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ABSTRACT

In the present paper we extend a recursive algorithm developed by Vernic
(1999) for compound distributions with bivariate counting distribution and
univariate severity distributions to more general multivariate counting
distributions.

1. INTRODUCTION

1A. Panjer (1981) described a procedure for recursive evaluation of a
compound distribution when the counting distribution belongs to a certain
class. Vernic (1999) developed a bivariate version of this recursion, assuming
that the counting distribution is bivariate and the severity distributions
univariate. In the present paper we discuss a generalisation of the result of
Vernic to a situation with an m-variate counting distribution and a
univariate severity distribution.

The recursions of Panjer and Vernic are briefly recapitulated in Sections 2
and 3 respectively, and the multivariate extension is introduced in Section 4.
In Section 5 we look at some examples, and, finally, in Section 6 we briefly
indicate some possible extensions of the theory.

IB. In the recursions that we study in the present paper, the distributions are
expressed through their probability functions. For simplicity we shall
therefore normally mean the probability function when referring to a
distribution.

We make the convention that a summation over an empty set is equal to
zero and multiplication over an empty set is equal to one.

2. THE RECURSION OF PANJER

In the univariate case, a compound distribution is the distribution of the sum
of independent and identically distributed random variables where the
number of terms is itself a random variable assumed to be independent of
the terms. We shall assume that the terms are distributed on the positive
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integers. Let p be the distribution of the number of terms (the counting
distribution),/the distribution of the terms (the severity distribution), and g
the compound distribution. Then g = Yl™=oP(n)f"*- A s / i s confined to the
positive integers, we must have /"* (x) = 0 for all integers n > x, and thus

71=0

in particular we have g(0) = p(0).
If p satisfies the recursion

P(n)= (a + ^jp(n-\), (n = 1,2,.

then

y=\

This recursion was described by Panjer (1981).

3. THE RECURSION OF VERNIC

When extending the concept of compound distributions to the multivariate
case, one can go in two directions:

1. Let the severities be independent and identically distributed random
vectors.

2. Let the counting distribution be multivariate and the severities one-
dimensional; we consider the distribution of, say, m random variables
with compound distributions whose counting variables are dependent
whereas the severities are mutually independent and independent of
the counting variables.

The two approaches can be combined by letting the severities in Case 2 be
random vectors.

For Case 1 recursions have been studied by Ambagaspitiya (1999) and
Sundt (1999); for Case 2 by Hesselager (1996) and Vernic (1999) in the
bivariate case.

In Case 2 the compound distribution is given by

i = 0 nm = 0 i = l
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When assuming that the severity distributions are restricted to the positive
integers, like in the univariate case, we obtain that the infinite summations
become finite when we insert an argument in g:

g{xu...,xm) = ^2 ...^2 p(nu ...,nm)Y[fl'*(xi); ( * i , ...,xm = 0 , 1 , 2 , . . . )
«,=0 nm=0 1=1

in particular we have g(0,..., 0) = p(0,..., 0).
Let us turn to the bivariate case. Vernic (1999) assumed that

(2)
p(nun2) ^^\2(n\,n2)p(nl - l,n2 - 1) + ipi

+ip2(ni,n2)p(ni,n2-l)

when at least one of n\ and n2 are positive, with

aoH 1 1 («i,«2 = 1,2,...)
^n{n\,n2) = { «i «2 «i«2

0 (otherwise)
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and showed that then

y\ = \ y2=i

x\

yi=\

-Jl ,X2) +

(3)
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when at least one of x\ and x2 are positive, with

X] X2

x, = l , 2 , . . . ; 1 = 1 , 2 )

0 (o the rwise )

'o + ^ i — (yi = l , - , * r , x i = 1 ,2 , . . . ; / = 1,2)
X]

k + d\— (y\ = l , . . . , x i ; x, = 1,2,...; x2 = 0)

) (otherwise)

co + c 2 ^ ( y i = \ , . . . , x r , x , = l , 2 , . . . ; 1 = 1 , 2 )
x 2

eo + e2— (y2 = l,-.-,x2; x, = 0; x2 = 1,2,...)

0. (otherwise)
Some special cases are studied by Hesselager (1996).

We see that already in the bivariate case the formulae and notation start
getting rather messy, and unfortunately it will get even worse when
extending the theory to a more general multivariate case. We shall therefore
abstain from writing out a general theory in full and rather give a rough
outline of what can be done.

4. GENERAL RESULTS

4A. When considering extension of the Vernic recursions from the bivariate
case to the m-variate case, it will be convenient to use some vector notation.
We shall denote an m x 1 column vector by a bold-face letter and its elements
by the corresponding italic with the number of the element as subscript;
subscript • denotes the sum of the elements, e.g. x = (x\, ...,xm)' and
x. = Y1T=\ x>- By y < x we shall mean that y,< x,- for / = l,...,m, and
by y < x that y < x with y 7̂  x. By e,,...̂  we shall mean the vector whose
ijth element is equal to one for j = 1,..., h, and all other elements are equal
to zero. We also introduce the vector 0 where all elements are equal to zero.

