
BULL. AUSTRAL. MATH. SOC. 20C15, 20C30

VOL. 44 (1991) [337-344]

REPRESENTATIONS OF WEYL GROUPS OF TYPE B
INDUCED FROM CENTRALISERS OF INVOLUTIONS

PHILIP D. RYAN

Let G be a Weyl group of type B, and T a set of representatives of the conjugacy
classes of self-inverse elements of G. For each 1 in T, we construct a (complex)
linear character irj of the centraliser of t in G, such that the sum of the characters
of G induced from the TTI contains each irreducible complex character of G with
multiplicity precisely 1. For Weyl groups of type A (that is, for the symmetric
groups), a similar result was published recently by Inglis, Richardson and Saxl.

1.

An involution model for the irreducible complex characters of a finite group G is
a set of linear characters A< of certain subgroups, such that the sum of the induced
characters Ap involves each irreducible character of G with multiplicity precisely 1.
The relevant subgroups are the centralisers Ca(t) with t ranging through a complete
set of representatives of the conjugacy classes of the self-inverse elements of G. In
a January 1980 lecture which remains unpublished, Richardson had proved that all
classical Weyl groups except those of type £>2n do have involution models. For type A,
a much simpler proof was given eventually in Inglis, Richardson, Saxl [2]. In a paper
[1] still to appear, Baddeley proves that if a finite group has an involution model then
so does its wreath product with any symmetric group; this provides a new proof for the
full result of Richardson.

This paper presents yet another proof for the type B case. This will be based on
the theorem of Frobenius and Schur (see for example Isaacs [3]) which asserts that if all
irreducible characters of G come from real representations and if g £ G then the number
of square roots of g in G is the value at g of the sum of the irreducible characters of G.
Baddeley notes that (by another part of the Frobenius-Schur theorem) an involution
model cannot exist unless all irreducible characters come from real representations: our
argument makes use of the well-known fact that Weyl groups of type B satisfy this
condition. (For that, an explicit and convenient reference is harder to find: we can only
name Mayer [4].)
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338 P.D. Ryan [2]

For the rest of this paper let G be W(Bn), the Weyl group of type Bn, which is
the group of 'signed permutations' of n letters. It will be convenient to think of G as
the semidirect product of the symmetric group Sn on n = {1 , . . . ,n} and the additive
group Pn of the Boolean algebra of all subsets of n. (The addition in question being
symmetric difference of sets, it will be written as A instead of +.) Accordingly the
elements of G will be written as (a,a),(/?,b),... with a,/3,. . . permutations on n
and a, b , . . . subsets of n. The product of (a, a) and (/3,b) in G is given by

(a,a)(/?,b) = (a/?,/3(a)Ab).

By the support of a permutation a we mean the set of points which are actually moved
(that is, not fixed) by a; we shall write it as suppa. Given (a,a) in G, a cycle 7 of
a is said to be a positive cycle of (a, a) if |(supp7) ("I a| is even, and a negative cycle
of (a, a) otherwise. The signed cycle type of (a, a) is the function which counts the
number of signed cycles of (a, a) of any given length and sign. Two elements of G are
conjugate if and only if they have the same signed cycle type [4].

A straightforward calculation shows that if (/?,b) £ Cc((a,a)) then suppa and
a \ supp a are invariant under /3:

(1) /3(suppa) = suppa and /?(a\ suppa) = a \ suppa.

In particular, by restricting /? one obtains a permutation /3J,suppa of suppa,
and the composite map

(/?, b) i—» j3 1—»/3 i supp a i-> sign /? J. supp a

may be viewed as a linear character of Co ((a, a)). It is also easy to see that

is a linear character of CG((a,a)). (Use that if (/3,b),(/3',b') € CG((a,a)), then by
the Boolean distributive law

') A b ) H a \ s u p p a = (/?(b')n a \ suppa) A (bf~l a \ suppa)

= /3(b' (1a\ suppa) A ( b D a \ suppa) by (1)

and that the parity of the cardinality of a symmetric difference is the parity of the sum
of the cardinalities of the components.)
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The product of these two linear characters is what we want: define the linear
character ir(a,a) of Co( (a , a ) ) by

*(«..)((/*, b)) = ( - l ) | b n a W p a | s i g n / U s u p p a .

Our claim is that the T(Q|a) with (a, a) — t E.T form an involution model for G.

