values k2 = q2 − 1 (for E6(q) and
2E6(q)), as well as k4 = 2 or 4 (for certain orthogonal groups). (Cf. Tables II and
III below.) Moreover, as noted in Remark 1.8, as a single exception, 2F4(2)′ does
not contain two maximal cyclic tori of coprime orders. (It does contain maximal
tori of orders 13 and 52.)
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1.4. Pseudo-orders
In algorithmic applications it is often impossible to calculate the order of an

element, because it would require finding prime factors of large numbers. Instead,
following [2, Section 8], one is content with determining a so-called pseudo-order of
elements. To define this concept we start with a set P of pairwise relatively prime
integers. We refer to the elements of P as pretend-primes. (The idea is that we
may have difficulty splitting these numbers into their prime factors, so we pretend
instead that they are prime.) We assume that every prime divisor of |G| divides a
suitable pretend-prime in P , or, equivalently, that |G| has a multiple of the form∏

p∈P pkp .
The P-closure of a divisor n of |G| is the smallest positive integer nP which is

a multiple of n and which can be written as a product of integers from P . The
pseudo-order of an element g ∈ G with respect to the set P is defined to be the P-
closure of the actual order. Equivalently, the pseudo-order of g ∈ G is the smallest
positive integer � such that g� = 1 and � is a product of pretend-primes (see [2],
p. 55). If the set P is explicitly given then it is easy to calculate the pseudo-order
(with respect to P) of any element of the group.

Given two sets of integers, P1 and P2, we say that P1 is coarser than P2 if

(a) every member of P2 divides some member of P1; and

(b) every member of P1 is the product of some members of P2.

Given a (finite or infinite) set L of positive integers, the relatively prime refine-
ment of L is the coarsest set P of pairwise relatively prime integers such that L
is coarser than P . If L is an explicitly given finite set then P can be computed
efficiently (see [2, Claim 8.8]).

Now the task is to find nontrivial P -regular elements in G, i. e., elements of which
the order is relatively prime to P , where P is a P-closed number.

This can be accomplished, using Theorem 1.6, with reference to a certain explic-
itly computable set P obtained from the orders of the maximal tori mentioned in
Theorem 1.6. Next we describe the set P .

Let us fix the parameters n and p. [2] defines a set of integers L(n, p) whose
relatively prime refinement P(n, p) is then used as the set of pretend-primes for
determining the pseudo-orders of elements in sections (quotients of subgroups) of
GLn(p). Below we give a slightly modified definition to handle sections of GLn(q),
q a power of p, as well as the case of characteristic zero.

For the definition we require the following result, obtained by combining a result
by Landazuri and Seitz [18] with another by Feit and Tits [9].

Theorem 1.17. Let S be a finite simple group of Lie type of characteristic r over
the field of order q = re. Let m− 1 be the minimum dimension of projective spaces
over GF(q) on which S acts nontrivially. Let H be a finite group which involves S
(as a quotient of a subgroup). If H acts faithfully on a projective space of dimension
n − 1 over a field of characteristic other than r then qm � nc1 , where

c1 =
248

27 + log2 3
= 8.67589 . . . .

In particular, S has a faithful permutation representation of degree less than nc1 . If
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S is a classical group, then a better estimate qm � nc2 holds with c2 = 8 log 3/ log 6 =
4.90517 . . . . Moreover, if we exclude S = PSL3(2) and Sp4(2)′, then we have m � n
as well.

For large n, the last inequality, m � n, is far weaker than the main inequalities
which are of the form qm � nc; but this weaker inequality will be helpful for small
values of n.

We indicate the proof of Theorem 1.17 in an Appendix (Section 7).
In order to define our sets L(n, p), we need to consider the cyclotomic polynomials.
Let Φn(x) denote the nth cyclotomic polynomial, so xn − 1 =

∏
d |n Φd(x).

Recall that we have

Φ1(x) = x − 1,

Φ3(x) = x2 + x + 1,

Φ4(x) = x2 + 1 = (x +
√

2x + 1)(x −√
2x + 1),

Φ5(x) = x4 + x3 + x2 + x + 1,

Φ6(x) = x2 − x + 1 = (x +
√

3x + 1)(x −
√

3x + 1),
Φ12(x) = x4 − x2 + 1

= (x2 +
√

2x3 + x +
√

2x + 1)(x2 −
√

2x3 + x −
√

2x + 1),
Φ15(x) = x8 − x7 + x5 − x4 + x3 − x + 1.

Definition 1.18. We displayed a factorization of Φ4(x), Φ6(x), and Φ12(x) over
R[

√
x]; we refer to the factors in these particular factorizations as semicyclotomic

factors. We denote the two semicyclotomic factors of Φn(x) (n = 4, 6, 12) by Φ+
n (x)

and Φ−
n (x); the first of of these has only ‘+’ signs in its expression.

So, for instance, Φ−
12(x) = x2 −

√
2x3 + x −√

2x + 1, and in all the three cases,
Φn(x) = Φ+

n (x)Φ−
n (x).

Definition 1.19. We call the numbers ±Φn(q) (n, q integers, n � 1) cyclotomic
numbers. We call the numbers ±Φ±

n (q) semicyclotomic numbers if n = 4 or 12 and
q is an odd power of 2; and if n = 6 and q is an odd power of 3.

We now define our sets L(n, p).
Let n � 2 and p a prime or p = 0. Let L(n, p) consist of the following numbers:

(i) all primes � 47 and the primes 59, 67, 71 (these are the primes occurring in
sporadic groups, including the Tits group 2F4(2)′);

(ii) all primes � nc1 where c1 = 8.67589 . . . is the constant from Theorem 1.17;
(iii) if p �= 0 then additionally the cyclotomic numbers |Φi(±pj)| for all j � 1 and

i ∈ {1, 3, 5, 15}.
(iv) if p = 2, then additionally the semicyclotomic numbers Φ±

4 (22t+1) and
Φ±

12(2
2t+1) for all t � 1;

(v) if p = 3, then additionally the semicyclotomic numbers Φ±
6 (32t+1) for all t � 1.

Let P(n, p) be the relatively prime refinement of L(n, p).
A corollary to the following strengthening of Theorem 1.4 is central to the

polynomial-time claims made in [2]. The corollary is given as Corollary 8.10 in
[2].
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Theorem 1.20. Let F be a field of characteristic p � 0. Let S be a finite sim-
ple group which occurs as a quotient of a finite subgroup of GLn(F ). Let γ(n) =
max{31, 2n}. Then for any prime r, at least a 1/γ(n) fraction of the elements
g ∈ S has pseudo-order relatively prime to r with respect to the set P(n, p) of
pretend-primes.

Proof. The proof is based on the fact that the orders of the maximal tori given in
Tables II and III below are products of numbers from L(n, p), occasionally divided
by an integer d � n and by q± 1 = |Φ1(±q)|, where q is a power of p; and all prime
divisors of the orders of any alternating groups that may be involved as well as all
prime divisors of the orders of all sporadic groups belong to L(n, p). Note that we
treat the Tits group 2F4(2)′ as sporadic; all prime divisors of |2F4(2)′| = 211·33·52·13
belong to L(n, p).

We follow the lines of the proof of Corollary 8.10 from [2]. If S is sporadic
then π(S) ⊂ P = P(n, p) so we only need to refer to Theorem 1.1 (d) to obtain
|S(r′)|/|S| > 2/29 > 1/31.

If S is alternating of degree k � 9 then k � n + 2 by Proposition 1.22 (a)
below. For k � 8, the prime divisors of |Ak| are � 7. So, if S is alternating of
any degree then π(S) ⊂ P . Therefore we only need to consider the proportion
|S(r′)|/|S|, which, by Theorem 1.1 (a), is at least 26/(27

√
k) > 1/(2n) if k � 9,

and 26/(27
√

k) > 1/31 if k � 8.
If S is of Lie type of characteristic s �= p over the field of order se, then, by The-

orem 1.17, we have sef � nc1 , where f − 1 is the minimum dimension of projective
spaces over GF(se) on which S acts nontrivially and c1 = 8.67589 . . . . In particular,
S has a faithful permutation representation of degree less than nc1 . Therefore all
primes dividing the order of S are � nc1 and hence π(S) ⊂ P . Therefore we only
need to consider the proportion |S(r′)|/|S|. This proportion is at least 1/15 > 1/31
if S is exceptional, by Theorem 1.1 (c), and at least 1/(2f) if S is classical, by
Theorem 1.1 (b). The last statement in Theorem 1.17 yields that f � n with the
exceptions of S = PSL3(2) and Sp4(2)′, and so |S(r′)|/|S| � 1/(2n), as in the two
exceptional cases one can easily check that |S(r′)|/|S| > 1/2.

Finally, let S be of Lie type of characteristic p other than the Tits group 2F4(2)′.
Then, by Theorem 1.6, S has two maximal tori T1 and T2 of relatively prime orders
with the properties given in Theorem 1.6. Now |Ti| is a product of cyclotomic and
semicyclotomic factors included in L(n, p) according to Tables II and III below,
occasionally divided by an integer d � n and by q ± 1 = |Φ1(±q)|, where q is a
power of p (the order of the field of definition of S); all these numbers are included
in L(n, p). Therefore if r does not divide |Ti| (which holds for at least one of i = 1, 2)
then the pseudo-order of elements in T S

i with respect to P is not divisible by r.
The proportion |T S

i |/|S| is � 1/31 if S is exceptional and � 1/(2f) if S is classical
where f − 1 is the dimension of the projective space on which S acts naturally.

The parameter f is associated with the name of the classical group but not with
its isomorphism type (e. g., Ω2k+1(2e) ∼= Sp2k(2e); under the first name we have
f = 2k + 1, under the second, f = 2k). In Proposition 1.22 below, we show that
if S is a classical simple group then S has a name under which f � n, with the
single exception of Sp4(2)′ for which n = 3. This completes the proof for all but this
exceptional case. Now for Sp4(2)′ we have proved that the proportion in question
is � 1/8 which is greater than 1/31, the largest possible value of 1/γ(n).
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For characteristic p �= 0, the sets L(n, p) and P(n, p) referred to in Theorem 1.20
are infinite. Although these sets are sufficiently explicit and sparse so they would
support the polynomial time algorithms based on the result, explicit finite sets are
preferable. For algorithmic applications, if p �= 0 then we may assume that F is an
explicitly given finite field. In this case we can impose the following bounds on the
parameters.

