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1. Introduction. Semilocal and related classes of group rings have been investigated
by many authors (cf. [10]). In particular, the following results have been obtained.

THEOREM A[4,10]. Let K be a field and G a group.
(i) If ch K = 0, then K[G] is semilocal if and only if G is finite.
(ii) // chK = p>0 and G is locally finite, then K[G] is semilocal if and only if G

contains a p-subgroup of finite index.

In the case of semigroup rings some stronger conditions have been studied. Munn
examined the semisimple artinian situation [6]. Zelmanov showed that if K[G] is artinian
then G must be finite [11].

The purpose of the present paper is to characterize semilocal semigroup rings K[G]
be means of the properties of the semigroup G. It is done in the cases listed in Theorem
A.

Fundamental definitions and properties of semigroups and group rings may be found
in [1, 10]. In what follows K will be a field and G a semigroup. If G contains a unity then
we shall denote by G, the subgroup of invertible elements in G and put Go= G\Gt. If G
has no unity, then Go = G. Let us notice that if G contains a unity and K[G] is semilocal,
then K[G] is von Neumann finite [2] and so Go is an ideal in G. The set of idempotents of
G will be denoted by E(G). If A is a ring /(A) will denote the Jacobson radical of A. For
a semilocal ring A we use nA for the length of A-module AU(A).

The starting point for our considerations is the following result.

THEOREM B [4,9]. Assume that K[G] is semilocal. Then
(i) G is torsion,
(ii) G is locally finite if ch K = 0.

2. Some necessary conditions. If the assumptions of Theorem A hold, then the
K-algebra K[G] is finite dimensional modulo J(K[G]). We will prove the same in the
semigroup case.

THEOREM 1. Assume that K[G] is semilocal. Then K[G]U(K[GJ) is finite dimensional
over K if either of the following holds:

(i) chK = 0,
(ii) G is locally finite.

Proof. We will proceed by induction on the length nK[G] of the Jf[G]-module
K[G]/J(K[_G]). If nK[G]=l then K[G] is local and K[G]/J(K[G]) = K. Assume that
N> 1 is such that the assertion holds for K[G] with n K ro] < ^- Let us consider two cases.

Case I. G contains a unity. Let M be a maximal ideal in K[G]. If M => K[GQ], then
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K[G]/M is a simple image of the algebra K[G]/K[G0]~ K[G,] and thus it is of finite
dimension over K by Theorem A. If Mj>K[Gol then K[G]IM=*K[GO]I(MC\K[GO'J).
Moreover ticrc,,] <nKrc:i since the elements of K[Go]/J(K[Go]) cannot be invertible in
K[G]//(K[G]). Thus, by the induction hypothesis, K[G]/M is also of finite dimension
over K, which completes the proof in this case.

Case II. G has no unity. Let M be a maximal ideal in K[G]. Then there exists
eeE(G) such that e£M. (Suppose not. Then G would be nil modulo M by Theorem B
and hence nilpotent modulo M since K[G]/M is artinian [2, 17.19]. This is impossible
while M is a prime ideal and G is irreducible in K[G]IM.) It is well known that
nK[eCe]̂ "K[G> Now, it follows from Case I that K[eGe] is finite dimensional modulo its
radical. Thus, by the choice of e, K[G]/M is finite dimensional. Since M was an arbitrary
maximal ideal in K[G], then the dimension of K[G]jJ(K[G]) over K is also finite.

Now we are in a position to reduce the case of semilocal semigroup algebras with
arbitrary coefficients to the case where the coefficients are in a field.

COROLLARY 1. Let A be a K-algebra. Assume that G is locally finite. Then A[G] is
semilocal if and only if so are the algebras A and K[G].

Proof. Since A[G] = A<8>KK[G], then the assertion follows from Theorem 1 and [3,
Theorem 2.3].

We are now going to establish some connections between the characteristic zero case
and the cases of positive characteristics.

