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Abstract

We give a characterization of complex extreme measurable selections for a suitable set-valued map. We
use this result to obtain necessary and sufficient conditions for a function to be a complex extreme point
of the closed unit ball of Lp(n, E, v; X), where (Q, E, v) is any positive, complete measure space, X is
a separable complex Banach space, and 0 < p < oo.

1991 Mathematics subject classification (Amer. Math. Soc): primary 28A05,46E40.

Introduction

In 1969 Sundaresan [10] showed that sufficient conditions for a function / to be
an extreme point of the closed unit ball Lp(k, X) = Lp([0, 1], k, X), where X is
any Banach space, X is the Lebesgue measure on [0, 1], and 1 < p < oo, are that
H/llp = 1 and / (0/11/(011 is an extreme point of the closed unit ball of X for A. -
almost all/ e Sf := {s e [0, l]\f(s) ^ 0}. In addition, Sundaresan showed that these
conditions are also necessary if X is finite dimensional. A year later, Sundaresan
[11] proved that the same conditions characterize the extreme points of the closed
unit ball of Lp(£2, £ , /x; X) if X is a separable dual space, Q is a locally compact
Hausdorff space, and n is a regular Borel measure. A significant improvement on
Sundaresan's results was published 4 years later. In 1974 Johnson [7] used von
Neumann's selection theorem to obtain a characterization of the extreme measurable
selections for a suitably chosen set-valued map. As a corollary Johnson proved that
if X is a separable Banach space, (Q, E, /x) is any positive complete measure space,
and 1 < p < oo, then the so called natural conditions characterize the extreme points
of the closed unit ball of Lp(£2, E, fi; X), thus extending considerably Sundaresan's
results. Johnson also gave necessary and sufficient conditions for a function to be an
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[2] Complex extreme measurable selections 223

extreme point of L^itl, £, //.; X) in the special case where Q is a Polish space.
In a very real sense Johnson's result is the best possible. In 1982 Greim [6]

constructed an example of a non-separable Banach space X and a function / on [0, 1]
which is an extreme point of the closed unit ball of all LP(X, X) spaces, 1 < p < oo,
and for which no value / ( / ) is an extreme point of the closed ball of X of radius \\f(t) ||.
This shows that, in general, the separability assumption on X in Johnson's result cannot
be dropped. We also note in this connection that Johnson's characterization fails if
p = 1. To see this observe that the function / = Xio.i] (the characteristic function of
[0, 1 ]) satisfies the natural conditions but is not an extreme point of L x (k) = L \ (k, R).

In this paper we consider complex extreme points, the complex analogues of (real)
extreme points. We prove that the complex extreme measurable selections for a
suitable set-valued map admit a characterization which parallels the one given by
Johnson for (real) extreme measurable selections for the same set-valued map. We
then use this result to show that if X is a separable complex Banach space, (Q., £, v) is
any positive, complete measure space and 0 < p < oo (we consider the case p = oo
separately), then the natural conditions characterize the complex extreme points of
BLP(Q,-E,V,X)- Here too, Greim's example can be appropriately modified to show that
our result may also fail if X is not separable.

This paper constitutes part of the author's Ph.D. dissertation which will be submitted
to Northern Illinois University.

0. Preliminaries

Let (F, || • ||) be any quasi-normed space, and let BY denote the closed unit ball of Y,
that is, BY = {y e Y : \\y\\ < 1}. Also, if X is any Banach space, (Q, 2 , v) any pos-
itive measure space and 0 < p < oo, Lp(/z, X) = Lp(fi, E, /x; X) is the Lebesgue-
Bochner space of //.-equivalence classes of strongly measurable functions/ : fi —> X
for which fa ||/(<w)||pdyLt(a>) < o o i f O < p < o o and esssup^jj ||/(<M)|| < oo if
p = oo, quasi-normed by

II *• II _ I Un "./ v"vir "nyf")]" if 0 < p < oo,
" \ esssupa)e£2||/(o))|| if p = oo.