Theorem 1.21. Let n, h � 1 and let p be a prime. Define the set L(n, p, h) by the
rules (i) through (v) stated before Theorem 1.20 with the following bounds imposed
on the parameters i, j, t occurring in items (iii), (iv), (v):
(iii’) 1 � ij � nh;
(iv’) 1 � t � (nh− 4)/8 for the first type of semicyclotomic polynomials given and

1 � t � (nh − 12)/24 for the second type;
(v’) 1 � t � (nh − 6)/12.
Let P(n, p, h) be the relatively prime refinement of L(n, p, h). Let S be a finite simple
group which occurs as a quotient of a subgroup of GLn(ph). Let γ(n) = max{31, 2n}.
Then for any prime r, at least a 1/γ(n) fraction of the elements g ∈ S has pseudo-
order relatively prime to r with respect to the set P(n, p, h) of pretend-primes.

The proof is identical with the proof of Theorem 1.20.
The next proposition, used in the preceding proof, gives the maximum dimen-

sions of classical simple sections and the maximum degrees of alternating sections
of linear groups, combining results of Feit–Tits and Kleidman–Liebeck.

Proposition 1.22. (a) Let S = Ak for k � 9. Assume S is a section of GLn(F )
for some field F . Then n � k − 2.

(b) Let S be one of the classical simple groups PSLf(q) (f � 2; (f, q) �= (2, 2),
(2, 3)), PSUf(q) (f � 3; (f, q) �= (3, 2)), PSpf (q) (f � 4, even, (f, q) �= (4, 2)),
Ωf (q) (f � 7, odd; q odd ), Ω±

f (q) (f � 8, even), where q = pe, p prime. Assume S
is a section of GLn(F ) where F is a field of characteristic p. Then n � f .

The only classical finite simple group not covered by this list is PSp4(2)′ which
indeed is an exception; in this case, n � 3.

Proof. We combine the proofs of the two parts of the Proposition. We may assume
F is algebraically closed.

A result of Feit and Tits [9] asserts that if S is an arbitrary finite simple group
and S is a quotient of some subgroup of PSLn(F ) where F is algebraically closed
then either

(i) S is a subgroup of PSLn(F ), or
(ii) charF �= 2 and S is of Lie type of characteristic 2.

In our case (a), S is not of Lie type; and in case (b), S and F have the same
characteristic. In either case, therefore, part (ii) of the Feit–Tits result cannot occur.
Thus, S � PSLn(F ).

Now if S = Ak � PGLn(F ) then k � n+1 if the characteristic of F is zero; and
in finite characteristic, k � n + 2 according to [16, Proposition 5.3.7, p. 186].

Let now S be one of the classical simple groups listed in case (b). Then, according
to [16, Proposition 5.4.13, p. 200], f is indeed the smallest value of n such that
S � PGLn(F ). For PSp4(2)′, the smallest value of n is 3.
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1.5. Comparison with results of Niemeyer and Praeger
For certain classical groups, a lower bound for the proportion of p-regular ele-

ments can be obtained directly from the estimates for the proportion of ppd ele-
ments given by Niemeyer and Praeger [23]. Recall that g ∈ G � GLn(q) is called a
primitive prime divisor element, or more precisely a ppd(n, q; e)-element in G if its
order is divisible by a primitive prime divisor of qe − 1 (i. e., a prime divisor which
does not divide qj − 1 for any j, 0 < j < e).

Theorem 1.23 ([23, Theorem 5.7]). Let G be a finite classical simple group acting
naturally on a projective space of dimension n − 1 over GF(q), and let e with
n/2 < e � n be such that the group G contains ppd(n, q; e)-elements. Then the
proportion of ppd(n, q; e)-elements in G lies in the interval [1/(e + 1), 1/e), except
for some cases when G is an orthogonal group and e � n− 1, when this proportion
belongs to the interval [2/(e + 1), 2/e).

(For the detailed description of the exceptional cases we refer to the original paper.)
An extension of the estimates to the case e = n/2 can be found in [24].

Corollary 1.24. Let G be a finite classical simple group naturally acting on a
projective space of dimension n − 1 over the q-element field, and let p be a prime
number. If there exists an e with n/2 < e � n such that the group G contains
ppd(n, q; e)-elements and the order of no ppd(n, q; e)-element is divisible by p, then
the proportion of p-regular elements in G is at least 1/(e + 1) � 1/(n + 1).

Actually, when applicable, this is a better estimate than our 1/(2n). However,
such an e does not always exist. If n is small, namely in the cases G = PSL2(q),
PSp4(q), PSU3(q), PSU4(q), PSU6(q), or PΩ+

8 (q), there is only one possible value
of e > n/2 of the required parity (namely 2, 4, 3, 3, 5, and 6, respectively), so the
result is not applicable for the primitive prime divisors p of qe − 1 for this e.

Even worse is the situation for G = PSUn(q) with n � 8 even. Let p be a
prime divisor of q + 1 not dividing n. (Note that throughout the paper we use the
convention that PSUn(q) is defined over GF(q2); in contrast, in [23] the field of
definition for PSUn(q) was taken to be GF(q) with q being a square.) Then for every
odd e with n/2 < e < n (for unitary groups only these should be considered), if we
choose a ppd(n, q2; e)-element g ∈ G of prime order then its centralizer CG(g) always
has a normal subgroup of index p, hence at most a 1

p fraction of the ppd(n, q2; e)-
elements is p-regular. So the Niemeyer–Praeger estimates cannot be used directly
in this case.

In Section 3 we obtain a result for exceptional groups of Lie type which is analo-
gous to Theorem 5.7 of Niemeyer and Praeger [23]. We employ the following Lemma
of Niemeyer and Praeger:

Lemma 1.25 ([23, Lemma 5.6]). Suppose G is a finite group with a self-centralizing
cyclic subgroup C of order m and set u = |NG(C) : C|. Let t be a divisor of m.
Suppose further that, if g ∈ G has order dividing m and gt �= 1, then g is conjugate
in G to an element g′ of C and CG(g′) = C. Then the proportion of elements of
G of order dividing m which have non-trivial tth power is equal to (1− t/m)/u. In
particular if m/t � u + 1, then this proportion lies in the interval [1/(u + 1), 1/u).

The following result, to be proved in Section 3.1, extends the work of Niemeyer
and Praeger to exceptional groups.

92https://doi.org/10.1112/S1461157000000036 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000036


On the number of p-regular elements in finite simple groups

Theorem 1.26. Let G = G(q) be a simple exceptional group of Lie type. For the
values of e as given in Table I, and also for e = 7 and 14 in the case of G = E7(q),
the proportion of elements in G of order divisible by a primitive prime divisor of
qe − 1 lies in the interval
(a) [1/(u + 1), 1/u) for 3D4(q), G2(q), F4(q), E6(q), 2E6(q), E7(q), E8(q);
(b) [2/(u + 1), 2/u) for 2B2(q), 2G2(q), 2F4(q) (q � 8 is an odd power of 2

for 2B2(q) (Suzuki groups) and 2F4(q) (Ree groups of rank two), and q � 27
is an odd power of 3 for 2G2(q) (Ree groups of rank one)),

where the value of u can be found in Table I or u = 14 in the case of E7(q).

2. The alternating groups

For the symmetric group Sn the probability that a random element is p-regular
has been determined by Erdős and Turán [8, Lemma I]. Modifying their argument
we obtain a similar result for the alternating group An. This was proved indepen-
dently, in a slightly different form, by Beals, Leedham–Green, Niemeyer, Praeger
and Seress [5]. More generally, Maróti [21] determined the proportion of l-regular
elements in Sn and An for arbitrary natural number l. (A permutation is called
l-regular if it does not contain a cycle of length divisible by l.)

Theorem 2.1. Let p be a prime number, n � 3 an integer and k = 	n/p
. Then
the proportion of p-regular elements in the alternating group An is given by the
following formulas:
(a) if p = 2:

2
(

1 − 1
p

)(
1 − 1

2p

)
· · ·
(

1 − 1
kp

)
;

(b) if p > 2 and n ≡ 0 or 1 (mod p):(
1 − 1

p

)(
1 − 1

2p

)
· · ·
(

1 − 1
kp

)
+

(−1)k

kp

(
1 +

1
p

)(
1 +

1
2p

)
· · ·
(

1 +
1

(k − 1)p

)
;

(c) if p > 2 and n �≡ 0 or 1 (mod p):(
1 − 1

p

)(
1 − 1

2p

)
· · ·
(

1 − 1
kp

)
.

Proof. Using the method of generating functions, Erdős and Turán [8, Lemma I]
obtained that the proportion of p-regular elements in the symmetric group Sn equals(

1 − 1
p

)(
1 − 1

2p

)
· · ·
(

1 − 1
kp

)
.

If p = 2 then all p-regular elements (i. e., permutations of odd order) lie in An,
hence the proportion of such elements in An is the double of their proportion in
Sn, proving part (a).

In order to obtain the proportion of p-regular elements in the case p > 2 we are
also going to use generating functions. Following [8], let f(n, p) denote the number
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of p-regular elements in Sn. Erdős and Turán show that f(n, p)/n! is the coefficient
of zn in ∏

ν

′
(

1 +
1
1!

zν

ν
+

1
2!

(
zν

ν

)2

+ . . .

)
,

where
∏′ indicates that the product is to be extended over all ν’s not divisible by

p. If we define g(n, p) to denote the difference between the number of even and odd
permutations that are p-regular, then we obtain analogously that g(n, p)/n! is the
coefficient of zn in∏

ν

′
(

1 + (−1)ν−1 1
1!

zν

ν
+

1
2!

(
zν

ν

)2

+ (−1)ν−1 1
3!

(
zν

ν

)3

+ . . .

)
.

For |z| < 1 this can be written in the form∏
ν

′
exp

(
(−1)ν−1 zν

ν

)
= exp

( ∞∑
ν=1

(−1)ν−1 zν

ν
−

∞∑
ν=1

(−1)νp−1 zνp

νp

)

= exp
(

log(1 + z) − 1
p

log(1 + zp)
)

= (1 + z)(1 + zp)−1/p

= (1 + z)

(
1 +

∞∑
k=1

(−1/p

k

)
zkp

)
.

