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Elliptic Zeta Functions and Equivariant
Functions

Abdellah Sebbar and Isra Al-Shbeil

Abstract. In this paper we establish a close connection between three notions attached to a mod-
ular subgroup, namely, the set of weight two meromorphic modular forms, the set of equivariant
functions on the upper half-plane commuting with the action of the modular subgroup, and the set
of elliptic zeta functions generalizing the Weierstrass zeta functions. In particular, we show that the
equivariant functions can be parameterized by modular objects as well as by elliptic objects.

1 Introduction

For a finite index subgroup T of SL,(Z), an equivariant function is a meromorphic
function on the upper half-plane H that commutes with the action of I' on H, namely,

flyr)=yf(r), yel, 7eH,

where y acts by linear fractional transformations on both sides. These were extensively
studied in connection with modular forms in [3,4,8] and have important applications
to modular forms and vector-valued modular forms [6,7]. In this paper, we study
the equivariant functions from an elliptic point of view. In particular, we will see that
they also arise from elliptic objects. To this end we establish correspondences between
three distinct notions, the first of which is the set of equivariant functions for I'. The
second is the space of weight 2 meromorphic modular forms M,(T). The third set
under consideration consists of a generalization of the Weierstrass {-function that
satisfies {'(z) = —p(z), where p is the Weierstrass p-function attached to a rank two
lattice of C. In fact, { can be viewed as map

(:{set of lattices in C} x C —> C U {oo}.

For a fixed lattice w1Z + w,7Z with J(w,/w;) > 0, the map {(w1Z + w,Z, -) is quasi-
periodic in the sense that

((nZ+wZ,z+ w) ={(inZ+ wyZ,z) + Hw), zeC, wewZ+wZ.

Here, H(w) does not depend on z and is referred to as the quasi-period map. It is
also Z-linear, and thus it is completely determined by the quasi-periods H(w;) and
H(w»). Moreover, { is homogeneous in the sense that

(( a(wZ + wZZ),(xz) =a ' {(0Z+ w,Z,2), aeCF,

and so is the quasi-period map H(w).
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In the particular case where the lattice is of the form Z + 7Z, T € H, H(1) and
H(t) are meromorphic as functions of 7. It turns out that the quotient H(7)/H(1)
is an equivariant function on H thanks to the linearity and the homogeneity of the
quasi-period map H [1].

To generalize the Weierstrass {-function, Brady, in loc. cit. gave the definition
of zeta-type functions that behave like { in terms of quasi-periodicity, homogeneity,
meromorphic behavior of the quasi-periods H(1) and H(7), and additional condi-
tions.

In our case, we adapt and simplify these maps, which we call elliptic zeta functions.
The quasi-periods H(1) and H(7) turn out to hold important information, and they
are used to construct equivariant functions as well as elements of M, (SL,(Z)).

If T is a finite index subgroup of SL,(Z), we generalize the above construction by
defining the notion of I'-elliptic zeta functions. Here the lattices are replaced by ap-
propriate classes involving I', which essentially can be identified with pairs of lattices
(L,L"), L' being a sub-lattice of finite index of L. The group SL,(Z) acts by automor-
phisms on L by change of basis, and I becomes the subgroup of SL,(Z) that leaves L’
invariant. We then establish a triangular correspondence between the set of I'-elliptic
zeta functions, M, (T'), and the set of I'-equivariant functions summarized in the fol-
lowing commutative diagram in which every arrow is surjective.

Weight 2 modular forms

T

Elliptic zeta functions Equivariant functions

This paper is organized as follows. In Section 2 we review the basic notions of peri-
odic and quasi-periodic functions in the context of the Weierstrass p and { functions.
In Section 3, inspired by M. Brady [1], we introduce the notion of elliptic zeta func-
tions and study their structure. In Section 4, we establish the connection between
weight 2 modular forms and the elliptic zeta functions. In Section 5, we review the
notion of equivariant functions and establish a correspondence with the weight two
modular forms. In Section 6 we generalize the constructions of the previous sections
to any finite index subgroup of SL,(Z). Finally, in Section 7 we provide some inter-
esting examples related to the powers of the Weierstrass g-function.

