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PRODUCTS OF TWO IDEMPOTENT TRANSFORMATIONS
OVER ARBITRARY SETS AND VECTOR SPACES

RACHEL THOMAS

In this paper we consider the characterisation of those elements of a transformation
semigroup S which are a product of two proper idempotents. We give a character-
isation where S is the endomorphism monoid of a strong independence algebra A,
and apply this to the cases where A is an arbitrary set and where A is an arbitrary
vector space. The results emphasise the analogy between the idempotent generated
subsemigroups of the full transformation semigroup of a set and of the semigroup of
linear transformations from a vector space to itself.

1. INTRODUCTION

The full transformation semigroup T(X) of a set X consists of all transformations
from X to itself under composition of transformations. In 1966 Howie described the
subsemigroup E(X) ofT(X) generated by the proper idempotents (that is, those not the
identity) of T(X) for an arbitrary set X.

Several results analogous to those involving the products of idempotents in T(X)
have been discovered for L(V) , the semigroup of all linear transformations from a vector
space V to itself, under composition of transformations. The subsemigroup E(V) of
L(V) generated by the proper idempotent linear transformations of L(V) was described
by Erdos (in [2]) for a finite dimensional vector space, and by Reynolds and Sullivan (in
[11]) for an infinite dimensional space. These descriptions are similar to Howie's results
for the set case.

These semigroups, T(X) and L(V), are in fact examples of independence algebras.
The descriptions of the idempotent generated subsemigroup of End(A), the semigroup
of endomorphisms of an independence algebra A, by Fountain and Lewin in [3] and [4]
are generalisations of the corresponding results for T(X) and L(V) and begin to explain
the links between these structures.
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60 R. Thomas [2]

This paper further explores the comparable nature of these idempotent generated
semigroups by characterising the products of two proper idempotents in each case. We
present the most general result in Section 2. The result is a description of those elements
that are the products of two proper idempotents in End(A) for an arbitrary independence
algebra. A. The applications of this result to T(X) for an arbitrary set X and L(V) for
an arbitrary vector space V are presented, with further implications, in sections 3 and 4.

2. PRODUCTS OF 2 IDEMPOTENTS IN STRONG INDEPENDENCE ALGEBRAS

The following is taken from [3] and [4].

If A is an algebra, the subalgebra generated by a subset X of A is denoted (X). The
unique minimum subalgebra of A is denoted (0). It is the subalgebra generated by the
constants of A if A contains constants, and is the empty set otherwise.

A subset X of A is said to be independent if X = 0 or x £ (X \ {x}} for every
element x E. X. When the algebra A is a set, every subset of A is independent, and when
A is a vector space every linearly independent subset of A is independent.

An algebra with the following equivalent properties [3, Proposition 1.1] is said to
have the exchange property ([EP]).

PROPOSITION 1 . For an algebra, A, the following conditions are equivalent.

1. For every subset X of A and all elements u,v of A, ifu G (X U {v}) and
ug (X), then v S {Xu{u}).

2. For every subset X of A and every element u of A, if X is independent and

u 0 (X), then X U {u} is independent.

3. For every subset X of A, ifY is a maximal independent subset of X, then

(X) = (F).

4. For subsets X,Y of A with Y C X, ifY is independent, then there is an
independent set Z with Y C Z C X and (Z) = (X).

A basis for an algebra A is an independent subset which generates A. If an algebra
has the exchange property, then it has a basis which can be equivalently defined as a
minimal generating set or maximal independent subset of A. Also if an algebra A has
the exchange property then any independent subset can be extended to a basis for A (see
[3] for further discussion).

An independence algebra A is one which has the exchange property and also satisfies
the following condition.

[F] For any basis X of A and any function a : X -» A, there is an endomorphism a

of A such that a\x — ct.

A homomorphism a on an independence algebra A can be uniquely defined by spec-
ifying its action on the elements of a basis of A, similar to the way in which linear maps
on vector spaces can be defined. Also the following is true (this is an extension of [3,
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[3] Products of two idempotent transformations 61

Lemma 1.5]). Note we follow [11] by denoting the set {e* : i 6 / } by { e j when the index
set is unambiguous.