Since (−1/p

k

)
= (−1)k 1

kp

(
1 +

1
p

)(
1 +

1
2p

)
· · ·
(

1 +
1

(k − 1)p

)
,

we obtain (b) and (c).

Remark 2.2. For a fixed prime p the order of magnitude of the proportion of p-
regular elements in An as given in Theorem 2.1 is Θ(n−1/p) (i. e., it is between two
positive constants times n−1/p).

Since we want a universal lower bound, independent of p, we prove an estimate of
the form c/

√
n. (Note that for every ε > 0 we have the lower bound (

√
8/π−ε)/

√
n

for every sufficiently large n. However, we need a constant c that works for all
n � 5.)

Proposition 2.3. For every n � 5 and every prime p, the proportion of p-regular
elements in An is at least

26
27

· 1√
n

.

Proof. First note that

1 − 1
kp

>

√
k − 1

k
if p � 2, k � 2,

and

1 +
1

(k − 1)p
<

√
k

k − 1
if p � 3, k � 2.
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Then in the formulas provided by Theorem 2.1 we obtain for p = 2:

2
(

1 − 1
p

)(
1 − 1

2p

)
· · ·
(

1 − 1
kp

)
� 2·1

2
·
√

1
2
·
√

2
3
· · ·
√

k − 1
k

=
1√
k

�
√

2√
n

>
1√
n

;

for p � 5:(
1 − 1

p

)(
1 − 1

2p

)
· · ·
(

1 − 1
kp

)
− 1

kp

(
1 +

1
p

)(
1 +

1
2p

)
· · ·
(

1 +
1

(k − 1)p

)
�
(

1 − 1
p

)
·
√

1
2
·
√

2
3
· · ·
√

k − 1
k

− 1
kp

·
√

2
1
·
√

3
2
· · ·
√

k

k − 1

=
((

1 − 1
p

)
− 1

p

)
· 1√

k
�
(√

p − 2√
p

)
· 1√

n
>

1√
n

;

for p = 3 and n � 9:(
1 − 1

p

)(
1 − 1

2p

)
· · ·
(

1 − 1
kp

)
− 1

kp

(
1 +

1
p

)(
1 +

1
2p

)
· · ·
(

1 +
1

(k − 1)p

)
� 2

3
· 5
6
· 8
9
·
√

3
4
· · ·
√

k − 1
k

− 1
3k

· 4
3
· 7
6
·
√

4
3
· · ·
√

k

k − 1

=
26
27

· 1√
3k

� 26
27

· 1√
n

.

Finally, for p = 3 and 5 � n � 8 the proportion of p-regular elements in An is 2/3,
7/9, 7/9, and 5/9, respectively, for which our estimate clearly holds.

3. The exceptional groups of Lie type

In the case of exceptional groups of Lie type we offer two approaches. The second
one is the same as in the case of classical groups: we construct pairs of maximal
tori of coprime orders. Using this method we could prove the lower bound 1/31
for the number of p-regular elements for arbitrary prime p. We will not work out
the details there, because the other method gives a better bound. Namely, our first
approach, based on the existence of sharp tori (i. e., strongly self-centralizing tori
in the sense of G. Higman) in all exceptional groups of Lie type with the exception
of E7(q), will yield the lower bound 1/15.

3.1. Sharp tori in exceptional groups of Lie type

Theorem 3.1. For the pairs (S, T ) listed in Table I, where S is an exceptional
simple group of Lie type and T is a cyclic maximal torus in S of the order stated
in Table I, the torus T is sharp (strongly self-centralizing) in S, i. e., CS(t) = T
for every t ∈ T× = T \ {1}.
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Table I: Sharp cyclic tori in exceptional groups of Lie type

S conditions; d |T | e u = |NS(T )/T |

2B2(q) q = 22k+1 � 8 Φ±
4 (q) 4 4

3D4(q) Φ3(−q2) 12 4

q �≡ 1 (3) Φ3(q) 3 6
G2(q)

q �≡ 2 (3) Φ3(−q) 6 6

2G2(q) q = 32k+1 � 27 Φ±
6 (q) 6 6

F4(q) Φ3(−q2) 12 12

2F4(q) q = 22k+1 ∗ Φ±
12(q) 12 12

E6(q) d = (3, q − 1) 1
dΦ3(q3) 9 9

2E6(q) d = (3, q + 1) 1
dΦ3(−q3) 18 9

Φ3(−q4) 24 24

Φ15(q) 15 30
E8(q)

Φ15(−q) 30 30

q �≡ ±2 (5) Φ5(−q2) 20 20

∗For q = 2 the group 2F4(q) is not simple; in that case
take S = 2F4(2)′ (the Tits group) and |T | = 13.

Combining Theorem 3.1 with Proposition 1.15 we obtain part (c) of Theorem 1.1:
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Corollary 3.2. For every finite exceptional simple group S of Lie type and every
prime p, the proportion of p-regular elements in S is greater than 1/15.

Proof. First assume that S is not E7(q). Then Proposition 1.15 yields that the
proportion of p-regular elements in S is at least∑

i

1
|NS(Ti)/Ti| + 1

� 1
13

.

The case S = E7(q) requires a different method; Corollary 3.5 (below) asserts
that in this case the proportion of p-regular elements is greater than 1/15.

For the proof of Theorem 3.1 we need the following observation.

Lemma 3.3. For each torus T listed in Table I, every prime divisor of |T | is a
primitive prime divisor of qe − 1 for the exponent e stated in Table I.

Proof. For explicit expressions of certain cyclotomic polynomials Φn(x) and their
semicyclotomic factors Φ±

n (for n = 4, 6, 12) we refer to Definition 1.18 and the
table preceding it.

Let r be a prime divisor of |T | and assume that k is the smallest positive exponent
such that r | qk − 1. Then r | qn − 1 if and only if k | n.

Now we have r
∣∣ |T | ∣∣ Φe(q)

∣∣ qe − 1, hence k | e holds. We have to show k = e.
Assume by way of contradiction that k < e; then r

∣∣ Φe(q)
∣∣ (qe − 1)/(qk − 1), so

r | (1+ qk + q2k + · · ·+ qe−k, qk − 1) = (e/k, qk − 1), hence r is a divisor of e. In our
cases the only prime divisors of e can be 2, 3, or 5. It can easily be checked that
none of the relevant primes divides the order of T .

Proof of Theorem 3.1. To prove the Theorem, we first observe that S indeed has
cyclic tori of orders as given in Table I. The theory of maximal tori is discussed
in [25, Section II] and [6]. In particular, the conjugacy classes of maximal tori are
described via the conjugacy classes of the corresponding (untwisted) Weyl group,
the automizers NS(T )/T are given as certain subgroups of the Weyl groups, and
the structure of the torus can be worked out using information obtained from the
Weyl group. Then [6] gives in detail the conjugacy classes in the Weyl group, giving
the orders of all the tori (at least in the untwisted case). One can use this to find
these tori, and use the procedure given to check that they really are cyclic. This is
done in detail in the thesis of Gager [11], where the information is also obtained
for the twisted groups.

Alternatively, one can use various well-known subgroups of maximal rank, as
in the paper [19]. For example, in [19, Example 1.4], the subsystem A3

2 of E6 is
used to construct a subgroup PSL3(q3) inside E6(q) (respectively PSU3(q3) inside
2E6(q)). This contains the cyclic torus indicated. Also, a complete list of maximal
tori in exceptional groups of Lie type is accessible in [15].

These sources also provide the value of u = |NS(T )/T | as listed in Table I.
Now it is easy to check (using Lemma 3.3) that for all tori listed in Table I we

have that (|S : T |, |T |) = 1. We want to show that for every 1 �= t ∈ T the centralizer
CS(t) coincides with T . Without loss of generality we may assume that t has prime
order r. By Lemma 3.3, r is a primitive prime divisor of qe−1. Observe that |CS(t)|
cannot be divisible by the characteristic of the field of definition, since otherwise t
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would lie in the centralizer of a unipotent element and hence in a parabolic subgroup
of S, contrary to our choice of e. Now we can check that the only conjugacy class
of maximal tori of order divisible by r is the class of T , for example by using the
lists in [15]. Hence it follows that CS(t) = T . �

Next, we use Theorem 3.1 to prove Theorem 1.26.

Proof of Theorem 1.26. First let G be any of the groups 3D4(q), G2(q), F4(q), E6(q),
2E6(q), E8(q). We are going to apply Lemma 1.25. For C we take a cyclic sharp
torus T as given in Table I, and set t = 1. Since every primitive prime divisor of
qe − 1 divides Φe(q), it divides |T | as well. Conversely, every prime divisor of |T | is
a primitive prime divisor of qe − 1 by Lemma 3.3. Using Theorem 3.1 and Sylow’s
Theorem we obtain that an element g ∈ G has order divisible by a primitive prime
divisor of qe − 1 if and only if it lies in a conjugate of T . Hence Lemma 1.25 is
applicable and it yields the desired result for the proportion of these elements.

The argument for the groups 2B2(q), 2G2(q), 2F4(q) is the same, but the desired
elements appear in two different classes of maximal tori as indicated. The proportion
of the appropriate elements in each of them is estimated as before (since the two
tori have coprime orders) and the result follows.

Finally for G = E7(q) we take any of the tori T1, T2 from Table II and set
for T1: e = 7 and t = (q − 1)(7, q − 1)/(2, q − 1); and for T2: e = 14 and t =
(q + 1)(7, q + 1)/(2, q + 1). The proof of Theorem 3.4 yields that Lemma 1.25 is
applicable here as well, with u = 14, thus finishing the proof. �

3.2. Pairs of tori in exceptional groups of Lie type
We use the letter X to represent the (Chevalley-Steinberg) type of a finite simple

group of Lie type, such as X = Bn or X = 3D4. The group itself is denoted by
S = X(q) where q is the order of the field of definition.

Theorem 3.4. For every exceptional type X, there exists a constant c(X) � 1/31
such that every finite exceptional simple group X(q) of type X, except the Tits group
2F4(2)′, contains cyclic maximal tori T1 and T2 of relatively prime orders such that
for i = 1, 2 we have

|T S
i |

|S| > c(X).