2 Quasi-periodic Functions

The main reference in this section is [5]. Let A c¢ C be a lattice in C, that is, A =
w17 + w,Z with J(w,/w;) > 0. Such lattice can be expressed with a different basis
(w}, w}) if W] = aw; + bw; and w} = cw; + dwy with y = [ 2 4] € SLy(Z), that is
(w], ) = (w1, w,)y", where y* denotes the transpose of the matrix y. The Weier-
strass p-function is the elliptic function with respect to A given by

1 1 1
@(A,Z)— ?+u;\(m—ﬁ)
w#0
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It is absolutely and uniformly convergent on compact subsets of C \ A and defines
a meromorphic function on C with poles of order 2 at the points of A and no other

poles.
The Weierstrass (-function is defined by the series
1 1 1 z
21 A, = — 4+ + — 4+ —).
@D {(A.2) z wze;\(z—w w wz)

w#0
It is absolutely and uniformly convergent on compact subsets of C \ A. Moreover,
it defines a meromorphic function on C with simple poles at the points of A and no
other poles. Differentiating the above series we get

d
E((A’ z) = —p(A,z).

for all z € C. Since p is periodic relative to A, { is quasi-periodic in the sense that for
all w € A and for all z € C, we have

(2.2) (A z+w) =0(Az) + a(w),

where 5 (w) isindependent of z. We call 775: A — C the quasi-period map associated
with (. Itis clear that 1 is Z-linear, and thus it is completely determined by the values
of 75 (w1) and 54 (w; ). Also, since { is an odd function, it follows that if w € A and
w ¢ 2A, then 77, (w) is given by

w
(2.3) na(w) =20(A, ).

The periods and the quasi-periods are related by the Legendre relation
(2.4) w1 a(w2) — wana(wy) = 2mi.

The following homogeneity property of { and # will be very useful.
Proposition 2.1 If A is a lattice and a € C, then

(2.5) {(ah,az) =a™'((A,z) and fap(aw) = a'ga(w).

Proof The first relation follows from the expansion (2.1), and the second relation
follows from (2.2) [}

We refer to (2.5) by saying that { and # are homogeneous of weight -1.

We now focus on lattices of the form A; = Z + 1Z where 7 is in the upper half-
plane H = {z € C | J(2z) > 0}. From (2.3) we can readily see that the quasi-periods
74, (1) and n, (1) are meromorphic functions on H and so is the function defined

by
7. (7)
(2.6) h(t) = ()
For the remainder of this paper, ify = [ ab ] € GL,(C) and z € C, we define the action
yz by
az+b
VeTavd
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When y € SL,(R) and z € H, this is the usual action on H by linear fractional trans-
formation providing all the automorphisms of H.

Proposition 2.2 ([1]) The function h defined by (2.6) satisfies
(2.7) h(yt) =yh(tr), yeSLy(Z), teH.

Proof Lety e SLy(Z) and 7 € H. We have

at+b
na,.(y7) = Wz+g;:gz( m)
= (et +d)N(crrayzs(arnyz(aT + b)  (by homogeneity of )

=(ct+d)np,(at+b)
= (ct+d)(ana, (1) + bya, (1))

where we have used the linearity of 77 and the fact that the lattices A, and (ct+d)Z +
(a1 + b)Z are the same. Also,

na,.(1) = (¢t + d)(crrayze(arsn)z(cT+d)  (by homogeneity of 77)
=(ct+d)na,(ct+d)

= (et +d)(ena.(7) +dna,(1)).

Therefore,
ana, (1) +bya, (1)  ah(r)+b
h(yn) =7 TS = -
cfa, (t) +dna, (1) ch(r)+d
A meromorphic function on H that satisfies (2.7) will be called equivariant with
respect to SL,(Z). We will expand more on these functions in later sections.

yh(7). [ |

3 Elliptic Zeta Functions

Following [1], we will generalize the notion of Weierstrass zeta function and its quasi-
periods. Let £ be the set of lattices Ay, 0,) = W1Z + w7 with J(w,/w; > 0). We
define an elliptic zeta function of weight k € Z as a map

2:LxC— Cu{oo}
satisfying the following properties.
(a) Foreach A = w\Z + w,Z, the map
Z(A, -):C— Cu{oo}
is quasi-periodic, that is,
Z(A,z+w)=2(A,z) + Hy(w), zeC, weA,

where the quasi-period function Hx (w) does not depend on z.
(b) Z is homogeneous of weight k in the sense that

Z(ah, az) = a* Z(A,z), aeC*, zeC.