LEMMA 1 . Let a be an endomorphism of an independence algebra A. If {re;} is
an independent subset of Im a and if for every i, yt Q A is chosen such that yia = X{,
then {yi} is independent.

In an independence algebra A, we define a complement of a subalgebra V in A to be
a subalgebra U such that if {u{} is a basis for U and {VJ} is a basis for V then { u j U {VJ}

is a basis for A. When this definition is applied to the particular examples of A being a
set or vector space, it is the usual definition of complements in these cases.

It is true that if X and Y are independent subsets of an independence algebra such
that X U Y is independent then (X) D (Y) = (0). If an independence algebra A also
satisfies the converse of this statement, that is

[S] If X and Y are two independent subsets of A such that (X) n (Y) = (0), then

X \JY is independent also,

then it is a strong independence algebra. Vector spaces and sets are both examples of
strong independence algebras.

The following lemma is from [7].

LEMMA 2 . Let S be a regular semigroup. If a—ex, where a,e € S and e2 =e. then

there exists fin S such that a = fx, fR a and f2 = f.

It is noted in [4] that End(A) is a regular semigroup for an independence algebra
A. Therefore Lemma 2 (and its dual) can be applied by taking 5 = End(A). Let
a G End(A) such that a = <5j... 6k for some proper idempotents <5i. Then there exist two
proper idempotents r?i and nk such that a — 7?i<52 • • • ^k-iVk and allrii and aCr]k (where
11, L are two of Green's relations). The following proposition is part of [3, Proposition
1.3]. Note that kera = {(a, b) € A x A : aa = 6a}.

PROPOSITION 2 . Let A be an independence algebra. Then for a, /? G End(A),

1. aCj3 if and only if Im a = Im /?,

2. aTZP if and only if ker a = ker /?.

Hence by this proposition and Lemma 2, if A is an independence algebra and a €
End(A) is a product of k proper idempotents, a = 6i.. .6k, then without loss of generality
we can assume ker a = ker Si and Im a = Im 6k.

We now characterise those endomorphisms of a strong independence algebra A that
are products of two proper idempotents. Note that id^ refers to the identity relation on
the algebra A.

THEOREM 1 . Let A be a strong independence algebra and let a G End(A). Then
a is a product of two proper idempotents in End(A) if and only if kera ^ id/t and there
exists a complement Uoflma in A such that for any complement W of Fix a and for
any element v G Im a D W there is an element u G U such that ua = v.
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P R O O F : Let a £ End(A) such that kera ^ id^ and let {e^} be a basis for Fix a.
As ke ra ^ id^, Fix a ^ A and hence the subalgebra Fix a has a nontrivial complement
in A. If W is any such complement of Fix a in A, let {eta, er} be a basis for W where
{e^a} is a basis for W D Im a. Then by the definition of a complement of a subalgebra,
{ej, eka, er} is a basis for A. So {ej, e^a} is an independent subset of Im a which can be
expanded (by the [EP]) to a basis {ej,eka,em} for Ima .

Suppose there is an element x £ (er), x 0 (0) such that a; £ Ima . Then x £ (eka)

as (er) C W, and thus (eka) D (er) ^ (0). However this contradicts the independence
of {eka,er} and so (er) f~l I m a = (0). That is, (er) D (ej,eka,em) = (0), and as A is a
strong independence algebra, it must be that {er,ej,eka,em} is independent. But this
contradicts the basis {ej, eka, er} being a maximal independent set in A. Hence {em} = 0
and {ej, eka} is a basis for Ima .

Then {ej, ek} is independent by Lemma 1 and we can extend this to a basis {ej, ek, eq}

for A. So we can describe a by its action on this basis:

a=( 6j 6k 6" ) .
y ej eka eqa J

Now suppose that a = 6162 for two proper idempotents in End(A). Then by Proposi-
tion 2, we can assume without loss of generality that kera = ker<$i and Ima = Im<52.
Therefore as 6X is a proper idempotent, kera ^ id^.