The orders of the Ti as well as the lower bounds c(X) are listed in Table II. Note
that those listed are not the only pairs of maximal tori with the given properties.

Proof. We are going to apply Proposition 1.11. Following the notation of Proposi-
tion 1.11, let vi = |Γ(Ti)|/|Ti| and ui = |NS(Ti)/Ti|. In accordance with Proposi-
tion 1.11, our goal is to prove that vi/ui � c(X) for the values of c(X) stated in
Table II.

We give a detailed proof only in the case S = E7(q). As in the proof of The-
orem 3.1 we can show the existence of two maximal tori T1 and T2 of respective
orders 1

d (q7 − 1) and 1
d(q7 + 1), where d = (2, q − 1). Their orders are coprime. A

primitive prime divisor of q7 − 1 divides the order only of the parabolic of type A6;
an easy calculation shows that an element whose order is a primitive prime divisor
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Table II: Pairs of cyclic maximal tori in exceptional groups of Lie type

S = X(q) conditions; d |T1| |T2| ui c(X)

2B2(q) q = 22k+1 � 8 Φ+
4 (q) Φ−

4 (q) 4, 4 1/5

3D4(q) Φ3(−q2) −Φ1(−q)Φ1(q3) 4, 4 3/26

G2(q) q > 2 Φ3(q) Φ3(−q) 6, 6 1/7

2G2(q) q = 32k+1 � 27 Φ+
6 (q) Φ−

6 (q) 6, 6 1/7

F4(q) Φ3(−q2) −Φ1(−q)Φ1(q3) 12, 12 1/26

2F4(q) q = 22k+1 � 8 Φ+
12(q) Φ−

12(q) 12, 12 1/13

E6(q) d = (3, q − 1) 1
dΦ3(q3) − 1

dΦ1(−q4)Φ1(q2) 9, 8 1/10

2E6(q) d = (3, q + 1) 1
dΦ3(−q3) − 1

dΦ1(−q4)Φ1(q2) 9, 8 1/10

E7(q) d = (2, q − 1) 1
dΦ1(q7) − 1

dΦ1(−q7) 14, 14 1/15

E8(q) Φ15(q) Φ15(−q) 30, 30 1/31

Notation: ui = |NS(Ti)/Ti|.

of q7 − 1 cannot centralize any unipotent element there. Hence we see similarly as
in the proof of Theorem 3.1 that if the order of an element t ∈ T1 is divisible by a
primitive prime divisor of q7 − 1, then its centralizer coincides with T1. Since the
product of all primitive prime divisors (with multiplicities) of q7 − 1 is q7−1

(q−1)(7,q−1)

we have that

v1 =
|Γ(T1)|
|T1| � 1 − (q − 1)(7, q − 1)

q7 − 1
.
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Furthermore, u1 = |NS(T1)/T1| = 14, hence v1/u1 > 1/15. Similarly, if the order
of an element of T2 is divisible by a primitive prime divisor of q14 − 1 then its
centralizer is T2; the product of all primitive prime divisors (with multiplicities) of
q14 − 1 is (q7 + 1)/(q + 1)(7, q + 1), hence

v2 =
|Γ(T2)|
|T2| � 1 − (q + 1)(7, q + 1)

q7 + 1
.

Since u2 = |NS(T2)/T2| = 14 as well, v2/u2 > 1/15 also holds.
Similarly, for the torus T2 in 3D4(q) one can show that Γ(T2) contains those

elements of T2, whose order is divisible by an integer kl, where 2 < k | q + 1 and
3 < l | q2 + q + 1. Hence

v2 =
|Γ(T2)|
|T2| �

(
1 − (2, q + 1)

q + 1

)(
1 − (3, q2 + q + 1)

q2 + q + 1

)
� 6

13
,

and |T S
2 |/|S| > v2/u2 � 3/26.

The same estimate is valid for v2 for the torus T2 in F4(q), hence in that group
we obtain the lower bound v2/u2 � 1/26.

Consider now the torus T2 in E6(q) or in 2E6(q), and let x ∈ T2 be such that its
order is divisible by an integer k with 2 < k | q4 + 1. If x lies in a parabolic, then
that must be of type D5 or 2D5, respectively. Observe that x does not centralize
any unipotent element there. Hence we obtain that CS(x) = T2, i.e., x ∈ Γ(T2).
Thus in this case we have

v2 =
|Γ(T2)|
|T2| � 1 − (2, q − 1)

q4 + 1
� 16

17
,

and v2/u2 � 2/17.
In G2(q) at least one of the tori T1 and T2 is sharp. If Ti is not sharp, then 3

divides |Ti| and we get that

vi � 1 − 3
|Ti| � 6

7
,

hence vi/ui � 1/7.
All the other tori in Table II are sharp (and cyclic), hence vi/ui � 1/(ui + 1)

holds for them (cf. Proposition 1.15).

Since E7(q) does not contain sharp tori, we needed the estimate just proved in
order to show Corollary 3.2. We state this result separately.

Corollary 3.5. For any prime p the proportion of p-regular elements in E7(q) is
greater than 1/15.

4. The classical groups

Let S be any of the finite classical simple groups, i. e., PSLn(q), PSUn(q),
PSpn(q), PΩε

n(q) with the appropriate parameters. Notice that we reserve n to
denote the dimension of the vector space on which the corresponding quasisimple
group G = SLn(q), SUn(q), Spn(q), Ωε

n(q) acts naturally, where S = G/Z(G). Let
us emphasize that the field of definition for Un(q) is GF(q2).

Our main result is the following.
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Theorem 4.1. In any finite classical simple group S there exist maximal tori T1

and T2 of relatively prime orders such for i = 1, 2 we have∣∣T S
i

∣∣
|S| >

1
2n

,

where n−1 denotes the dimension of the projective space on which S acts naturally.

With the exception of T1 for Ω+
n (q) with n ≡ 0 (4), these tori are the same as

those in [20, p. 96].

In certain cases, the name of the group and the corresponding ‘natural action’
are not uniquely defined. In these cases, we give the proof only for one name of
the group, namely the one which produces the stronger lower bound. Specifically,
the proof omits the following group names (in parenthesis, we give the isomor-
phic groups appearing in the proof): Ω3(q) (PSL2(q)), Ω5(q) (PSp4(q)), PΩ−

6 (q)
(PSU4(q)), PΩ+

6 (q) (PSL4(q)), Ω2k+1(2e) (Sp2k(2e)).
The orders of the Ti are listed in Table III. To express these orders through

cyclotomic numbers, note that qk − 1 = Φ1(qk) and qk + 1 = −Φ1(−qk).
Applying Corollary 1.12 we obtain part (b) of Theorem 1.1:

Corollary 4.2. For every finite classical simple group S and every prime p, the
proportion of p-regular elements in S is > 1/(2n).

This section is devoted to the proof of Theorem 4.1. We will work in the corre-
sponding quasisimple group G. First we will construct the appropriate tori Ti in G.
(It will cause no confusion if we denote by Ti a subgroup in G as well as its image
in S = G/Z(G).) Then we show that for at least half of the elements x ∈ Ti we
have CG(x) = Ti. We also prove that |NG(Ti) : Ti| � n, which will yield the stated
estimate on the probabilities. Finally, easy number theoretic calculations will give
the coprimality of the orders of the two tori in each case. To achieve all these, we
need quite a long preparation.

First we define some large cyclic subgroups in certain finite classical groups. By
Huppert [13] there exist irreducible cyclic subgroups in the following cases (in each
case we choose a maximal such subgroup):

CL(n, q) � GLn(q) of order qn − 1;
C1

U (n, q) � Un(q) of order qn + 1, provided n is odd;
C1

S(n, q) � Spn(q) of order qn/2 + 1, provided n is even;
C1

O(n, q) � O−
n (q) of order qn/2 + 1, provided n is even.

In certain even dimensional cases we can decompose the underlying space into a
direct sum of two totally singular subspaces. Fixing a standard basis (see [16, 2.3.2,
2.4.1, and 2.5.3(i)]) we can define the following cyclic subgroups:

C2
U (n, q) � Un(q) of order qn − 1, provided n is even;

C2
S(n, q) � Spn(q) of order qn/2 − 1, provided n is even;

C2
O(n, q) � O+

n (q) of order qn/2 − 1, provided n is even,
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Table III: Some maximal tori in classical simple groups

S conditions d |T1| |T2|

n � 2;
PSLn(q) q � 4 (n, q − 1)

1
d
· qn − 1

q − 1
1
d

(
qn−1 − 1

)
if n = 2

n � 3 odd;
PSUn(q) q � 3 (n, q + 1)

1
d
· qn + 1

q + 1
1
d

(
qn−1 − 1

)
if n = 3

PSUn(q) n � 4 even (n, q + 1)
1
d
· qn − 1

q + 1
1
d

(
qn−1 + 1

)

n � 4 even;
PSpn(q) q � 3 (2, q − 1)

1
d

(
q

n
2 + 1

) 1
d

(
q

n
2 − 1

)
if n = 4

Ωn(q)
n � 7 odd,

2
1
d

(
q

n−1
2 + 1

) 1
d

(
q

n−1
2 − 1

)
q odd

PΩ−
n (q) n � 8 even (4, q

n
2 + 1)

1
d

(
q

n
2 + 1

) (
q

n
2 −1 + 1

)
(q − 1)

d

PΩ+
n (q)

n � 8,
(2, q − 1)2

(
q

n
2 −1 − 1

)
(q − 1)

d

(
q

n
2 −1 + 1

)
(q + 1)

dn ≡ 0 (4)

PΩ+
n (q)

n � 10,
(4, q

n
2 − 1)

1
d

(
q

n
2 − 1

) (
q

n
2 −1 + 1

)
(q + 1)

dn ≡ 2 (4)

where

C2
U (n, q) =

{(
g 0
0 (g∗)−1

)
: g ∈ CL(n/2, q2)

}
,

C2
S(n, q) = C2

O(n, q) =
{(

g 0
0 (gt)−1

)
: g ∈ CL(n/2, q)

}
.
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(Here gt denotes the transpose of the matrix g and g∗ denotes the image of gt under
the involutory field automorphism α �→ αq of GF(q2).)

The following is obvious.