(¢) IfA; =Z+17Z, 7 € H, then the quasi-periods Hx_(7) and H,_ (1) as functions of
T are meromorphic on H.
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It follows from (a) that for each A, the quasi-period function H, is Z-linear, and
therefore, it is completely determined by Hy (w;) and H(w;). Moreover, we have
the following result generalizing Proposition 2.1.

Proposition 3.1 Let Z be an elliptic zeta function of weight k and let H be the quasi-
period function for each lattice A. Then for all « € C* and w € A, we have

Hyp(aw) = ok Hy(w).

Proof On one hand we have
Z(ah, a(z+w)) = 2(ah, az) + Hep (aw) = a*Z(A, z) + Hop (aw).
On the other hand, we have
2(ah a(z+w)) = a*Z(A 2+ w) = ock( 2(A,z) + Hy(w)),
and the proposition follows. ]

Notice that two elliptic zeta functions having the same quasi-period function must
differ by an elliptic function. Simple examples are given by the identity map z, or the
Weierstrass zeta function (A, z). We will see below that these two examples will, in a
certain sense, generate all the other elliptic zeta functions. Also, since for a fixed lattice
the derivative of an elliptic zeta function with respect to z is an elliptic function for
the lattice, this provides a way to construct infinitely many of them by taking integrals
of elliptic functions.

Let w; and w; be such that J(w,/w;) > 0 and set

_ w2 n(w2)
M<wl»wz>‘[w1 n(wl)]’

where 7 is the quasi-period map of the Weierstrass zeta function {(w\Z + w,Z, z).
Using the Legendre relation (2.4), we have

detM(wl,wz) = —2mi.

Let Z be an elliptic zeta function of weight k with the two quasi-periods H(w;) and
H(wy). Set

(D _ -1 H(wz)

[\P] = M(wl,wz) [H(wl) .

(3.1) 27i®0 = (wz)H(wy) — n(w1)H(w,),
(3.2) 271V = w H(w;) — w,H(wy).

In other words,

Proposition 3.2  The quantities ® and ¥ do not depend on the choice of the basis
(w1, wy) and, as functions of the lattice w17 + w,Z, they are homogeneous of respective
weights k —1and k + 1.
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Proof Leta,b,c,andd be integers such that ad —bc = 1. The expressions in (3.1) and
(3.2) are invariant if we change the basis (w;, w; ) to the basis (aw; + bw,, cw; +dw;).
Indeed, using the linearity of # and H, we have for the expression of ®:

#(cwy + dwy)H(aw; + bw,) — n(aw; + bwy)H(cw; + dwy)
= [en(w1) + dn(w2)][aH(w:) + bH(w2)]
= [an(w1) + bywz)][cH(w:) + dH(w2)]
= H(w1)n(w2) - H(w2)n(wr).

Similar calculations hold for the expression of ¥. The values of the weights are
straightforward knowing that the weight is k for H, -1 for # and 1 for both w; and
wy. |

We can therefore denote ® and ¥ by @, and ¥,, as they depend only on the
lattice A.

Proposition 3.3 ([1]) Let Z be an elliptic zeta function of weight k and quasi-period
function H, and let ® 5 and ¥, be as above. Then for each lattice A, there exists an
elliptic function E, such that

(3.3) Z(A,z) =Dp z + PaAl(2) + Ea(2).

Proof It is clear by construction of ® and ¥ that the map @,z + W, { satisfies the
conditions of a weight k elliptic zeta function. Moreover, for each A = w1Z + w,Z, the
quasi-periods of @ z+ ¥y {(z) are O w; + ¥, 7(w;), i = 1,2, which coincide with
the quasi-periods H(w;) and H(w,) of Z as we have [ZE:’)?; ] = [ ‘:)f 222’3 ][ %A\ ] and
therefore the two elliptic zeta functions differ by an elliptic function for the lattice A.

|

It is clear that expression (3.3) for an elliptic zeta function is unique up to the el-
liptic function E, (z), since @, and ¥, are uniquely determined. Moreover, we view
relations (3.1) and (3.2) as the generalization for an elliptic zeta function of the Le-
gendre relation (2.4) for the Weierstrass zeta function. Finally, using a similar proof
to that of Proposition 2.7, we have the following proposition.