DEFINITION 0.1. A point x of a (not necessarily convex) subset K of a complex
vector space V is called a complex extreme point of f̂ if and only if [x + zy : |z| <
1} C K for y e V implies y = 0. We denote the set of complex extreme points of K
by c-ext K. If K is convex, then x € c-ext K if and only if {x + zy : |z| = 1} C K
for v € V implies y = 0 if and only if [x + zy : z = ±1, ±i} C K for y e V implies
y = 0. Note that every (real) extreme point of a convex set K is a complex extreme
point of K.
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224 Douglas Mupasiri [3]

DEFINITION 0.2. Let (£2, E,/z) be any measure space (we assume that all our
measures are positive). The outer measure induced by [x is the function /x* : £?{Q.) —•
[0, oo] defined by

H*(A) = inf{/x(B) : B € E, A C B)

for all A e ^(£2) where ,^(£2) is the power set of £2. A set C C £2 is /x*-measurable
if and only if

/i*(A) = /A*(A n C) + /x*(A n Cc)

for each A c £2.

Let ^ M . denote the cr-algebra of all /immeasurable subsets of £2. Then the
restriction of /x* to ^ M . is a complete measure. If we let EM be the /x-completion
of E, so that E,, := {A C fl : there exist A^/12 e E with A) C A C A2

and /x(A2 \ A0 = 0}, then EM is a sub-cr -algebra of Jt ^. If /x is a -finite, then
E^ = */#M.. We deduce from this fact that if £2 is a Polish space and /LA is a-finite,
then the restriction of /x* to EM is a regular measure. (See [2, Proposition 8.1.10]).

DEFINITION 0.3. Let (£2, E, /A) be a measure space and let X be a Hausdorff space.
A function / : E —• X is E -measurable if and only if the following conditions
hold:

(i) / - ' (G) € E for every open set G C X;
(ii) / is /x-essentially separably valued, that is, there exists J V e S with n(N) = 0

such that / ( £ 2 \ i V ) i s a separable subset of X.

If E = ^#M. and / satisfies the two conditions above, then we shall simply say / is
[x-measurable. By a similar abuse of notation we shall refer to the elements of ^ M . as
the ix -measurable subsets of £2 ; indeed we shall often identify /x with the restriction
of ix* t o ^ M . .

DEFINITION 0.4. A subset of a metric space is called analytic (Souslin) if it is
a continuous image of a Borel subset of some Polish (that is, complete separable
metric) space.

Let 2s denote the power set of a set S. The graph of a set-valued map F : T -*• 2s

is the set
9F:=[(f,s)€TxS\seF{t)}.

A set-valued map is said to be Borel measurable (respectively, analytic) if and only if
its graph is a Borel set (respectively, an analytic set).

In the sequel we shall need to use von Neumann's measurable selection theorem
[12] and a corollary of the theorem due to Aumann [1]. We quote below the form of
these results given in [7] as this form is more suitable for our needs.
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THEOREM 0.5. (von Neumann) Let M and N be Polish spaces, let A c M be an
analytic set and g : A —>• N be a continuous function. Suppose fi is a Borel measure
on N. Then the set g(A) is \x-measurable and there exists a fi-measurable map
<J> : g(A) —> M such that g(Q>(x)) = x for all x in g(A).

COROLLARY 0.6. (Aumann) Let S, and S2 be Polish spaces and let F : Sx -> 2Sz

be an analytic map such that F(s) =fi 0for all s € S\. Suppose /x is a Borel measure
on S\. Then there exists a ^.-measurable function f : Sj -> S2 with f(s) € F{s) for
alls e Si.

For the remainder of this paper we shall fix the following notation. Unless specified
otherwise, X shall be a separable complex Banach space, S shall be a Polish space
and n shall be a positive, a -finite Borel, and hence regular measure on 5 [2].