Lemma 4.3. Let g be an element of one of the cyclic subgroups defined above, and let
λ be an eigenvalue of g (in the algebraic closure of GF(q)). Then the n eigenvalues
of g are the following:

(a) for g ∈ CL(n, q), C1
S(n, q), C1

O(n, q): λ, λq, . . . , λqn−1
;

(b) for g ∈ C1
U (n, q): λ, λq2

, . . . , λq2(n−1)
;

(c) for g ∈ C2
S(n, q), C2

O(n, q): λ, λq, . . . , λqn/2−1
, λ−1, λ−q, . . . , λ−qn/2−1

;

(d) for g ∈ C2
U (n, q): λ, λq2

, . . . , λqn−2
, λ−q, λ−q3

, . . . , λ−qn−1
.

Lemma 4.4.

(a) The image of CL(n, q) by the determinant map has order q − 1.

(b) The image of Ci
U (n, q) (i = 1, 2) by the determinant map has order q + 1.

(c) The group Ci
O(n, q) (i = 1, 2) is contained in SOε

n(q) (ε = − for i = 1; ε = +
for i = 2), but if q is odd then Ci

O(n, q) �� Ωε
n(q).

Proof. (a) By Lemma 4.3(a) we have det g = λ(qn−1)/(q−1). Since λ can be any
element of GF(qn), the claim follows.

(b) Similarly, we obtain for C1
U (n, q) with n odd that det g = λ(q2n−1)/(q2−1).

Since λ is an arbitrary (qn + 1)th root of unity in GF(q2n), it follows that
λ(qn+1)/(q+1) is an arbitrary (q + 1)th root of unity in GF(q2). Now
(q + 1, (qn − 1)/(q − 1)) = (q + 1, qn−1 + · · · + q + 1) = 1, as n is odd. Hence
det g =

(
λ(qn+1)/(q+1)

)(qn−1)/(q−1)
is indeed an arbitrary (q + 1)th root of unity.

Let us take now C2
U (n, q) with n even. Then Lemma 4.3(d) yields det g =

λ(1−q)(qn−1)/(q2−1) = λ−(qn−1)/(q+1). Now λ is an arbitrary nonzero element of
GF(qn), hence the claim follows.

(c) If q is a power of 2, then |Ci
O(n, q)| = qn/2 − (−1)i is odd, hence Ci

O(n, q) �
Ωε

n(q), as |Oε
n(q) : Ωε

n(q)| = 2 in this case. Now let q be an odd prime power. For an
element of C1

O(n, q) the determinant is λ(qn−1)/(q−1) = (λqn/2+1)(q
n/2−1)/(q−1) = 1,

since λ is a (qn/2 + 1)th root of unity. It is obvious that the determinant of any
element of C2

O(n, q) is 1. In order to check whether Ci
O(n, q) � Ωε

n(q) we have to
calculate the spinor norm of the elements g ∈ Ci

O(n, q). We do this using the Wall
form (see [26, p. 163 and p. 153]):

Θ(g) = disc(χg), χg(u, v) = β
(
(1 − g)−1u, v

)
,

where β is the symmetric bilinear form defining Oε
n(q), and disc(χg) is the deter-

minant of χg modulo the subgroup of squares in GF(q), i. e.,

Θ(g) = detβ · det(1 − g) mod GF(q)2.

For O+
n (q) we have detβ = (−1)n/2, hence for O−

n (q) it must be (−1)n/2δ, where δ
is a non-square element of GF(q).

Now let g be a generator of Ci
O(n, q), and λ an eigenvalue of g. We treat the two

cases separately. If i = 1, then C1
O(n, q) � O−

n (q) has order qn/2 + 1, hence λ is a
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primitive (qn/2 + 1)th root of unity in GF(qn), so λqn/2
= 1/λ. Now

√
λ ∈ GF(qn)

exists, and
√

λ
qn/2

= −1/
√

λ. Therefore we obtain that

det β · det(1 − g) = (−1)n/2δ

n−1∏
j=0

(
1 − λqj

)

= δ ·
n/2−1∏

j=0

(λ − 1)qj
(
1 − λqn/2

)qj

= δ · (λ − 2 + λ−1
) qn/2−1

q−1

= δ ·
(√

λ − 1√
λ

)2 qn/2−1
q−1

.

We claim that the second factor is a square in GF(q), hence the spinor norm of g
is nontrivial, indeed. An element α ∈ GF(q) is a square if and only if α(q−1)/2 = 1.
Testing the second factor we obtain(√

λ − 1√
λ

)2 qn/2−1
q−1 · q−1

2

=
(√

λ − 1√
λ

)qn/2 (√
λ − 1√

λ

)−1

=
(
− 1√

λ
+
√

λ

)(√
λ − 1√

λ

)−1

= 1,

as we wanted.
Let us now consider C2

O(n, q) � O+
n (q) of order qn/2 − 1, so in this case λ is a

primitive element of GF(qn/2). Obviously, λqn/2
= λ holds. Take

√
λ ∈ GF(qn),

then
√

λ
qn/2

= −√
λ. We obtain that

det β · det(1 − g) = (−1)n/2

n/2−1∏
j=0

((
1 − λqj

)(
1 − λ−qj

))

=
(√

λ − 1√
λ

)2(qn/2−1)/(q−1)

.

Applying the same test as above, we get(√
λ − 1√

λ

)2 qn/2−1
q−1 · q−1

2

=
(√

λ − 1√
λ

)qn/2 (√
λ − 1√

λ

)−1

=
(
−
√

λ +
1√
λ

)(√
λ − 1√

λ

)−1

= −1,

hence the spinor norm of the generator g is nontrivial in this case as well, so
g /∈ Ω+

n (q).

We will say that g ∈ GLn(q) has simple spectrum if g has n distinct eigenvalues.
The following is our last preparatory result.

Lemma 4.5. Let C be any of the cyclic groups from Table IV. Then at least half of
the elements in C have simple spectra.

Observe that again, to express the orders of these groups through cyclotomic
numbers, we only need to note that qk − 1 = Φ1(qk) and qk + 1 = −Φ1(−qk).
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Table IV: The basic cyclic subgroups

C conditions |C| k

CL(n, q) n � 1 qn − 1 n

CL(n, q) ∩ SLn(q) n � 2, (n, q) �= (2, 3) (qn − 1)/(q − 1) n

C1
U (n, q) n � 3 odd qn + 1 2n

C1
U (n, q) ∩ SUn(q) n � 3 odd, (n, q) �= (3, 2) (qn + 1)/(q + 1) 2n

C2
U (n, q) n � 4 even qn − 1 n

C2
U (n, q) ∩ SUn(q) n � 4 even (qn − 1)/(q + 1) n

C1
S(n, q) n � 4 even qn/2 + 1 n

C2
S(n, q) n � 4 even, (n, q) �= (4, 2) qn/2 − 1 n/2

C1
O(n, q) n � 6 even qn/2 + 1 n

C1
O(n, q) ∩ Ω−

n (q) n � 6 even, q odd (qn/2 + 1)/2 n

C2
O(n, q) n � 6 even qn/2 − 1 n/2

C2
O(n, q) ∩ Ω+

n (q) n � 6 even, q odd (qn/2 − 1)/2 n/2

Proof. Making use of Lemma 4.3 we are going to determine which elements of C
have eigenvalues with multiplicity greater than one. In case (a) it happens if and
only if λ ∈ GF(qj) for some proper subfield of GF(qn), i. e., for j|n, 1 � j < n.
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Similarly, in case (b) we obtain the condition that λ ∈ GF(q2j) for some j|n,
1 � j < n.

In case (c) either λ ∈ GF(qj) for some j|n2 , 1 � j < n
2 , or λ−1 = λqm

for
some 0 � m < n

2 . Assume that λ does not belong to any subfield GF(qj), j|n2 ,
1 � j < n

2 , but λqm

= λ−1 holds. If m = 0, then λ2 = 1, hence λ ∈ GF(q), so
we must have n

2 = 1. However, if (c) occurs then n � 4. So let 0 < m < n
2 , then

λq2m

= (λ−1)qm

= λ. Since λ has degree n/2 over GF(q), we obtain that n
2 |2m < n.

Thus n/2 is even and m = n/4. We have shown that in case (c) the multiplicities
of the eigenvalues are greater than one if and only if one of the following holds:

(i) λ ∈ GF(qj) for some j|n2 , 1 � j < n
2 ;

(ii) n/2 is even and λqn/4+1 = 1.

In case (d) similar calculation yields the conditions

(iii) λ ∈ GF(q2j) for some j|n2 , 1 � j < n
2 ; or

(iv) n/2 is odd and λqn/2+1 = 1.

Now we are going to estimate the number of elements in C satisfying one of
the properties implying the coincidence of certain eigenvalues. Recall that a prime
p|qk − 1 is called a primitive prime divisor if p does not divide qj − 1 for 1 � j < k.
By Zsigmondy’s theorem [27] there almost always exists a primitive prime divisor
p of qk − 1 with the only exceptions k = 2 and q a Mersenne prime, and k = 6,
q = 2. If k � 2, then obviously p � 3. Now let k be as in Table IV for the individual
cases, and assume that there exists a primitive prime divisor p of qk − 1. Then it is
easy to check that in each case p||C|. If the order of g ∈ C is divisible by p then an
eigenvalue λ of g cannot belong to any proper subfield GF(qj), j|k, 1 � j < k. It
follows that the probability that an eigenvalue of a random element of C belongs
to a proper subfield is at most 1/p � 1/3 (under the assumption that qk − 1 has a
primitive prime divisor).

If k = 2 and q is a Mersenne prime then one of the cases CL(2, q), CL(2, q) ∩
SL2(q) (here q �= 3), and C2

S(4, q) occurs. The probability that an eigenvalue of
g ∈ C belongs to GF(q) is (q − 1)/(q2 − 1), 2/(q + 1), (q − 1)/(q2 − 1), respectively,
so it is always � 1/4. If k = 6 and q = 2, then |C| = 26 − 1, 23 + 1, or C =
C2

U (6, 2) ∩ SU6(2). The probability that an eigenvalue of g ∈ C belongs to GF(23)
or to GF(22) is 9/63, 3/9, and 9/21, respectively.