Consider the set {e^i}. Let w £ (ek5i), w $ (0) and suppose w € Ima = Im^-
Then u>5\ = w as w 6 ImtSi and w8i = w as w € ImJ2- That is, wa = w and thus
w e (ej). Also as w = 11162 € (ek6\)52 = (e*a), we have (ej) n (eko) ^ (0). However
as this contradicts the independence of {e^e^a}, w & Ima and (e^Ji) n (ej,ekOt) — (0).
Therefore {ej, eka,ek5i} is independent and can be extended to a basis {ej,eka,ek5i,ei}
for A. If [/ = (et<5i, ej) then U is a complement of Im a. Moreover if v is any element of
imaflW where W is an arbitrary complement of Fix a, then v £ (eka) = (ek6i)a. That
is, there is an element u G (ek5\) C [/ such that ua = v. Hence if an endomorphism a
is a product of two proper idempotents, the condition in the statement of the theorem is
satisfied.

Conversely, suppose a G End(A), kera ^ id/i and there is a complement U of
Im a such that for every complement W of Fix a and for all w £ Im a (1 W there is an
element u £ U such that ua = v. Using our earlier notation, let W = (eka,er) be the
complement of Fix a described above, where (eka) = Minima. Then for each k £ K,
there is an element uk £ U such that uka = eka. By Lemma 1 {uk} is independent and
we extend this to a basis {uk, e{} for the complement U of Im a. So we have two bases for
A, {ej, ek, eq} and {ej, e*a, Uk, e;} and we now use these to define several endomorphisms
over A.

To define the first, we note that for each q £ Q as eqa £ (ej,eta) = (e,,eA)a, there
is some element wq £ (ej,ek) such that wqa = eqa. We then define an endomorphism 5\
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by

We define a second endomorphism 82 by

eka82 = eka,
uk82 =

Then ej5i52 — ej and ek8\82 = eka and 8\82 equals a on the independent set {ej,ek}.

Moreover as wq € (ej,ek), eq8\82 = wq8\82 = wqa = eqa. Therefore <$i<52 equals a on a

basis of A, and hence 8i82 = a.

Consider the endomorphism 7 defined by

ekaj = uk,

where {ej,eka,em} is a basis for X. Then e^cry — ê - and efca7 = uk and so a7|(ej.iefc) =
8\\(ehek)- Then again as wq € (ê -, eA), e,^! = wq8\ = wqaj = e^ory, and we have aj = 8\.

In fact, as a = 8\82 also, aR-8\. Hence by Proposition 2 , ke ra = kerc^.

Furthermore, as uka = eka, uk8i — ek8i = uk. Also as wq8\ € (ej, uk), Im8i =
(ej,ek, eq)8\ = (ej,uk,wq8i) = (ej,uk). Thus, 8\ fixes its image and is an idempotent. It
is a proper idempotent as ker<Jj = ke ra ^ id^.

It is clear from its definition that 82 is an idempotent. If \K\ = 0 then Im a = Fix a
and a is itself a proper idempotent. In which case a = a2, a product of two proper
idempotents. Else if \K\ > 0, then 82 is a proper idempotent and a — 8i82, a product of
two proper idempotents.

Thus the sufficiency of the condition is proved. D

3. P R O D U C T S O F TWO IDEMPOTENTS IN T(X)

The following theorem is the application of Theorem 1 to the case of A being an
arbitrary set X. This result extends the characterisation found in [8] to encompass X

being an infinite set.

THEOREM 2 . If X is an arbitrary set and a e T(X) then a is a product of two
proper idempotents if and only if ker a ^ id* and for every y € Xa such that ya ^ y
there exists an element x € X \ Xa such that xa = y.

https://doi.org/10.1017/S0004972700031427 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031427


64 R. Thomas [6]

We now examine several idempotent generated subsemigroups of T(X) when X is
an infinite set.

In his description of E(X) for an infinite set X [6], Howie used the following cardi-
nals:

d{a) = \X\ Xa\ the defect of a,
s(a) — \{s £ X : xa ^ x} the shift of a,

c(a) = \\Jiya~1 : \ya.~x\ ^ 2} the collapse of a.