It is tacitly assumed that all vectors introduced have integer-valued
elements.

4B. Let N be an m x 1 vector of non-negative integer-valued random
variables. We introduce positive, integer-valued random variables Yy (i = 1,
...,m;j—l,2,...), assumed to be independent of N and mutually
independent, and for fixed i identically distributed with common distribution
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fj. Let p denote the distribution of N. We introduce the random vector
X = (Xi,...,Xm)' with Xi = Y^ix Yij for / = l,...,m. Then the distribution of
X is the compound distribution g given by (1).

4C. When trying to extend (2) and (3) to an m-variate situation, it is natural
to look for pairs of functions (VV-</,> <A,...iJ such that

(n > 0) (4)

(5)
y=i

Like in the Vernic recursion, we would normally have that for
i G {l,...,m} ~ {(i.. ./A}V',-1...,-A(n) and <#,.../,> (ji, ...,j>/,;x) depend on «, and
jc,- respectively only to the extent of whether they are equal to zero or not.

The following lemma describes the relation we need between a ip and the
corresponding <p.

Lemma 1. If for different integers i\,..., ^ 6 {1, ...,m}

h (nH \

7=1 \r=l /

/or a// x, n > 0 such that U?=\f"'*(xi) > °> then

n>o
A

1=1

5=1 >-.,= !

(6)
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Proof. We extend the set {i\,..., z/J to a permutation {/],..., im} of {1, ...,m}.
For all x > 0 we have

Q.E.D.
In the univariate case Lemma 1 is closely related to Theorem 2 in Sundt &
Jewell (1981).

It is clear that if the pairs (y?i, V>i), •••, (<Av>V\v) satisfy the conditions of
Lemma 1, then (Y,v=i cv¥>v, YZ=\ ^v) also satisfies the conditions of
Lemma 1 for all constants c\,...,cw.

As the severities are positive, Xt = 0 if and only if Nt = 0. This implies
that if the pairs (<pi, tpi) and (<p2,1^2) satisfy the conditions of Lemma 1, then
these conditions are also satisfied by the pair (ip, ip) given by

ip(yh...,yh; x) = I
[ip2(y\,...,yh; x

= 1,2,

= 0)

2(n). (/!,• = 0)

We have already seen one application of such a construction in the Vernic
recursion, where the coefficients were allowed to depend on whether some of
the variables were equal to zero.

We are now ready to prove our main theorem.
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Theorem 1. If there exist pairs of function (T/V. , , , ,^ , . . .^) such that (4) holds
and each pair satisfies {6) for all x, n > 0 such that Y\JL\f?'*{xi) > 0, then (5)
holds.

Proof. From Lemma 1 we obtain that for all x > 0

n>o /=i
m m

E E E Vv..,>Mn - e,,.,J IX/?'*(*/
n > 0 h=\ \<i\<...<ih<m i=l

m m

E E E ^•••'»/'(» - e,-,...«

E

(=1

E ( , 0
<m s=\ ys = \ j=\

Q.E.D.
Our next theorem shows a way to construct additional recursions for g if
there are more than one set of recursions that satisfy the conditions of
Theorem 1.

Theorem 2. If for v = 1,..., w (5) is satisfied with

then (5) is satisfied with

w

<Pi,...k(y\,-,yh; x) = Vc^x^j^Cyi,...,>>/>); x),v=\

(yj= l,...,x/;; j= l,...,h; 1 < h < ••• < h < m; h = l,...,m; x > 0)

M'Aere ;/je weight functions cv are chosen such that Y^l=\ c^(x) = ^ Z6""
x > 0.

Proof. By assumption we have

h x,,

E
( x > 0 ; v=l,...,w)

and the theorem follows by multiplication by cv(x) and summation over u.
Q.E.D.
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In Section 5 we shall consider an application of Theorem 2.
The condition (6) in Lemma 1 is satisfied by the pairs

q - 1
\ ^ ( n ) = T=f? (q = 0,l,..

j=\Xii ll/=iw'>

and consequently by

^2 E ^ II
q=\ \<s\<...<sq<h j=\ hj

q=\ l<.s, l

Like in the Vernic recursion the coefficients could depend on whether
Xi — n,: — 0 for some /'s; in particular this should be done to avoid division
by zero. To give a general expression for (5) based on these functions would
be notationally rather messy, and we shall therefore abstain from that and
rather suggest that one develops the formulae in special cases.

In the univariate case, (7) and (8) reduce to

ip{y\x) = a + b-; ip(n)=a + - .