Summarizing, we obtain that the probability that an eigenvalue of g ∈ C belongs
to a proper subfield is at most 1/3 with the sole exception C = C2

U (6, 2) ∩ SU6(2).
The other causes for coincidence of eigenvalues occur in the case (c) of Lemma 4.3

if n/2 is even, and in the case (d) if n/2 is odd. The probability that a random
element of C satisfies condition (ii) above is

qn/4 + 1
qn/2 − 1

=
1

qn/4 − 1

for C = C2
S(n, q) or C2

O(n, q), and twice as much for C = C2
O(n, q) ∩ Ω+

n (q). The
groups C2

S(4, q), 2 < q < 8, C2
S(8, 2), C2

O(8, 2), C2
O(8, 3) ∩ Ω+

8 (3) will be dealt with
separately, for all other groups falling in case (c) the probability that condition (ii)
holds is at most 1/7.

106https://doi.org/10.1112/S1461157000000036 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000036


On the number of p-regular elements in finite simple groups

Table V: Some exceptional cases

C |C| ∗ ∗∗ Prob†

C2
S(4, q), q = 3, 5, 7 q2 − 1 q + 1 q − 1 2/(q + 1)

C2
S(4, 4) 42 − 1 4 + 1 4 − 1 7/15

C2
S(8, 2) 24 − 1 22 + 1 22 − 1 7/15

C2
O(8, 2) 24 − 1 22 + 1 22 − 1 7/15

C2
O(8, 3) ∩ Ω+

8 (3) (34 − 1)/2 32 + 1 32 − 1 16/40

C2
U (6, 2) ∩ SU6(2) (26 − 1)/(2 + 1) (23 + 1)/3 22 − 1 3/21

C2
U (6, 3) ∩ SU6(3) (36 − 1)/(3 + 1) (33 + 1)/2 (32 − 1)/4 14/182

∗ The number of elements of C satisfying (ii) or (iv)
∗∗The number of elements of C with eigenvalues belonging to a proper subfield
† The probability that an element of C has multiple eigenvalues

Similarly, in case (d) with n/2 odd the probability that a random element of C
satisfies (iv) is at most

qn/2 + 1
(qn − 1)/(q + 1)

=
q + 1

qn/2 − 1
,

which is again at most 1/7 with the exception of C2
U (6, 2)∩ SU6(2) and C2

U (6, 3)∩
SU6(3).

So with the noted exceptions we have established that the probability that an
element g ∈ C has eigenvalues of multiplicity greater than one, is at most 1/3 +
1/7 < 1/2.

For the remaining groups we have to do case-by-case calculations, see Table V.
Note that the total number of elements has to be determined using the inclusion-
exclusion principle.

Now we are able to define our maximal tori. In each case our construction will
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Table VI: Construction of the maximal tori

G conditions T1 T2

SLn(q) n � 2 CL(n) ∩ G (CL(n − 1) × CL(1)) ∩ G

SUn(q) n � 3 odd C1
U (n) ∩ G (C2

U (n − 1) × C1
U (1)) ∩ G

SUn(q) n � 4 even C2
U (n) ∩ G (C1

U (n − 1) × C1
U (1)) ∩ G

Spn(q) n � 4 even C1
S(n) C2

S(n)

n � 7 odd,
Ωn(q) (C1

O(n − 1) × {1}) ∩ G (C2
O(n − 1) × {1}) ∩ G

q odd

Ω−
n (q) n � 8 even C1

O(n) ∩ G (C1
O(n − 2) × C2

O(2)) ∩ G

n � 8,
Ω+

n (q) (C2
O(n − 2) × C2

O(2)) ∩ G (C1
O(n − 2) × C1

O(2)) ∩ G
n ≡ 0 (4)

n � 10,
Ω+

n (q) C2
O(n) ∩ G (C1

O(n − 2) × C1
O(2)) ∩ G

n ≡ 2 (4)

Notation: Ci
X(k) stands for Ci

X(k, q).

employ the following general method. Let V be the vector space (possibly equipped
with a form) on which the quasisimple group G acts. We decompose V = V1 ⊕
V2 (where the sum is orthogonal in the presence of a nontrivial form), with 0 �
dimV2 � 2, and choose cyclic subgroups C1, C2 acting on V1 and V2, respectively,
and let T = (C1 × C2) ∩ G. The individual cases are given in Table VI.

It is easy to see that each torus T contains Z(G). Now it is routine to check the
order formulae in Table III, noticing that in the case of orthogonal groups we have
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in virtue of Lemma 4.4(c) that

|C1 × C2|
|((C1 × C2) ∩ G)/Z(G)| =

|SOε
n(q)|

|PΩε
n(q)| = d.

For T = (C1 × C2) ∩ G acting on V1 ⊕ V2 let us define T ∗ to be the subset of T
consisting of those elements which have simple spectrum on V1. (These are actually
the regular semisimple elements in the torus. However, we shall not use this term in
order to avoid confusion with p-regularity.) The action of T restricted to V1 yields
one of the groups listed in Table IV, hence Lemma 4.5 ensures that |T ∗| � |T |/2.
If G = SL2(q) then we have to modify the definition of T ∗

2 (since V1 and V2 are
both 1-dimensional in this case): we require that the elements must have simple
spectrum on the whole space V . Then |T ∗

2 | = q − 1 − d � (q − 1)/2 = |T2|/2 holds
again.

Lemma 4.6. Let T be one of the tori in Table VI. Then CG(g) = T for all g ∈ T ∗.

Proof. Let g ∈ T ∗. Then we claim that the eigenvalues of g on V1 and on V2 are
different. (So the only eigenvalue with multiplicity greater than one can be ±1
with multiplicity two on V2.) Indeed, the eigenvalue(s) on V2 belong to GF(q) or
GF(q2), but the eigenvalues on V1 generate larger fields, except for T ∗

2 in the cases
G = SL2(q) or G = SU3(q). For SL2(q) we have chosen the definition of T ∗

2 exactly
as it is needed here. An element of T ∗

2 � SU3(q) has eigenvalues λ, λ−q, λq−1 with
λ ∈ GF(q2), λ �= λ−q. However, if λ = λq−1, then λ−q = λ−q(q−1) = λ−q2+q =
λ−1+q, hence λ = λ−q, which is not the case. We get the same contradiction from
λ−q = λq−1 as well.

Let G̃ = GLn(q), Un(q), Spn(q), or Oε
n(q), so as G̃ � G. Furthermore, let

G̃(Vi) be the action on Vi induced by the subgroup of G̃ leaving Vi invariant. Then
the above claim implies that C

eG(g) = C
eG(V1)(gV1) × C

eG(V2)
(gV2). Now gV1 has

simple spectrum, hence its centralizer is abelian. From the maximality of C1 (which
is obvious for the groups C2

X(n, q) and follows from [13] for the other groups),
we deduce that C

eG(V1)(gV1) = C1, so C
eG(g) � C1 × G̃(V2), therefore CG(g) �

(C1 × G̃(V2)) ∩ G. In the case of orthogonal groups we have C1 � SO(V1) (see
Lemma 4.4(c)), thus (C1 × G̃(V2)) ∩ G = (C1 × SO(V2)) ∩ G. However, SO(V2) =
C2 in all cases, hence CG(g) = T holds. If G is not an orthogonal group, then
dimV2 � 1, and G̃(V2) = C2, so CG(g) = T again.

Lemma 4.7. Let T be one of the tori in Table VI. Then we have |NG(T ) : T | � n.

Proof. Looking at the dimensions of the minimal T -invariant subspaces (which
can be n; n/2, n/2; n − 1, 1; (n − 1)/2, (n − 1)/2, 1; n − 2, 2; n − 2, 1, 1; and
(n−2)/2, (n−2)/2, 1, 1) we see that no other T -invariant subspace has the same di-
mension as V1 except in the cases T2 � SL2(q) and T2 � SU3(q). In SL2(q) T2 is the
group of diagonal matrices (of determinant 1), and obviously |NSL2(q)(T2) : T2| = 2
holds. In SU3(q) T2 has three 1-dimensional invariant subspaces, two of them
are singular, the third is not. Hence again |NSU3(q)(T2) : T2| = 2 follows. In all
other cases the normalizer of T must leave V1 invariant. Since V2 is the unique
T -invariant complement of V1, V2 is also invariant for NG(T ). Hence we have
NG(T ) =

(
N

eG(V1)(C1) × N
eG(V2)

(C2)
)
∩ G.

109https://doi.org/10.1112/S1461157000000036 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000036


On the number of p-regular elements in finite simple groups

Let m = dimV1. Let us consider first the case when C1 acts irreducibly on V1.
Then the linear span [C1] of C1 in the ring of matrices over GF(q) (or over GF(q2)
in the unitary case) is isomorphic to the field GF(qm) (or GF(q2m)). Every element
of the normalizer induces not only a group automorphism of C1 but at the same
time a relative field automorphism of [C1] as well. Hence we have

|N
eG(V1)

(C1) : C1| = |N
eG(V1)

(C1) : C
eG(V1)(C1)| � m.

In the other case, when C1 has two minimal invariant subspaces V11⊕V12 = V1, the
existence of elements with simple spectrum in C1 implies that the representations
of C1 on V11 and on V12 are not equivalent. Hence an element of N

eG(V1)(C1) either
leaves both subspaces invariant or interchanges them. If it leaves them invariant
then its action on V11 uniquely determines its action on V12, so we obtain

|N
eG(V1)(C1) : C1| � 2 · |N

eG(V11)(C1 |V11 ) : C1 |V11 | � 2 · m

2
= m,

in this case as well.
Now we look at the kernel of the projection of NG(T ) to N

eG(V1)
(C1). If dimV2 =

1, then it is trivial, since every element of G has determinant 1. If dim V2 = 2, then
the kernel is contained in Ωε

2(q) � C2. So in any case we get

|NG(T ) : T | � |N
eG(V1)

(C1) : C1| � m � n.

Lemma 4.8. For each group S in Table III, the orders of |T1| and |T2| are relatively
prime.

Proof. Observe that
(
(qn − 1)/(q − 1), qn−1 − 1

)
divides (qn −1, qn−1−1) = q−1,

hence(
(qn − 1)/(q − 1), qn−1 − 1

)
= (qn−1 + qn−2 + · · · + q + 1, q − 1) = (n, q − 1).