The description is, if \X\ ^ Ko, then E(X) = FUl where

F = {a G T(X) : 0 < d(a) ^ s(a) < Ho]

and
/ = la G T(X) : d{a) = s(a) = c(a) ^

For some cardinal m, let

Qm = fa G T(X) : d(a) = s(a) = c(a) = m^ Ko}-

Then the set / can be thought of as

m=\X\

m=«o

It was shown in [7] that F and all the sets Qm, Ko < m ^ \X\, are regular, idempotent
generated subsemigroups of T(X) (that is, if a 6 5 where 5 is F or one of the Qm, then Q
is a product of idempotents in S). Also proved was that if £ was an idempotent in T(X)
and the defect, shift or collapse of e was equal to m, where No ̂  m ^ I-X'l, then e £ <5m [7,
Lemma 2.8]. Marques in [9] examined the Rees quotient semigroup Pm — Qm/Im where
Im = {<* € Qm • \Xa\ < m} is an ideal of Qm. She also showed that Pm is idempotent
generated and can be viewed as Pm = Jm U 0 where Jm = {a G Qm : r(a) = m) and
a(3 = 0 for some a,/3 £ Jm if r(a/?) < m.

The following corollary examines the products of two proper idempotents in Pm and

Qm-

COROLLARY 1. Let S denote Pm or Qm and suppose a e 5 (a ^ 0). Then a is a
product of two proper idempotents in S if and only if ker a ^ id* and for every y € Xa
such that ya / y there exists an element x € X \ Xa such that xa = y.

P R O O F : Suppose a = Xfi for some proper idempotents \,fieS. Then a is a product
of two proper idempotents in T(X) and so, by Theorem 2, the condition as stated in the
corollary must hold. Conversely, suppose a G 5, ker a ^ id* and for every y G Xa
such that ya ^ y there exists an x G X \ Xa such that xa = y. Then, by Theorem 2,
a = A/x for some proper idempotents A, \L G T(X) and by Lemma 2 we can assume that
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ker a = ker A and Ima = Im/i. Therefore, c(a) = c(A) and d(a) = d(n). Hence, by [7,
Lemma 2.8], if a € Qm then A, fi € Qm also. Moreover, if either A o r / j have rank strictly
less than m the the same is true of a. That is, if a S Pm then A, fx € Pm also. D

The following semigroups Km and Lm are regular subsemigroups of Pm when m is
regular or singular respectively.

Km — la € Pm : \ya l\=m for some y e x \ U 0

and
Lm = I a 6 Pm : for all p < m 3y € X such that \ya 11 > p \ U 0.

Note that A"™ C Lm for any set X.

Let S denote Km or Lm. In [10, Proposition 3.3], the authors aimed to characterise
when a nilpotent with index two in S is a product of two idempotents in S. However,
suppose X is a union of disjoint sets U and R, where \U\ = \R\ = m ^ Ko and 0 is a
bijection from R to U. Consider the transformation a defined by

Ua = u0)

where u0 is some element of U, and

ra = r<j>

for every r £ R. Then a is a product of two idempotents as it satisfies the condition in
Theorem 2. However \C{a) \Xa\ = 0 (where C(a) = \Jiya~1 : lya'1] ^ 2}) and hence
a is a counter-example to the proposition in [10]. .

Note that this transformation a is also a counter-example to [10, Proposition 3.1].

This proposition will be corrected and generalised in a forthcoming paper.

We now correct and generalise [10, Proposition 3.3].

COROLLARY 2 . LetS denote Km or Lm and suppose a € S (a ^ 0). Then a is a
product of two proper idempotents in S if and only if ker a ^ id^ and for every y S Xa
such that ya ^ y there exists an element x € X \ Xa such that xa = y.