Proposition 3.4  Let Z be an elliptic zeta function with a quasi-period map H. For
1 e Hand A, = Z+71Z, suppose that H(1) is not identically zero; then the meromorphic
function h(t) = H(7)/H(1) is equivariant with respect to SL,(Z).

4 Modular Forms

In this section we will investigate the connection between elliptic zeta functions and
modular forms for SL,(Z). In the following theorem, we will show that each elliptic
zeta functions gives rise to a weight 2 (meromorphic) modular form for SL,(Z), and
conversely, each weight 2 modular form yields an elliptic zeta function.
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Theorem 4.1 Let Z be an elliptic zeta function with © 5 and ¥ as in (3.3) and suppose
W, is not identically zero as a function of t. Then the map

4.1 L — —%
(4.1) ¥,

T

is well defined between the set of elliptic zeta functions and the space of weight 2 modular
forms M»(SLy(Z)). In addition, this map is surjective.

Proof Let k € Z be the weight of Z and set

Dy
= —=, e H.
f0=g

T

Since @4, and ¥, are meromorphic in 7, so is f(7). Now let y = [? g] € SLy(Z).
Since ®, and W, are homogeneous of weights k — 1 and k + 1 respectively, we have

q)Ay,. = (CT + d)_k+lq)(a‘r+h)Z+(c‘r+d)Z = (CT + d)_kH(DAT»
\PAyf = (CT + d)ikil\y(ur+b)Z+(cr+d)Z = (CT + d)ikil\PAf-

Therefore,
fly7) = (cr+d)*f(7).

Hence the map is well defined as @, and W, are uniquely determined by Z. We now
prove that the map is onto. Let f € M,(SLy(Z)) and set

_ 1 ()} _
Q)A_(Ui%f(wil), \PA_I)
for A = 01 Z + wyZ. The map @ is well defined in the sense that it is independent of
the choice of the basis (w;, w,). Indeed, if y = [ at ] € SL,(Z), then
1 (Ca)1+da)2)_ 1 f(d%f*‘c)
(aw; +bwy)? " \aw, +bw,’  (awy +bwy)2’ \ b ‘:}—T+a
(b Z’)—f +a)?

- (aw; + bw,)? f(%j) - wif f(%j)

Thus, we have an elliptic zeta function

202 = o5 1(£2) 24 02)

of weight -1 that is sent to f(7) by the map (4.1). [ |

5 Equivariant Functions

We introduced the notion of equivariant functions earlier as being meromorphic func-
tions on H that commute with the action of the modular group. They were extensively
studied in [3,4,7,8] in connection with modular forms, vector-valued modular forms,
and other topics. In particular, each modular form of any weight (even with a char-
acter) gives rise to an equivariant function. Indeed, if f is a modular form of weight
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k, then the function

he(t) =1+ k]J:,((T))

is equivariant with respect to SL,(Z).

Not all the equivariant functions arise in this way from a modular form. In fact
a necessary and sufficient condition for an equivariant function & to be equal to hy
for some modular form f is that the poles of 1/(h(7) — 7) in HU {co} are all simple
with rational residues [4]. Such functions are referred to as the rational equivariant
functions.

Important applications were obtained regarding the critical points of modular
forms and their g-expansion in [6]. As an example, recall the Eisenstein series G, (1)

defined by
Ga(7) = Z s Z 2 G )

n#O m#() nezZ mT + f’l
and the normalized weight two Eisenstein series

EZ(T)—*Gz(T)—1—24ZGI(n)q, q= 2T

n=1

where 01(n) is the sum of positive divisors of n. One can easily deduce from the
definition of the Weierstrass (-function [5] that

n(1) = Go(1), n(1) = 1Gy(7) - 27,
and since we have )
1 T
E = bl
2(7) 2mi A1)
where A is the weight 12 cusp form (the discriminant)

A(T) :qH(l_qn)Zél’ q eZTIlT
n=1

we deduce the following proposition.