Substituting −q for q we obtain for n odd:
(
(qn + 1)/(q + 1), qn−1 − 1

)
= (n, q+1);

for n even:
(
(qn − 1)/(q + 1), qn−1 + 1

)
= (n, q + 1). Obviously, (qk + 1, qk − 1) =

(2, qk − 1) = (2, q − 1). Furthermore, we have (qk + 1, qk−1 + 1) = (qk + 1, q − 1) =
(2, q−1). If k is odd, replacing q by −q we obtain (qk−1, qk−1+1) = (qk−1, q+1) =
(2, q + 1).

These formulae imply that the tori T1 and T2 in S have coprime orders. This
is obvious, except for the even dimensional orthogonal groups. In that case we see
immediately that (|T1|, |T2|) is a power of 2. If q is even, then both |T1| and |T2|
are odd, so we are done. So let q be odd. For PΩ−

n (q) and for PΩ+
n (q) with n ≡ 2

(mod 4) we have (|T1|, |T2|) = 1
d

(
qn/2 − ε, (qn/2−1 + 1)(q + ε)

)
. Here the g. c. d.(

qn/2 − ε, (qn/2−1 + 1)(q + ε)
)

divides 4, hence (|T1|, |T2|) = 1
d (4, qn/2 − ε) = 1.

Finally, for PΩ+
n (q) with n ≡ 0 (mod 4) we have that d = (2, q − 1)2 = 4. If

q ≡ 1 (mod 4), then T2 has odd order, if q ≡ 3 (mod 4), then T1. So in all cases
(|T1|, |T2|) = 1.

Proof of Theorem 4.1. The coprimality was proved in the previous lemma. We have
to give a lower bound for the cardinality of Ai := T S

i . We may work in G instead
of S, since each Ti contains Z(G).

We apply Proposition 1.11. We have that T ∗
i ⊆ Γ(Ti) by Lemma 4.6, |NG(Ti) :

Ti| � n by Lemma 4.7, and |T ∗
i |/|Ti| � 1/2 by Lemma 4.5 (and also for T2 � SL2(q)
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by its particular definition). We conclude, by Proposition 1.12, that the proportion
of p-regular elements in S is > 1/(2n). �

All tori but the ones constructed for PΩ+
n (q) with 4 | n are cyclic. Unfortunately,

it is not always possible to find two cyclic tori of coprime orders as the following
result shows.

Proposition 4.9. Let n � 8 be a power of 2 and q � 5 be an odd prime power.
Then the order of every cyclic maximal torus in PΩ+

n (q) is divisible by (q2 − 1)/4.

Proof. Let G = SO+
n (q) then every maximal torus in G has the form

T =
∏

C
ε(i)
O (2ki, q) with

∑
2ki = n and an even number of indices i for which

ε(i) = 1. We have |T | =
∏

(qki − (−1)ε(i)) and |(T ∩ Ω+
n (q))/Z(Ω+

n (q))| = |T |/4.
Suppose that q2 − 1 does not divide |T |. Then we want to show that T0 = (T ∩
Ω+

n (q))/Z(Ω+
n (q)) is not cyclic. Clearly, the number of direct factors of T cannot

exceed 3, otherwise the Sylow 2-subgroup of T has at least four direct factors, so
T0 cannot be cyclic. We have to consider the following cases:

T = C2
O(n, q);

T = C2
O(2k, q) × C2

O(2l, q) with k + l = n/2;

T = C1
O(2k, q) × C1

O(2l, q) with k + l = n/2;

T = C2
O(2k, q) × C2

O(2l, q) × C2
O(2m, q) with k + l + m = n/2;

T = C1
O(2k, q) × C1

O(2l, q) × C2
O(2m, q) with k + l + m = n/2

of order qn/2 − 1, (qk − 1)(ql − 1), (qk + 1)(ql + 1), (qk − 1)(ql − 1)(qm − 1),
(qk + 1)(ql + 1)(qm − 1), respectively. Clearly, q2 − 1 | qn/2 − 1. Since q − 1 � 4
divides both qk − 1 and ql − 1, the second group cannot give rise to a cyclic group.
In the third case let k = 2rk1 with r � 0, k1 odd. Then we have l = 2rl1 with l1
odd, as k1 + l1 = n/2r is a power of 2. So q2r

+ 1 divides both qk + 1 and ql + 1
in this case, hence the group is not cyclic. In the last two cases if m is even then
q2 − 1 | qm − 1. So let m be odd. In the fourth case one of k and l, say, k is even,
and so q2 − 1 | qk − 1. In the last case one of them, say, l is odd, hence q + 1 | ql + 1
and q − 1 | qm − 1.

5. The sporadic groups

We handle the sporadic groups by a method analogous to finding sharp tori in
the case of exceptional groups of Lie type. Using the ATLAS [7] we observe the
following fact.

Proposition 5.1. For every sporadic simple group S there exists at least one prime
r such that the Sylow r-subgroups of S are self-centralizing of order r.

Table VII gives the appropriate prime divisors r. Notice that the largest prime
divisor of |S| always has this property. In parentheses we give the number of con-
jugacy classes of elements of order r in S.
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Table VII: Prime divisors of the orders of sporadic groups satisfying Prop. 5.1

S M11 M12 M22 M23 M24

r 5(1), 11(2) 11(2) 5(1), 7(2), 11(2) 11(2), 23(2) 11(1), 23(2)

S J1 J2 J3 J4

r 7(1), 11(1), 19(3) 7(1) 17(2), 19(2) 23(1), 29(1), 31(3), 37(3), 43(3)

S HS McL Suz Ly He Ru
r 7(1), 11(2) 11(2) 11(1), 13(2) 31(5), 37(2), 67(3) 17(2) 29(2)

S O′N Co3 Co2 Co1 Fi22 Fi23
r 11(1), 19(3), 31(2) 23(2) 11(1), 23(2) 23(2) 13(2) 17(1), 23(2)

S Fi′24 Th HN B M
r 17(1), 23(2), 29(2) 19(1), 31(2) 19(2) 31(2), 47(2) 41(1), 59(2), 71(2)

The same is true for the Tits group 2F4(2)′ with r = 13 (and there are 2 conju-
gacy classes of elements of order 13). However, it is not a general property of finite
simple groups, as for example PSL2(49) of order 24 ·3 ·52 ·72 has no self-centralizing
Sylow 3-subgroup.

Of course, one could tabulate the proportion of p-regular elements for all pairs
(S, p), but we are content with drawing the following conclusion from Proposi-
tion 5.1:

Corollary 5.2 (Theorem 1.1(d)). For every sporadic simple group S and every
prime number p, the proportion of p-regular elements is greater than 2/29.

Proof. If r = p satisfies the statement of Proposition 5.1, then every element of S
is either of order p or p-regular. If we denote by c the number of conjugacy classes
of elements of order p, then we obtain that the proportion of p-regular elements is
1 − c

p � 5
7 , by considering Table VII. If p does not satisfy Proposition 5.1, then let

r1, . . . , rn be the primes which do satisfy it, and let ci (i = 1, . . . , n) be the number
of conjugacy classes of elements of order ri in S. Since any element of order ri is
p-regular now, we obtain that the proportion of p-regular elements is greater than∑

ci/ri � 2/29, the identity element making the inequality strict.

Remark 5.3. The Atlas lists both the orders of elements in each conjugacy class
and the sizes of the conjugacy classes, so improving our lower bound and obtaining
more specific information is a matter of arithmetic. Ross Lawther has done this
calculation and found that the worst case occurs with p = 2 and the Rudvalis group;
the proportion of elements of odd order is ≈ 0.195. If we include the Tits group
2F4(2)′ among the sporadic groups (as we do in Theorem 1.1 and Corollary 5.2),
it will be the champion with p = 2: the proportion of elements of odd order is
≈ 0.175. For other primes, the Tits group produces proportions greater than 1/2.
So the quantity ≈ 0.175 replaces our 2/29 ≈ 0.069 lower bound, valid for all pairs
(S, p) where S is a sporadic simple group and p is a prime.

Lawther [17] found that in most cases, the proportion of p-regular elements was
greater than 1/2. Here we reproduce his list of 24 exceptions (S, p) in increasing
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order of the proportion of p-regular elements. (The proportions are rounded to 3
decimals.)

(T i, 2) 0.175, (Ru, 2) 0.195, (Th, 3) 0.269, (Co1, 2) 0.279, (Co2, 2) 0.316,
(M12, 2) 0.328, (J2, 2) 0.352, (Fi23, 2) 0.357, (B, 2) 0.359, (Co3, 2) 0.372,
(M, 2) 0.377, (O′N, 2) 0.385, (Fi22, 2) 0.398, (He, 2) 0.403, (Th, 2) 0.428,
(Fi′24, 3) 0.438, (HS, 2) 0.439, (McL, 2) 0.441, (Co1, 3) 0.446, (HN, 2) 0.448,
(HN, 5) 0.471, (M24, 2) 0.474, (Suz, 3) 0.478, (Ly, 2) 0.488.

6. Upper bounds

As pointed out by the anonymous referee, it is natural to ask how good our
lower bounds stated in Theorem 1.1 are. Of course the constants in the general
lower bounds can be improved for most classes; in most cases our proofs indicate,
how. We commented on the sporadic groups in Remark 5.3.

Our main concern in this section is the asymptotic tightness of the lower bounds.
As observed in Remark 2.2, for the alternating groups An, for every fixed p,

the proportion of p-regular elements is Θ(n−1/p). In particular, the Ω(1/
√

n) lower
bound is tight for p = 2.

Regarding part (b) of Theorem 1.1 (classical groups), the question arises whether
the lower bound Ω(1/n) could be replaced by a positive absolute constant. We shall
see that this is not the case; in fact, the best lower bound one can hope for (in terms
of the parameter n alone) is of the form c/

√
n. Indeed, for every n � 2 and for an

infinite sequence of values of q we give an O(1/
√

n) upper bound for the proportion
of elements of odd order in PSL(n, q).

Theorem 6.1. For all n � 2 and for all prime powers q ≡ −1 (mod 4) such that
(q − 1, n) � 2, the proportion of elements of odd order in PSL(n, q) is less than

4
q

+
4√
πn

.

First we prove a similar bound for the general linear groups.

Theorem 6.2. For all n � 2 and for all odd prime powers q, the proportion of
elements of odd order in GL(n, q) is less than

1
q

+
1√
πn

.