As in [7], A = Ac denotes the complement of a set A, B ~ A := B l~l A is the
complement of A in B, A + B — [x + y\x e A, y e B] and A — B = {x — y\x e
A,yeB).

1. The Main Result

LEMMA 1.1. (Johnson [7]) Let F, G : 5 -*• 2X be Borel measurable maps. Then
the maps //,, 1 < / < 5, defined below are Borel measurable.

(1) «,(s) = F ( j ) n C ( j ) .
(2) If A cSisa Borel set, H2(s) = F(s) ifs € A, and H2(s) = G(s) if S e A.
(3) Iff:S^-X is Borel measurable and k e C, H3(s) = f(s) + kF(s).
(4) IfBcXisa Borel set, H4(s) = B for all s e S.
(5) H5(s) = F(s) x G(s), where (F(s) x G(s) := [{x, y)\x e F(s), y e G(s)}).

We now prove our main result. We remark that in what follows we shall always
identify functions which are equal almost everywhere with respect to a given measure.

THEOREM 1.2. Let F : S ->• 2X be a Borel measurable with F(s) ^ 0 and convex
for all s e S. Define F\ : 5 —>• 2X by Ft(s) — F(s) ~ c-ext F(s) and suppose that
[s € S | Fi (s) ^ 0} is a Borel set. Let £>F denote the set of all fi-measurable functions
f : S -> X such that f(s)e F(s)for /x-almost all s e S (such functions are called
measurable selections for F). Then f e c-ext §>f if and only if f(s) e c-ext F(s)for
fi-almost all s e 5.

PROOF. Let A = {s e S\f(s) e Fi(s)} and suppose that A is not of /z-measure
zero. Define H : 5 - • 2X\X4 = X xX xX xX)by'

, F(s) x F(s) x F(s) x F(s) if s e 5 ~ F^{&),
(S) 1 {0} x {0} x {0} x {0} if SeFf ' (0) .
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T h e n H i s a B o r e l m e a s u r a b l e m a p b y L e m m a 1 .1 . L e t h : S x X x X - + S x X 4 b e
the map (s, x, y) i-> (s, x + y, x — v, x + iy, x — iy). Then the set

U := n \[S ~ Fr'(0)] x X x [X ~ {0}]l

is a Borel set. Moreover, i f< I> :SxXx .Y->-SxXis the map (s, x, y) i-»- (5, JC),
then <!>({/) = S?F,. Hence #F l is analytic. By [5, Propositions 13 and 14, p. 97] and
the regularity of the measure ix, there exists a Borel measurable function g : S -> X
such that g = / /i-almost everywhere (henceforth abbreviated /x-a.e.).

Let B := {s e S|g(s) € Fi(s)} and let nx be the canonical projection of S x X
onto 5. Then Tli(^g D SfFl) = B, so B is analytic and hence /n-measurable by
Theorem 0.5. (Note that the family of analytic subsets of a Polish space is closed
under countable intersections, countable unions and countable products - (see [8, p.
435] or [2, Propositions 8.2.2, p. 261 and 8.2.5, p. 263]).

Since g = f (x-a.e., we must have /x(B) > 0, otherwise /x(A) = 0, a contradiction.
By the regularity of /u, there exists a compact set K c B with ix(K) > 0. Let
G : S —>• 2X be defined by the expression

[ F(s)) n (g(s) - F(s)) D i(-g(s) + F(s)) n i(g(s) - F(s))] ~ {0}

if s e K and let G(s) = {0} if s € 5 ~ K. Then G is Borel measurable by Lemma
1.1. Also, G(s) ^ 0 for s e S. Hence by Corollary 0.6 there exists a ^-measurable
function A, : S -*• X such that /ii(s) e G(s) for all 5 e S. Note that hx(s) # 0 for
all s e ^ by definition of G. Moreover {g(s) + zhv{s)\z = ±1 , ±/} c F(s) for all
5 € K, and since g = / ^-a.e., {g(s) + z/i,(s)|z = ±1, ±i} = {g(s)} c F ( J ) for
JLI-almost all 5 e S ~ K. Hence {g(s) + zh\(s)\z = ±1,±/} c F(s) for ^-almost all
s e S . s o ^ c-ext &F. Since f = g /i-a.e., / ^ c-ext &F. This completes the proof
of the necessity of the condition. The proof of the converse is immediate.