In view of the Frobenius-Schur theorem, it will be sufficient to prove instead that

(2) /((a,a)) = £>?((«, a))

holds for all (a , a) in G. The proof will occupy the rest of the paper.

3.

STEP 1. By definition, the induced character 7r° is given by

xea

where 7rt (5) = i .
^ 0 otherwise.

It is straightforward from the definition of 7r< that TTJ (a;"1 (a, a)x) = i^tx-i ((<*) a)) •
Using that G is the disjoint union of its cosets {a; : xtx~1} modulo Ca{t) and that 5
is the disjoint union of the conjugacy classes ta of the t in T, one can argue that

t € T

(3)

«€S

= 2 7r.((a,a)).
«€SnCG((a,a))

Call this last sum Ra,*'- what we have to prove is that Ra>K = / ( (a ,a)) .
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STEP 2. Given any decomposition of n as disjoint union

(4) n = diU. . .Udr o

of nonempty subsets, consider the subgroup of G consisting of all (a, a) in G such that
a(d{) = d< for all i. This is the direct product of the subgroups Gi defined by

G; = {(a, a) £ G : supp a C d,-, a C d,},

and of course restriction to d< gives an isomorphism Gi = W(i?|d;|). To each g in G,

there is a unique decomposition (4) such that

(i) g€ Gi X ...xGm : say, g = f]9i with gi 6 d;
(ii) for each i, the cycles of gi in d; all have the same length and sign;

(iii) if i ^ j , the cycles of gi in dj differ from the cycles of gj in Aj either in
length or in sign (or in both).

It is easy to check case by case that the cycles of the square of a signed cyclic
permutation all have the same length and the same sign; hence

With g = (a , a) the set a \ supp a considered in (1) is either empty or one of the
d< here (the union of the negative orbits of length one); as we saw there, it is setwise
invariant under C c ( j ) . Similiarly each d; is setwise invariant; so

CG(<7) = C G l (<K) x . . . x CGm(<7m).

It follows that SnCG(g) = {Ylsi • s> € siGi) n cG{(gi)}- Of course if gt is written
as (ai,a.i) then a; U suppa; C djj and if a = Y13< with a — (/3,b) and Si — (/3j,bj)
then supp/?,- = (supp/?) fl d,- and hi \ supp/?j = (b \ supp/?) D d<: thus it is is easy to
see that n.(gi) — TT.; (</,•) and so

Consequently,

where the ranges of s and s< are 5 ("1 Co(g) and Si fl Co^gi), respectively. It remains
to note that the restriction of ir,i to Ccj(jj) is the same as the linear character of this
subgroup defined with reference to Si when G< is veiwed as a Weyl group of rank |d<|
in its own right. In veiw of (3), (5) and (6), this means that it suffices to prove (2) for
the (a , a) whose cycles are all the same length and sign.
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STEP 3. Since both sides of (2) are characters and hence constant on conjugacy classes
it is sufficient to prove (2) for representatives of conjugacy classes. Combining this with
Step 2 it then follows that we only have to verify (2) for the (a , a) in G with

« = (!,••• , r ) ( r + l , . . . , 2 r ) . . . ( ( i - l ) r + l , . . . ,kr)

a = 0 or { l , r + l , . . . ,(Jfe - l ) r + 1}

where kr = n.

STEP 4. If ( a , a ) in G is of form (7) and is of odd order then r is odd and a = 0,
thus 7r,((a,a)) = 1 for all a in SO CG((a,a)). Hence Ra^ = \S fl C G ( ( a , a ) ) | . But
if g is any element of odd order, 2q — 1 say, in any group, there is a bijection (namely
h I—> gqh) from the set of square roots of g to the set of self-inverse elements which
commute with g. This verifies (2) for this case. ,.\

STEP 5. Let X((a,a)) be the set of those (/3,b) in 5nCc( (a ,a ) ) which act fixed
point free on the set of orbits of a. The next point to establish is that if (a,a) in G
is of form (7) and is of even order, then

(8) JEQ,a = |X((a,a))|.

First consider when k, the number of orbits of a, equals 1. Calculating /2a>a will
be done distinguishing three cases; in each case, (/?, b) ranges over 5 fl Cc((a, a)).