Lemma 6.3. Let n � 2 and let q be a prime power. Let us view the matrix algebra
Mn(q) as a probability space with the uniform distribution. Then there is a subset
T ⊂ Mn(q) such that

(a) Prob(T ) > 1 − 1/(q − 1);

(b) if A ∈ T then A is similar to the companion matrix of its characteristic
polynomial; and

(c) if the matrix A is selected uniformly from T then the characteristic polynomial
of A is uniformly distributed among the monic polynomials of degree n over
GF(q).
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Proof. Fix a nonzero vector e0 ∈ GF(q)n. Let A ∈ Mn(q). Let us consider the
sequence ek = Ake0 of vectors. We define the set T ⊂ Mn(q) by saying that A ∈ T
if e0, . . . , en−1 form a basis of GF(q)n.

It is clear that

Prob(T ) =
n−1∏
i=1

(1 − 1/qi) > 1 − 1
q − 1

. (2)

Moreover, with respect to this basis, A is a companion matrix. Having fixed this
basis, we still have complete freedom in choosing Aen−1; this gives the last row
of the matrix with respect to this basis, which also defines the coefficients of the
characteristic polynomial. This implies statement (c).

Let T0 = T ∩ GL(n, q). Then A ∈ T0 exactly if A ∈ T and the constant term of
the characteristic polynomial of A is not zero. It follows from equation (2) that

Prob(T0) = Prob(T )(1 − 1/q) =
1 − 1/q

1 − 1/qn
Prob(GL(n, q)). (3)

Next we observe that if q is odd then A ∈ GL(n, q) has odd order if and only if all
eigenvalues of A have odd multiplicative order in the algebraic closure of GF(q).
Therefore Theorem 6.2 will follow from the next lemma.

Lemma 6.4. For an odd prime power q, the probability that all roots of a random
polynomial of degree n � 1 over GF(q) have odd multiplicative orders is less than
1/

√
πn.

Proof. Let F denote the algebraic closure of GF(q). Irreducibility will always be
understood with respect to GF(q). Let P (n) denote the set of monic polynomials
of degree n over GF(q). Among these polynomials, let I(n) denote the set of those
which are irreducible; F (n) the set of those which have only roots of odd multi-
plicative orders (in particular, the constant term of such a polynomial is not zero);
and D(n) = I(n) ∩ F (n). Note that |P (0)| = |F (0)| = 1 and |I(0)| = |D(0)| = 0.

If z ∈ F
× has odd multiplicative order and it is a root of f(x) ∈ I(n) then −z

is a root of f(−x), which is also irreducible of the same degree, and −z has even
order. Hence |D(n)| � |I(n)|/2.

Applying the method of generating functions we observe that
∞∏

k=1

(1 + tk + t2k + t3k + . . . )|I(k)| =
∞∑

n=0

|P (n)|tn =
∞∑

n=0

qntn.

Similarly,
∞∏

k=1

(1 + tk + t2k + t3k + . . . )|D(k)| =
∞∑

n=0

|F (n)|tn.

Now |D(k)| � |I(k)|/2 implies that |F (n)| is less than or equal to the coefficient
of tn in the power series

∞∏
k=1

(1 + tk + t2k + . . . )|I(k)|/2 =
√

1 + qt + q2t2 + . . . = (1 − qt)−1/2.
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This coefficient is
(−1/2

n

)
(−q)n. So the probability in question is at most (−1)n

(−1/2
n

)
=
(
2n
n

)
4−n. This quantity is always less than 1/

√
πn because the sequence√

n
(
2n
n

)
4−n is monotone increasing and by Stirling’s formula its limit is 1/

√
π.

Proof of Theorem 6.2. Let G = GL(n, q) and let R ⊂ G denote the set of matrices
of odd order. Let S ⊂ T0 consist of those matrices in T0 of which every eigenvalue
has odd multiplicative order. Then R ⊂ (G \ T0) ∪ S. Now we have

|R|
|G| � |G| − |T0|

|G| +
|S|
|G| = 1 − |T0|

|G| +
|S|
|T |

|T |
|T0|

|T0|
|G| � 1 − |T0|

|G|
(

1 − 1√
πn

q

q − 1

)

= 1 − 1 − 1/q

1 − 1/qn

(
1 − 1√

πn

q

q − 1

)
< 1 −

(
1 − 1

q

)(
1 − 1√

πn

q

q − 1

)
=

1
q

+
1√
πn

,

completing the proof. �

Proof of Theorem 6.1. By our assumptions (q − 1)/2 is odd and coprime to n. Let
Z denote the subgroup of index 2 in Z(GL(n, q)). So |Z| = (q − 1)/2; hence Z
intersects SL(n, q) trivially and Z × SL(n, q) has index 2 in GL(n, q). Therefore,
under our assumptions, the proportion of elements of odd order in SL(n, q) is the
same as in Z ×SL(n, q), which is in turn the double of that proportion in GL(n, q).
If n is odd, then PSL(n, q) = SL(n, q). If n is even, then SL(n, q) has a center of
order 2. Hence in that case the number of elements of odd order in PSL(n, q) is the
same as in SL(n, q), hence the proportion of elements of odd order is the double of
that proportion in SL(n, q). Thus, in all cases under consideration, the proportion
of elements of odd order in PSL(n, q) is at most four times as much as in GL(n, q).
Hence Theorem 6.1 follows from Theorem 6.2. �

7. Appendix: Representations in cross characteristic

In this section we indicate how to combine the results of Landazuri–Seitz [18]
and Feit–Tits [9] and tables from Kleidman–Liebeck [16] to obtain Theorem 1.17.

Proof. Let now λ : H → PGLn(F ) be the given faithful representation in char-
acteristic other than r. Without loss of generality we may assume that F is alge-
braically closed, H is minimal in the sense that no proper subgroup of H involves
S, and n is the smallest degree of a nontrivial projective representation of H over
F .

Under the conditions given in the previous paragraph, [9] asserts that either (i)
λ factorizes through S, or (ii) r = 2, S � PSp2�(2), and n = 2� for some � � 4.

In case (ii), we conclude that em � 2� (recall that q = re, i. e., q = 2e in this
case). Therefore, qm = 2em � 22� = n2 < nc1 and we are done.

Assume now that we are in case (i) and therefore we may assume H = S.
Let m′−1 denote the minimum dimension of projective spaces in characteristic r

on which S acts nontrivially. First we note that m = m′ for all S with the exception
of S = PSUm′(q), when m = 2m′ by our notational convention, and the further
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exceptions of S = 2E6(q) where m = 2m′ and S = 3D4(q) where m = 3m′ [16,
Section 5.4].

We shall estimate n in terms of m′.
Landazuri and Seitz give lower bounds on n for each class of finite simple groups

of Lie type. It is easy to check that m � n holds with the two noted exceptions.
To prove the bound qm � nc1 , assume first that S is a classical simple group.

A comparison of the [18] estimates with the dimensions of the natural modules on
which S acts projectively yields the bound qm � nc2 where c2 = 8 log 3/ log 6 =
4.90517 · · · < c1. Equality holds for S = PSU4(3) (q = 9, m = 4, and, by [18],
n � 6; and 94 = 6c2). This completes the proof for classical S.

For exceptional groups S, a comparison of the Landazuri–Seitz estimates on
n with the dimensions of modules given by Kleidman–Liebeck [16], Table 5.4.C
(p. 200) yields the bound qm′ � nc1 ; equality holds for S = E8(2) (q = 2, m′ = 248;
and, by [18], n � q27(q2 − 1) = 227 · 3; and 2248 = (227 · 3)c1). This settles all cases
when m = m′. Next we consider the exceptions of S = 2E6(q) and S = 3D4(q).

For S = 2E6(q) we obtain qm′ � nc3 where c3 = 27/(9 + log 3/ log 2) =
2.55078 . . . (equality holds for q = 2). Now, m � 2m′, therefore qm � n2c3 < nc1 .

For S = 3D4(q) we obtain qm′ � nc4 where c4 = 8/(3+log 3/ log 2) = 1.74483 . . .
(equality holds for q = 2). Now, m � 3m′, therefore qm � n3c4 < nc1 .

8. Open questions

Let X be the symbol which denotes one of the classes of classical simple groups;
and let Xn(q) denote the member of this class that acts naturally on a projective
space of dimension n− 1 over GF(q). Let p be a prime, and let ρ(p, X, n, q) denote
the proportion of p-regular elements in Xn(q). By part (b) of Theorem 1.1, we have

ρ(p, X, n, q) > 1/(2n) (4)

for all p, X, q. On the other hand, from Theorem 6.1 we know that if Xn(q) =
PSL(n, q) then

ρ(2, X, n, q) < 3/
√

n (5)

holds for every n for infinitely many values of q. The question is to close this
quadratic gap. More precisely, let

α(p, X, q) = lim sup
n→∞

− log ρ(p, X, n, q)
log n

. (6)

Let α = supp,X,q α(p, X, q). Then we know that

1/2 � α � 1. (7)

The lower bound follows from inequality (5); the upper bound from inequality (4).
Our main question is to determine the exact value of α (or reduce the gap).

The values

α(p, X) = inf
q

α(p, X, q) (8)

are also of interest for specific choices of the prime p and the class X . The upper
bound of α(p, X) � 1 always holds. Generalizing the method of Section 6 one can
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show that for every p,
α(p, PSL) � 1/p. (9)

Question: is infp α(p, PSL) = 0 ?
Of special interest is the quantity α(2, PSL); in this case we have

1/2 � α(2, PSL) � 1 (10)

for the same reason as inequality (7). The question again is to close or reduce this
gap.

We expect that α(2, X) � 1/2 holds for all classes X of classical simple groups.
Another direction of study would fix q; a special case of interest is the value

α(2, PSL, 3). Here we have no lower bound; the question is to prove or disprove
that α(2, PSL, 3) > 0. In other words, can a positive ε be found such that the
proportion of elements of odd order in PSL(n, 3) is (at most) O(n−ε) ?
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12. R.M. Guralnick and F. Lübeck, ‘On p-singular elements in Chevalley
groups in characteristic p’, Groups and Computation, III (ed. W. M. Kantor
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László Babai laci@cs.tod.uchicago.tod.edu

Department of Computer Science, University of Chicago, 1100 East 58th Street,
Chicago, IL 60637, USA
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