Proposition 5.1  'The equivariant function h(t) = "((;)) from Proposition 2.7 is rational

with

A

h(t)=1+12 o

Let us denote by Eq the set of all equivariant functions with respect to SL,(Z).
Although h(7) = 7 is trivially equivariant, it will be excluded from Eq.

Recall that if f € M,(SL,(Z)) and y = [“ h] € GL,(C) we denote g((:)):g by

yf (7). Now recall from Section 3 the matrix

_|7 n(D)
Man = [1 n(l)] ’
which is invertible thanks to the Legendre relation.

Theorem 5.2 The map from M,(SLy(Z)) to Eq, f + My, f is a bijection. The
inverse map is given by h — M(_I{T)h.
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Proof Let f € M,(SLy(Z)) and set
h(t) = M) f(7)

Fory=[9"%]eSLy(Z), we have

(D) +n(2)
F@ )

_ytf(yT) + 14, (y7)

O D )
Since
na,,(y7) = (et +d)(an(r) + by (1)),
N4, (1) = (ct+d)(en(7) +dn(1)),
fyr) = (et +d)*f(7),
we have
_(at+b)f(r) +an(r) +by(l)
M) = (e ) f (o) = en(e) w dn) ~ V)
Similarly, one can prove that if h € Eq, then M h € M,(SLy(Z)). [

Usually the definition of a meromorphic modular forms also involves the behavior
at the cusps. More precisely, if f isa modular form for SL,(Z), then f(7+1) = f(7) for
all 7 € H and thus has a Fourier expansion that is a Laurent series in q = exp(27i7).
We say that f is meromorphic at the cusp oo if this Laurent series has only finitely
many negative powers of g. In the meantime, if h is equivariant for SL,(Z) then
h(t+1) = h(7) + 1. Hence, h(7) — 7 is also periodic of period one and thus has a
Fourier expansion in q. The proper behavior of & at the cusp at infinity is that h(7) -7
is meromorphic in g; see [4]. If a weight two modular form f and an equivariant
function h correspond to each other by Theorem 5.2, then h(7) = % and
thus, using the Legendre relation (2.4), we have

2mi
SN ORITON
Since #(1) = G2(7) is holomorphic in g, we see that the behavior at infinity for both
f and h is preserved under the correspondence of Theorem 5.2.

Taking into account the results of the above sections, we have established a corre-
spondence between the set of elliptic zeta functions, the space of modular forms of
weight 2 for SL,(Z) and the set of equivariant functions for SL,(Z) summarized as
follows:

Elliptic Zetas

M, Eq
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where H; and H, are the quasi-periods of the elliptic zeta function Z, ® and ¥ are
such that Z(A, z) = ® z + ¥{(z) + E with E elliptic and M, ;) as above. Of course,
this diagram is commutative, and each map is surjective.

6 The Case of Modular Subgroups

So far the constructions in the previous sections involve the full modular group
SL,(Z). In the meantime, the notion of modular forms or equivariant functions can
be restricted to any finite index subgroup. Thus, we need to define the notion of ellip-
tic zeta functions for any such subgroup.

Fix a modular subgroup T of finite index in SL,(Z). Set

M = {(wl,wz) e C?: J(wy/w) > 0}.

The group T acts on M in the usual way: y(w;, w;) = (w1, w;)y’. Denote by Qr the
quotient I'\M and the class of (w;, w;) by [w1, w;]. Also, C* acts on M in the usual
way and this action extends to Qr as

afwy, wy] = [awr, aw,].

If T = SL,(Z), then [w;, w,] is identified with the lattice A(,, o,) = W1Z + w,Z, but
for an arbitrary finite index subgroup T, the situation is different. Following the ideas
in [2], Q4 is identified with the set of pairs of lattices (A, A”) with A’ being a finite
index sub-lattice of A fixed by I' and A’ is the smallest such lattice (and thus defined
as the intersection of all such sub-lattices that are I'-invariant). If such pair (A, A")
is given, and as SL»(Z) acts by automorphisms of A by a change of basis, I' would be
defined by

['={yeSLy(Z):yA cA'}.