PROOF: AS before, if a is a product of two proper idempotents in S then it is a
product of two proper idempotents in T(X) and so, by Theorem 2, ker a ^ idx and
for every y e Xa not fixed by a, there is an element x € X \ Xa such that xa = y.
Conversely, suppose a G 5 and this condition holds. Then by Theorem 2, a = \n for
some proper idempotents X,/J, E T(X) and as before we can assume \,fx e Pm and
ker a = ker A. Hence, from the definitions of Km and Lm, we deduce that X £ S. In
addition, since d(X) = m (as A 6 Qm) we can choose an element a £ Xa and replace fj,
by / / defined by:

xyl = xfj, if x € XX, and
x/i' = a if x g XX.

https://doi.org/10.1017/S0004972700031427 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031427


66 R. Thomas [8]

Then /j,' is a proper idempotent in Pm. In fact, as ^(^t')"1! = \X \X\\ - m, // G Km

and consequently // 6 Lm as Km C Lm. Hence a is a product of two proper idempotents
A and \J! in S. D

4. PRODUCTS OF TWO IDEMPOTENTS IN £(F)

In this section we apply Theorem 1 to the case when A = L(V), the semigroup of
all linear transformations on an arbitrary vector space V. We then give an alternative
characterisation of the products of two proper idempotents in L(V) when V is a finite
dimensional vector space.

We now present the notation that will be used in the vector space setting.
If {ej : i G /} (bold text is used only for vectors) is a basis for a vector space V, we

can define an element a G L(V) by denning the action of a on the basis, and extending
the action of a linearly to the whole of V. For example we write

a =

where a* = eta for all i € I.
For an element a £ L(V), the rankoia is the dimension r(a) of Ima and n(a), the

nullity of a, is the dimension of the nullspace. The nullspace of a is referred to as kera,
the kernel of a, and the subspace {x € V : xa = x} is referred to as Fix a.

Lemma 2 can be interpreted in a vector space setting. Namely, if S is the regular
subsemigroup E(V) of L(V) (for proof of regularity for arbitrary vector spaces see [11])
and a = Si... Sic, a. product of proper idempotents 5j in L(V), the lemma implies that
there exist two proper idempotents 771 and rjk in E(V) such that a = rj^ • • • Sk-\rjk and
rjiTZa and rjkJO.a. By [1, Exercise 6, p.57] we have kera = kerr/i and Ima = Imr)t. This
fact and Theorem 1 now establish the following result. Note that the equivalence relation
ker a is not equal to id^ if and only if n(a) ^ 0 when A is a vector space.

THEOREM 3 . IfV is an arbitrary vector space and a € L(V) then a is the product
of two proper idempotents in L(V) if and only ifn(ct) ^ 0 and there exists a complement
U of Im a such that for every complement W of Fix a and for every v G Im a n W, there
exists some u € U such that ua = v.

Suppose that a G L(V) is a product of two proper idempotents in L(V) and that
{ej} is a basis for Fix a . Let W be any complement of Fix a and let {eka} be a basis for
I m a fl W. Consider the complement U of I m a referred to in the proof of Theorem 1,
where {u*, e*} is a basis for the complement U such that each of the u^ is the pre-image
of the corresponding basis element of W n Im a. It was seen in the proof of Theorem 1
that {ej,eka,uk,ei} is a basis for V. Also, it can easily be shown that {e,, ek,eq} is a
basis for V where {eq} is a basis for kera.
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Hence if V is finite dimensional and a is a product of two proper idempotents in
L(V) we must have

\Q\ = \K\ + \I\.

So

101 > 1*1,
and hence

n(a) ^ r(a) - /(a)

where /(a) = dim (Fix a). In fact the converse is also true.

PROPOSITION 3 . Let a € L(V) for a finite dimensional vector space V, with a
not the identity transformation on V, and suppose

n(a) ^ r{a) - f(a).

Then a is a product of two proper idempotents.

PROOF: Suppose we have a € L{V), a not the identity transformation, dim (V) — n
and n(a) ^ r(a) - /(a) (note that this implies n(a) > 0). Let {uj , . . . , u,} be a basis
for Fix a, and let W be any complement of Fix a. If {via,. . . , v^a} is a basis for the
subspace W D Im (a) then it is straightforward to show that {ui, . . . , u,,
is a basis for Im a and

is a basis for V where {wi,. . . , wq} is a basis for kera. Therefore by our hypothesis we
must have that q ^ k .