COROLLARY 1.3. If K is a non-empty, convex Borel subset of X and $K := {/ :
S -*• K\f is ^-measurable }, then f € c-ext &K if and only if f(s) e c-ext K for
(/.-almost all s € S.

The proof of this corollary is straightforward, and is therefore omitted. As a
consequence of Corollary 1.3, we get the following characterization of the complex
extreme points of S§Lx(llix) '• a function / 6 c-ext BLx>(liiX) if and only if f(s) e
c-ext Bx for /x-almost all s e S.

COROLLARY 1.4. Let K be a non-empty, closed, convex subset of X and let v be
any positive a -finite Borel measure on K. Ifv(K ~ c-ext K) > 0, then there exists a
Borel measurable function g : K -*• X such that g ^ Q on a set of positive v-measure
and such that {x + zg(x)\z — ±1 , ±i] c K for v-almost all x e K.
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PROOF. Let S = K in Corollary 1.3 and define F : K ->• 2E by F(x) = K for all
x e K and put FY(x) = F(x) ~ c-ext F(x) = K ~ c-ext K for all x e A". Then
by an argument similar to the one used in the proof of Theorem 1.2, it is easy to see
that K ~ c-ext K is analytic and hence v -measurable. Note that by Corollary 1.3,
idjf (the identity map on K) is not a complex extreme point of the set of functions
defined by §>* := {/ : K —> K\f is v-measurable}. For if id* e c-ext £>#, then
x = id*(x) e c-ext K for v-almost all x in K, contradicting v(K ~ c-ext K) > 0.
Thus there exists a v-measurable function g0 '• K ^> X such that g0 ^ 0 on a set of
positive v-measure and {id* + zgo\z = ±1 , ±i} c §>K> that is,

{* + Z*O(JC)|Z = ±1 , ±i} = {idirU) + zgoWlz = ±1, ±»} C AT

for v-almost all x e f̂. As in the proof of Theorem 1.2 we appeal to [5, p.97,
Proposition 13 and 14] and use the regularity of v to get a Borel measurable function
g : K -*• X such that g = go v-a.e. It is now clear that {x + zg(x)\z — ±1 , ±/} c K
for v-almost all x € K as desired.

In the proof of the next corollary we shall need the following:

DEFINITION 1.5. Let Y be any Polish space and 38(Y) be the Borel subsets of Y.
For each positive Borel measure v, let v* be the outer measure induced by v. Let
j#v* be the a-algebra of v*-measurable subset of Y. Then the universally measurable
subsets of Y are the elements of the a -algebra

. : v is a finite Borel measure on Y}.

Since analytic subsets of a Polish space Y are measurable with respect to every
Borel measure on Y (Theorem 0.5), we deduce that analytic subsets are universally
measurable.

COROLLARY 1.6. Let K be a non-empty, closed, convex subset of X and let
(Q, E, v) be any a-finite positive, complete measure space. Let& := {/ : fi —>• K\f
is Jl-measurable, that is, f~l(B) e E for all B e @(K)} (here S8(K) denotes the
Borel subsets of K). Then f € c-ext §> if and only if f (w) e c-ext K for v-almost all
co en.

PROOF. Suppose / e c-ext $ and let /x : 38(K) -> [0, oo] be the image measure
of v under f, that is, /x(B) = v(f~l(B)) for all B € @(K). Then n is a Borel measure
on K. But /* need not be a -finite. Indeed, if x0 e K and / is the constant function
f(co) = x0 for all oo 6 £2, then fi is not a -finite unless v(Q) < oo. However, fi
has the nice property that the restriction of the outer measure fi* (induced by /i.) to
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228 Douglas Mupasiri [7]

is a regular measure. This means, in particular, that /x* is regular on the
analytic subsets of K. Thus, mutatis mutandis, Theorem 1.2 remains valid for this
measure.