For example, if T = T'(N) is the principal congruence subgroup of level N > 1, then
A’ = Nw\Z + Nw,Z, which is a sub-lattice of w1Z + w,7Z of index N* . If T = Ty (N),
then A’ = w;Z + Nw,Z of index N in w;Z + w,Z. However, we will not need this
identification in what follows.

A T-elliptic zeta function with respect to I is a map

2:Qr xC— Cu{oo}
satistying the following.
(a) For each [w;, w;] € Qr, the map
Z([w1, w2], - ):C — Cu {oo}

is quasi-periodic with respect to Ay, «,); thatis, forallz € Cand all w € A(,,,0,)
we have

Z( [w1, w2], 2+ a)) = Z( [CUl)wZ]az) + Higy,0,](@).

(b) The map Z is homogeneous; that is, there exists an integer k, referred to as the
weight of Z, such that for all @ € C*, [w;, w,] € Qr and z € C we have

2( afwy, w], (xz) = akZ( [w1, w2 ], z) .
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(c) The maps
T+— H[LT](T) and 7+ H[I,T](l)
are meromorphic in H.
From this definition, it is clear that the quasi-period map H[,,,«,] i Z-linear on the

lattice A(y,,w,)> and thus it is completely determined by its values on w; and w,. It is
also homogeneous of weight k:

H[awl,awz](‘xw) = “kH[wl,wg](w)) w € A(wl,wz)’ acC”.

Using the same arguments as in Section 3, one can easily establish the following propo-
sition.

Proposition 6.1 Let Z:Qr x C — C u {co} be a T-elliptic zeta function. There
exists unique maps @, ,] of weight k —1and ¥, o,] of weight k + 1 such that for all
[w1, w2] € Qr and z € C we have

Z.([wl, wz],z) = CD[a,l,wz]Z + ‘{’[wbwz]((z) + E[wl’wz](z),

where Efy, ,](2) is an Ay, o,)-elliptic function.

Notice that @, ,,] and ¥[,,,4,] can be shown to be independent of the choice of
the representative of the class [w;, ;] in the same way as for Proposition 3.2 using
transformations from I instead of SL,(Z).

Let M,(T') denote the space of meromorphic weight two modular forms with re-
spect to T and Eq(T) be the set of I'-equivariant functions, that is the set of mero-
morphic functions on H that commute with the action of T'. It is clear that the matrix
M, of the previous section provides a bijection between M,(T') and Eq(T'). Using

the fact that by definition of Qr, when y = [ 4 Z ] € I, we have
[w1, w2] = [aw; + bw,, cwy + dw, ],

we deduce, in the same way as in the previous sections, the following theorem.

Theorem 6.2 IfT is a finite index subgroup of SLy(Z), then:

(i) The map
Hpy,
(6.1) 7 s LT ()
H[I,T] (1)
is a well-defined map from the set of T-elliptic zeta functions to Eq(T).
(ii) The map
Qpy,r
(6.2) 2 s _Lb1]
Ye]

is well defined between the set of T-elliptic zeta functions and M, (T). It is also
onto as for each f € M,(T)

Z([w, w2],2) = w%z f( %j) z+{(z)

is a I'-elliptic zeta function of weight 1 that maps to f by (6.2).
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Remark 6.3 Using the bijection between M, (T') and Eq(T) and the surjective map
(6.2), one can also see that the map (6.1) is surjective. Thus we have shown that each
I'-equivariant function arises from a I'-elliptic zeta function. Notice that the trivial
equivariant function 7 is also the quotient of the quasi-periods of the trivial I'-elliptic
zeta function Z2(z) = z.

Remark 6.4 It is worth explaining the behavior at the cusps as has been discussed
at the end of Section 5 for the cusp at infinity. In the case of a modular subgroup T of
SL,(Z), there are more than one cusp that are not in the same I'-orbit. Meanwhile,
the analytic behavior of a meromorphic modular form at a rational cusp is well de-
fined (see [9, Chapter 1] for instance), and that of an equivariant function has been
established in [4, §3]. It is not difficult to show that the two behaviors at a rational
cusp are well preserved under the correspondence between a weight 2 modular form
for I and a I'-equivariant function when T is a finite index subgroup of SL,(Z).