If Vi € Ima for all i = 1,... ,k, then {ui,.. . ,Uj,Vi,..., v^} must be a basis for
Im a. If this is the case, consider the set

{Ux, . . . , Uj, . . . , V!, . . . , Vfc, . • • , Wi + V!, . . . , Wjfc + V A } .

Then the equation
j k k

'Sj diUj + Vj biV{ + 2_\ Cifai + vi) = 0
t= l t= l i=l

is equivalent to
i k k

i = 0

which has only the trivial solution as {ui, . . . , Uj, v i , . . . , vA, w b ... wk} is independent.
Hence this set can be extended to a basis

{Ui , . . . , Uj , Vi . . . , Vfc, Wi + Vj, . . . , Wfc + Vjt, Zi, . . . , Zr}
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for V. If

U = (wi + v 1 , . . . , w f c + v / t , z 1 , . . . , z r )

then U is a complement of Im a that satisfies the condition in Theorem 3. Hence a is a
product of two proper idempotents in L(V).

Otherwise if v* £ I raa for some i = l,...,k, assume that we have ordered

{ v ! , . . . , vk} in such a way that v4 € Ima for i = 1 , . . . , m (m < A;) and v* £ Im a

for i = m + 1 , . . . , k . It follows that {u i , . . . , u^, v i , . . . , vm} is a linearly independent

set contained in Ima , so we can extend it to a basis {u i , . . . ,iij, V1 ; . . . , v m , x i , . . . ,xp}

for Im a. Note that p = k — m as r(a) =j + m+(k — m).

Now consider the subspace

M = (Uj, . . . , Uj, Vi, . . . , Vm, X1; . . . , Xk-m, V m + i , . . . , V*)

which has dimension j + m+(k — m)+r where r ^ k - m. If k - m = r then the

linearly independent set

is a basis for M. Otherwise, if this set is linearly dependent, the equation

j m k~m k

^ ajUj + ^ biVi + ^2 cixi + J Z ^iV" = ^
i=l i=l t=l i=m+l

has a nontrivial solution for the scalars 0^,6,,^ and dj. As

{ u i , . . . , Uj, v l f . . . , v m , X L . . . , x*_m}

is linearly independent, one of the rf<, say dk is nonzero (there is no loss of generality as

the set { v m + i , . . . , v^} can be reordered if necessary). Then

Vfc £ (ux , . . . , Uj, \i, . . . , Vm, Xi, . . . , Xk-m, V m + i , . . . , V*_,),

that is,
M = ( u i , . . . , Uj, v 1 ; . . . , v m , x i , . . . , xfc_m, v m + 1 , . . . , vA._1).

If the set
{ U j , . . . , Uj;, V, , . . . , V m , Xi, . . . , X t _ m , V m + 1 , . . . , Vfc_!}

is still linearly dependent, we remove another of the vi ; (i = m + 1 , . . . , k — 1), say Vk-\,

as above and continue in this way until we have a linearly independent set

{ u i , . . . , Uj, v i , . . . , v m , X ] , . . . , x*_m, v m + , , . . . , v m + r }

spanning M.
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Now the subspace

( i l l , . . . , Uj, Vi, . . . , Vm, Xi, . . . , Xk_m, V m + i , . . . , Vfc, W1; . . . , W,)

contains a basis for V so it must have dimension n. As we have just seen

{ v r a + r + i , . . . , V i f e } C ( u i , . . . , U j , V i , . . . , v m , X i , . . . , x f c _ m , v m + 1 , . . . , v m + T . > .

so

V = (Ui, . . . , Uj, VX, . . . , Vm, Xx, . . . , Xfc_m, V m + i , . . . , V m + r , Wx, . . . , Wq).

Suppose the equation

j m k—m k q

5 3 aiui + 53b iV' + 5 3 ̂ ^ + 53 d{Wi + 5 3 e*Wi = °
j=l i=l 1=1 i=m+l i=l

has a nontrivial solution in the scalars a;, 6;, c,, di and ej. As

{Ui, . . . , Uj, Vi, . . . , V m , X i , . . . ,Xjt_m, V m + 1 , . . . , V m + r }

is linearly independent, ê  / 0 for some i £ {l,...,q}, say eq ^ 0. Thus

V = (UU . . . , Uj, Vi, . . . , Vm, Xi, . . . , Xfc_m, Vm + X, . . . , V m + r , Wj, . . . , W,_!) .