Suppose the set A = {u> e £l\f(co) g c-ext K] is not of v-measure zero. We
may assume that / ^ 0 on a set positive v-measure. As in Corollary 1.3, K ~
c-ext K is analytic and hence //-measurable. If fi(K ~ c-ext K) = 0, then by
the outer regularity of fi* on <%{!%){K)) there exists a Gs-set B such that (K ~
c-ext « " ) c B C ^ a n d /A(B) = 0. Now A C /~'(B) and v(/- '(B)) = fi(B) = 0
and so, by the completeness of (£2, E, v), v(A) = 0, a contradiction. Therefore
/x(K ~ c-ext A") > 0. Thus by Corollary 1.4, there is a Borel measurable function
g : K -+ X such that g ^ 0 on a set of positive /z-measure and {JC + zg{x)\z =
±1, ±/} C A for /M-almost all x e K. Evidently 0 < /x(Sg) = vC/^Sg)) and
(g o f)(a>) = g(f (a>)) # 0 for all w e f~l(Sg). Thus g o / : S ^ X is a v-
measurable function which never vanishes on the set / " ' (Sg) of positive v-measure.
Moreover, by our choice of the function g, {f(co) + z(g o /)(<y)|z = ±1, ±/} C K
for v-almost all o> e fi, that is, {/ + z(g o / ) |z = ±1 , ±i} c %>. Hence / ^ c-ext $.
This completes the proof of the necessity of the condition. The proof of the sufficiency
of the condition is immediate.

2. An application

THEOREM 2.1. Let (ft, £, v) be any positive, complete measure space. Let f 6
Lp(y, X) = LP(Q, S, v; X), 0 < p < oo. Then f e c-ext BLp(v,X) if and only if

= 1 and /(<o)/II/(&>)II € c-ext Bxfor v-almost all co e Sf.

PROOF. Let / e c-ext BLp^X). Then clearly ||/||p = 1. Let SS/ := {A c
S/|A € E} = {B c ft|B = A n S/, A 6 E}. Then (5/, T,f, v) is a positive,
complete, CT-finite measure space. Define h : Sf —»• Z?x by /i(a>) = /(a>)/||/(aj)||.
Put S> := {v : 5/ —>• Bx\v is S/-measurable }. If A ^ c-ext $ then there exists
g : Sf —>• Xsuchthatg ^ 0 on a set ofpositive v-measure and {h+zg : |z| < 1) c l .
Hence {h(a>) + zg(a>) : |z| < 1} = {/(<u)/||/(a>)|| + zg(w) : \z\ < 1} C Bx for
v-almost all 5 € Sf. Let A] : Q —> X be given by

i f coeSf'
if coeQ-Sf.

Then, since v(Sg) > 0 and Shl = Sg, it follows that hi ^ Oona set of positive
v-measure. Moreover,

: \z\ < l}
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for v-almost all co e Sf, so ||/(co) + zhr (co) || < || /(co) || for all z e C with \z\ < 1 and
for v-almost all co € Sf. Since hl(co) = Oif co € £2 ~ 5/, we have \\f(co + zhi(co)\\ <
||/(<w)|| for all z e C with \z\ < 1 and for v-almost all co G £2. Consequently,
11/ + zhx lip < ll/llp = 1 for all z e C with \z\ < 1 or equivalently {/ + zhx : \z\ <
1) c BL (V,X)- Hence, / ^ c-ext BL (ViX), a contradiction. Therefore we must have
h e c-ext $. We now apply Corollary 1.6 to the positive, complete, a-finite measure
space (Sf, E/, v), the EX/-measurable function h, and the non-empty, closed, convex
set Bx, to get that h(co) € c-ext Bx for v-almost all co e Sf. This proves the necessity
of the condition.