7 Examples

In this section, we study an important class of elliptic functions given by integrals of
the powers " of the Weierstrass g-function. These integrals were treated in [8].

Let A = i Z + wyZ, I(wy/w;) > 0, be alattice in C. The Eisenstein series g, and
g3 are defined by

1 1
&(AN)=60 Y —, g(A)=140 Y —.
weA—{0} @ wer—{0} ¥
When A = Z+1Z, 7 € H, g; and g3, as functions of 7 are modular forms of weight four
and six respectively. For a non-negative integer #, the power " (z) can be written as
a linear combination of 1, p and successive derivatives of g:

n-—1
P" (A, 2) = D, (A) = ¥u(A)p(A,2) + Y agp®,
k=1

where the coeflicients «j are polynomials in g and g; with rational coefficients; see
[10, p. 108]. In particular, @ =1, ¥y =0, ®; =0 and ¥; = 1.
For each lattice A and z € C, a primitive | " (u)du of p" has the form

Bo(A) 2+ ¥ (A)C(A,2) + En(A,2),
where for each A, E, (A, z) is a A-elliptic function. We define
Zn(A,2) =0, (A)z+ ¥ (A)(A, 2).
It is clear that for each A, Z,, (A, z) is quasi-periodic with the quasi-period map given
b
' Hy(w) = @ (A) 0 + ¥y (A)7(w),
where 7 is the quasi-period map for the Weierstrass {-function. If there is no confu-

sion, we will write @, for ®,(A) and ¥, for ¥, (A). According to [10, p. 109] (see
also [8, §9]), @, ¥y, and thus H,, satisfy the same three-term recurrence relation

2n -1 n-1

) £ 3o 1)

_n-l o
4(2n+1 8stin-2

Upsl =

https://doi.org/10.4153/CMB-2017-034-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-034-7

388 A. Sebbar and I. Al-Shbeil

with the following initial conditions
O, =V ,=H,=0
Dy =1,%=0,Ho(w) =w
®;=0,% = -1, Hi(w) = -n(w).

One can easily see that when A = A; = Z+71Z, v € H, H, is polynomial in g, g3, (1)
and 7(7), and thus H, (1) and H, () are meromorphic functions of 7. It follows that
the map Z,, (A, z) satisfies the axioms of a Weierstrass elliptic zeta function of weight
-2n+1.

Let us put ®,(7) = O, (A;), ¥u(7) = ¥ (A;), ;1 = 4(1) and 12 = n(7). Then
Oy(1) = 5 £(7), P3(7) = 1 g3(1), Ya(7) = 0and ¥5(7) = 52 g(7). More
generally, one can show by induction that

Proposition 7.1  For each positive integer n, ®, and ¥, are weighted homogeneous
polynomials in g, and g with rational coefficients and of degrees 2n and 2(n — 1),
respectively, and these degrees are also their weights as holomorphic modular forms.

For small weights, it is clear that ®, and ¥, are simple monomials. In light of
Sections 4 and 5, for each elliptic zeta function Z,, there correspond, on one hand, a
weight two modular form

fn(T) = (Dn(T) >
(1)
which is a rational function of g, and g3 with rational coefficients, and on the other
hand, an equivariant function

_ Hy(D) _ ®u(1) 7+ ¥u(D)n2
hn(T)_ Hn(l) - d)n(T)+\Pn(T)’71 .

Also, using the Legendre relation, f, and h,, are related by

27mi
hp(7) =7+ —.
fu(7) +m
The following table gives ®,,, ¥y, f,, and h, for1<n < 6:

n o, v, fn hy,
1 0 -1 0 B2 _ gy 2w
m m
1
2 &2 0 - T
1 =3 -2 & bmig,
3 10 &3 20 82 3 o T+ Sesam
2 .
52 -2 s 967igs
4 336 82 1 &3 18 g TF Svasgm
1 =7 2 RS lamig,
5 30 8283 240 82 7 & T —8g3+7g2m
2 .
15 ;3 1 ;2 =87 258 _ 288 2784mig,gs
6 | 2958 &2+ 55 85 | 1340 8285 | G6a g m7g | T T T75g3-448g2+1392g, 851
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