As before for the basis of M, we continue removing elements of the set {w* : i = 1 , . . . ,
q — 1} until we have a linearly independent set

{ U l , . . .,Uj,Vi,. . . , V m , X i , . . . , X f c _ m , V m + 1 ) . . . , V m + r , W 1 ) . . . , W,_ r }

that spans V.

Then, as q ^ k by our hypothesis, there are at least k - r distinct vectors in
{w[ , . . . , w ? _ r } . So consider the set

B = { u i , . . . ,Uj, V i , . . . , v m , x j , . . . ,x/t_m, v m + i , . . . , v m + r ,

Vx + Wj, . . . ,Vm + Wm, V m + r + 1 + Wm+x, . . . , Vfc + Wfc_r}.

We now show that this set is linearly independent. Suppose

j m k—m m+r m k

5 3 OiUi + J ^ ijVj + 5 3 CjXi + 5 3 dtVi + 53e*(V» + W i )+ 5 3 /»(V' + Wi-r) = °
i=l i=l i=l i=m+l i=l i=m+r+l

for some scalars at, b{, d, dit ê  and / j .

Now as

v{ € (ux, . . . , Uj, v i , . . . , vm, xx , . . . , x*_m, v m + i , . . . , v m + r )
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for all i = 1 , . . . , m and i — m + r + l,... ,k these Vj can be written as linear combinations
of the vectors in the set

{ i l l , . . . , U j , V1; . . . , Vm,Xi, . . . , Xfc_m, V m + 1 , . . . , V m + r } .

The coefficients of the vectors in this set can then be collected to give

j m k-m m+r m k

W i + ] T / jW^ = 0
t=l t=l «=1 i=m+l i=l i=m+r+l

for some scalars a'it 6J, cj, d'{, ei and /*. Thus e* = 0 for all i = 1 , . . . , m and /{ = 0 for all

{Ui, . . . , Uj , V!, . . . , Vm, X!, . . . , Xjfc_m, Vm + 1 , . . . , V m + r , Wj, . . . , W,_r}

is linearly independent. This implies that the original coefficients Oj, bi, Ci and d, are also
all zero. That is we have shown that the set B is linearly independent. As the set B

contains a basis for Im a, the elements of B not contained in this basis, that is those in
the set

{ v m + l , • . - , V m + r , Vj + WU . . . , Vm + Wm, V m + r + i + Wm +i, . . . , V* + Wfc_r}

can be extended to a basis for a complement U of Im a. Then for every basis element
VjQ, i = 1 , . . . ,k of the intersection of W, the arbitrary complement of Fix a, and Ima,
there is an element Zj in U such that z^a = v^a. Namely,

•vta = (VJ + Wj)a, for i = 1 , . . . ,m
v;a = Vja, for i = m + 1 , . . . ,ra + r
•v^a = (vi + Wi_r)a, for i = m + r + 1 , . . . ,k.

Thus for every element v 6 Im a n W for any complement W of Fix a there is an element
u in U such that u a = v. Hence from the previous theorem, a is a product of two proper
idempotents. D

Hence, as a consequence of this proposition and the discussion preceding it, we

have the following result concerning linear transformations over finite dimensional vector

spaces.

THEOREM 4 . Let a € L(V) for a finite dimensional vector space V, a not the

identity transformation. Then a is a product of two proper idempotents in L(V) if and

only if
n(a) ^ r(a) - f(a).
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In [5], a result of Laffey received in personal correspondance is mentioned. The result

is that every nxn matrix of rank less than n/2 is a product of two idempotent matrices.

If we consider a matrix of rank less than n/2 , then the following set of inequalities hold:

n ^ 2r(a)

n — r(a) = n(a) ^ r(a)

n{a) > r(a) - /(a),

and by the previous theorem we have that a is a product of two proper idempotents.

Hence the previous theorem is a generalisation of the result of Laffey mentioned in [5].
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