(i) Let n be odd and a = {1}. As 0 is self-inverse, |supp/?| is even, so supp/3 is a
proper subset of n. As (a,a) and (/3,b) commute, supp/3 is invariant under a: since
a is transitive on n, this is impossible unless supp/9 = 0, so /3 = 1. The equation

b = a(b)A{l}

then has two solutions, namely b = 0 and b = n. Thus

(ii) Let n be even and a = 0. The self-inverse elements of Sn which commute
with ( 1 , . . . ,n) are 1 and (l,n/2 + l)(2,n/2 + 2). . .(n/2,n). The equation

/?(0) A b = a(b) A 0

has the same two solutions for both values of /?, namely b — 0 and b = n. Thus

i?a,n = 2(sign a J. 0 + sign a | n) = 0
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since n is even.

(iii) Let n be even and a = {1}. As in case (ii) we have that /? is either 1 or
( l , n / 2 + l ) . . . ( n / 2 , n ) . If /3 = 1 then the equation

/?({l})Ab = a (b)A{l}

has two solutions, namely b = 0 and b = n. However if 0 = (l,n/2 + 1) . . . (n/2,n)
then that equation has no solutions. Thus

"! = 0.

Now consider the general case with k ^ 1.

Let d i be an orbit of a; set c^ = n \ d j , and

Then (a , a) is in G\ x G2 with, say, (a, a) — gig2 where g, £ G{. Now

5 n C G ( ( a , a ) ) n(G1xG2) = {s1s2:si<E S(G{) n CG,(<7,) }.

So by (6)

where s and a< range over S n C c ^ a , a))n(Gi x G2) and S(Gi)f]Cai(gi), respectively.
But by the argument we used in the case k = 1,

Repeating this for each orbit of a, we get that

(9) Ra,a=

The claim then follows by considering the following two cases.

(i) Let k be odd. Then Ra<a = 0 by (9), because no element of 5nCc;((a, a))
can act fixed point free on the set of orbits of a .

(ii) Let k be even and let s be an element of X((a,a)) . Then suppa = n
and a \ supp a = 0. So

7r,((a,a)) = sign a

= 1

since k is even. Thus, by (9), the claim (8) follows.
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STEP 6. Let ( a , a) in G have even order and be of form (7). The final step is to show

that the right hand side of (8) equals / ( ( a , a ) ) .

If a has an odd number of orbits then (a, a) has no square roots and X((a, a)) is

the empty set, so we are done.

Let a have an even number of orbits. There are two cases to consider.

(i) Let a = 0. The square roots of (a, a) are the (7,0) with ~f2 = a and c a union

of orbits of 7 . Given a square root 7 of a in Sn, we define a permutation /? on n as

follows. Each element x of n can be written unambiguously in the form 7*(j) where

0 ^ i < 2r and j is the smallest element of the orbit of 7 containing x. Using this we

set
f 7*+ 1(i) if * is even,

,_, . . . . '
{ 7 U) if * is odd.

It is easy to see that /? is a self-inverse element of Cs n (a) and is fixed point free on
the set of orbits of a. Moreover, if (7,0) is a square root of ( a , a ) in G, then (/3,c) is
in X((a,a)), and (7,0) 1—> (/3,c) is a bijection between the relevant sets.

(ii) Let a = {1, r + 1 , . . . , (k — l)r + 1 } . If now 7 is a square root of a in 5 n , then
each orbit d of 7 is the union of two orbits of a , so in particular d n a is a doubleton.
It is not hard to see that an element (7,0) of G is a square root of (a, a) if and only
if 72 = a and for each orbit d of 7 the following conditions hold: the intersection
d D a D 7 " 1 (a) is a singleton, and d flc is either this singleton or its complement in d.
When d D a R 7~1(a) is a singleton, call its one element J/<J .

Given a square root 7 of a in Sn , we define a permutation /3 on n as in (i). Given
a square root (7, c) of (a, a) in G, we define a subset b of n as follows. For each orbit
d of 7 , with j/a defined as above, and z = 7(yd),

f {!/d,2/d + 2 ,2 /d+4 , . . . ,z ,z + 2,z + 4 , . . . } if c l~l u = {yd},
b f l u = <

{ {yd + l,!/d + 3,j/d + 5 , . . . ,z + l,z + 3,z + 5,...} otherwise.

Now (0,h) is in A"((a,a)), and (7,0) i-» (/3,b) is a bijection between the relevant sets.

This completes the proof. D
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