The proof of the converse is essentially contained in Theorem 2.5 of [4]. Suppose
Il/Hp = 1 and f(co)/\\f(co)\\ e c-ext Bx for v-almost all co e Sf. Let 0 ^ g e
Lp(v, X). Then the set B = {co e C2|g(a>) 7̂  0} has positive v-measure and for
v-almost all co e B there exists 9a with 0 < 9W < 2n such that \\f(co) + e'e<"g(o))|| >
||/(ew)||. Forifw e B ~ 5/,then ||/(<w) + e/eg(<w)|| = ||g(o))|| > 0 = ||/(<w)|| for all
6>, 0 < 9 < 2n\ and if co e Bn5»,where5° := {r € S/ : / ( T ) / | | / ( T ) | | 6 c-ext Bx],
then the assertion follows from the definition of c-ext Bx.

CLAIM. Let N c B be the exceptional set in the preceding assertion, that is,

N = {coe B: \\f(co) +ewg(co)\\ < \\f(co)\\ forall6>,0 < 9 < 2TT}. Then

[\\f(co)+ewg(co)V - \\f(co)\\p] — > 0

m

for each co e B ~ N.

PROOF OF CLAIM.

CASE 1: ||g(a>)|| 5 II/(^||. In this case, the claim follows from the proof of (b)
implies (d) in [4, Proposition 2.2].

CASE 2: ||g(<y)|| > ||/(CD)||. Since every normed linear space is locally PL-convex

(see [3] for the definition) it follows from [3, Proposition 2.2] that log || • || is a

plurisubharmonic function on X, that is,

log II* + e y\\ — for all x, y e X.

2n

Hence || • ||p is plurisubharmonic on X. We therefore have for all co e B ~ N

\\f(co)+cieg(co)\\p — = / \\g(to)+e
ief(co)\\» —

2n Jo 2n
> \\g(co)\\p > \\f(co)\\p
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or equivalently, for all a> e

as claimed

r
Jo

So

. It

L

Jo
now follows

Douglas Mupasiri

B ~ N

readily from Fubini's

)+<-»MI'-l/(.

"'] 1 =• °
Theorem that

;)||p] dv((o)— >0.

[9]

Jo Jn

J/3

[ - \\f(co)V] dv(co) —

2*

/

2w /• j ^

/ Xb(<o) [ I l / M + e'*^(a»)||" - \\f(coW] dv(io) — > 0.
Jn 2TTThus,

Therefore there exists 60, 0 < 00 < 2n such that \\f + ei6°g\\p
Lp(vX) > 1. Hence

/ G c-ext BLp{v, X), as desired.

COROLLARY 2.2. Let X be a separable complex Banach space. Thenx = Cx,,)^ C
Btl(X) is a complex extreme point of Btl(X) if and only if'\\x\\tl(X) : = J27=i IKII = l

and, for each non-zero coordinate xn, the point xn/\\xn \\ is a complex extreme point of
Bx.

REMARK 2.3. The characterization of the complex extreme points of B(l(X) given
in Corollary 2.2 is (except for the requirement that X be a separable complex Banach
space) of the same form as the characterization of the (real) extreme points of real £P(X)
for 1 < p < oo [9]. By contrast, an element x in the real t\ (X) is an extreme point of
the BU(X) if and only if ||jt||€im = 1 and x has the form x = (0, 0, 0, • • •, 0, xn, 0,...)
where xn is a real extreme point of Bx.

Finally, we note that since the notion of complex extreme points makes sense even
in non-convex settings, a natural question to ask is whether Theorem 2.1 holds if
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[10] Complex extreme measurable selections 231

we replace the Banach space X by a separable complex continuously quasi-normed
space. We have so far been unable to answer this question. What is clear, however,
is that our method of proof does not extend to this more general situation because the
method depends on the Hahn-Banach Theorem.
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