From Theorem 3 in Sundt & Jewell (1981) follows that these are the only
(ip, y?)'s for which (6) is satisfied for every possible choice of severity
distribution. The present author believes that also in the multivariate case (7)
and (8) give the only (ip, y?)'s that satisfy the condition (6) of Lemma 1 for
every possible choice of severity distributions.

5. EXAMPLES

5A. The following model is discussed by Hesselager (1996) in the bivariate
case. We assume that the distribution p. of N. satisfies the Panjer recursion

.(n.-l), («. = 1,2,...)

and that the conditional distribution of N given that N. = n. is the
multinominal distribution

n
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We have q = cf\* with

a,(v)-l
Wi (y = ef-, i= l , 2 , . . . ) ( )

q]{y) \ 0 . (otherwise) l '

Hence p is the compound distribution p — Yl^=oP-(n-)<l"'* w^ t n univariate
counting distribution p. and multivariate severity distribution q\. Such
compound distributions are discussed by Sundt (1999). From this Theorem 1
follows that for h = 1, ...,ra and n > 0 we have the recursion

nhp(n) = 2_^ (anf> + buh)q\ (u)p(n - u),
o<u<n

and insertion of (9) gives
m

nhp(n) - bwhp(n - eh) + anh ^ Wip(n - e,)

When n > e/j, we can divide by «/,, and we then obtain
m

/'(n) = b~p(n - eh) + a^Wipin - ei) =

(a-\ j whp(n - eh) + a ^ Wip(n - e,) .

Hence

g(x) — b— > yhfhiyhW* - Vheh) + a
1=1

Formula (10) gives m recursions for g. We shall now combine these
recursions by using Theorem 2. Multiplying (10) by xi,/x. and summing over
those values of h where xi, > 0, gives

m Xh

Compared to (10), this recursion has the advantage that it holds for all
x > 0. On the other hand, as it involves more algebraic operations, it would
presumably be more time-consuming.
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As a special case of (11) we obtain

(n > 0)
h=\

This recursion was also given by Sundt (1999).

5B. Teicher (1954) discusses a class of multivariate Poisson distributions that
satisfy the recursion

(n)=i-L(n-
nm \

m~\
e " •••'*'»)

h=\ \<h<...<ih<m-\

as well as analogous recursions where we divide by n^ instead of nm\
k—\, ..., m — 1. In the bivariate case the corresponding compound
distributions are discussed by Hesselager (1996) and Vernic (1999).

6. EXTENSIONS

6A. In the univariate case Sundt (1992) gave the following extension to
Panjer's (1981) recursion.

Theorem 3. If p satisfies the recursion

k

then

1=1

j=i 1=1

An analogous extension of the theory in Section 4 would mean to allow the
recursion for p to go k steps back. In that connection we would need the
following extension of Lemma 1.

Lemma 2. If for different integers / j , . . . , / / , e {l , . . . ,m} and positive integers
k\,...,kh

y^Yij,...,
7=1

n
j=\ \r=\

(12)
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for all x, n > 0 such that YlZ\J?'*(xi) > °- then

m
h

=1 kjeh
n>o 1=1

h xis h

y y^jip{y\, •••,yh] x ) g ( x — ^ ^. yjet) TTi;J*(>j) • ( x > 0)
s=\ >',=1 J~ j=\

Theorem 1 can be extended analogously.
The condition (12) in Lemma 2 is in particular satisfied for

, ..., yh; x) = \\r-—5 ^(n)=YT? • (^ = °> ̂  •••'/?)
j=]KjXjj llj=\nij

6B. Analogous to the extensions by Ambagaspitiya (1999) and Sundt (1999)
of Panjer's recursion to Case 1 of Section 3, we could extend the results of
the present paper to the case where the severity distributions are
multivariate.

6C. In the present paper we have concentrated on recursions for multivariate
distributions. In practice one will often approximate distributions by
functions that are not necessarily distributions themselves, and thus it can
be of interest to have recursions for more general functions. In the univariate
case some recursions originally developed for distributions have been
extended to more general functions by Dhaene & Sundt (1998) and Sundt,
Dhaene & De Pril (1998); Dhaene, Willmot & Sundt (1999) discuss
recursions for some classes of functions related to distributions, in particular
cumulative distribution functions. Some multivariate extensions have been
given in Sundt (1998). Analogously, the recursions of the present paper
could be extended to more general functions. However, as the conditional
expectation in (6) does not make sense if we leave the realm of distributions,
we have to reformulate that formula. We rewrite it as

h xis

X;2 )
,v=l y, = \ \j=\ ) j=h+\

This is the relation that we need between tp and ip in the general case, and as
this is the relation applied in the proof of the lemma, the proof still holds in
the general case. Analogous for Lemma 2.
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