LEMMA 1. Assume that G is locally finite. Let a , , . . . , ak e Z [ G ] be Q-linearly depen-
dent modulo J (Q[G])nZ[G] . If p is a prime number and af is the image of a, under the
natural epimorphism Z [ G ] ^ F P [ G ] , then ax,...,ak are Fp-linearly dependent modulo
J(FP[G]).

k

Proof. We may assume that b = £ nfi, e J (Q[G] ) for some integers nu ... ,nk, not all
i = l k

divisible by p. Since J(Q[G]) is nil, then be/(Q[G])nZ[G]<= J(Z[G]). Thus b = £ nA e
J(FP[G]) and there exists i such that n^O. '" '

For an arbitrary field K let us introduce a relation ~K putting g~K/i if and only if
g-he J(K[G]) for g, h e G. Some interesting properties of this congruence are contained
in the following result.

LEMMA 2. Assume K[G] is semilocal. Then
(i) ~K is identical with ~Kn for the prime subfield KQ in K and

(ii) in the case when K = Q we have
(a) if g~Kh then g~Fph for any prime p and

(b) there exist prime numbers p , , . . . , pn such that ~K = fl ~F,,-
i — 1
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Proof, (i) follows from the fact that J(K[G]) = K®KtJ(K0[G]) for semilocal K[G]—
see [8].

(ii)(a) Since G is locally finite by Theorem B, (ii)(a) follows as in Lemma 1.
(ii)(b) Assume that g-h^/(Q[G]) for some g, heG. Then there exists a=Y1nigie

Z[G] such that b = (g - h)a is not nilpotent. Let G' be the subsemigroup generated by the
support of b. Then |G'|<<». Now for p>(2£ Ind)10'1 we_get b1 GV0 for the image b of b
under the natural epimorphism Z[G]—»FP[G]. Thus b = (g-h)a is not nilpotent since
nilpotents in FP[G'] have degrees at most \G'\, and so g — h<£ J(FP[G]). Hence ~ Q =

n ~F,,-
For any prime p let us consider the commuting diagram given by the natural

epimorphisms.

Q[G] ^ ^ Q[G/~FJ

I" -1
Q[G]/J(Q[G]) - ^ Q[G/~FJ/J(Q[G/~FJ)

If g-heJ(Q[GI~FJ) for some g, heG/~F p, then by (a) g -he / (F p [G/~ F J ) , which
implies g = h. Hence the restriction of TTP to G/~Fp is a semigroup isomorphism. Since
Q[G] is semilocal, there exist finitely many different kernels of homorphisms of the form
<f>pTr. However, if ~Fp, ~ F are distinct congruences, then the kernels of the homomorph-
isms 1̂ ,77-, ifiqTT are different. In fact, if for example there exist x, y e G such that x ~Fr,y,
x-/-Fy, then x-y eker TTP<PP = ker t/<p7r and x-y<£ker 7rq<pq = ker tpqir. Hence there exist

n

finitely many congruences of the form ~ F in G and ~ Q = p| ~ F for some primes
" i = i P i

P i , • • • , ? „ •

THEOREM 2. Assume chK = 0 or G is locally finite. If K[G] is semilocal, then the
semigroup G/~K is finite.

Proof. Let fC() be the prime subfield in K. Then K0[G] is semilocal (cf. [3]) and so
/C,,[G]//(Ko[G]) is finite dimensional over K{) by Theorem 1. If chK = p>0, then
GI~K = G/~Fp is finite since it is embeddable into the finite ring FP[G]/J(FP[G]). In the
case of characteristic zero it follows from Lemma 2 that

for some primes p,. Now, by Theorem 1, Theorem B and Lemma 1, FP[G]//(FP[G]) is
finite dimensional over Fp and, as above, G/~F|i is finite. Thus G/~K is also finite.

Since we have natural epimorphisms K[G]—» JC[G/~K]-» K[G]/J(K[G]), the above
result shows that K[G]//(K[G]) is a homomorphic image of a semigroup ring of a finite
semigroup. Thus Theorem 2 may be regarded as a strengthened version of Theorem 1.

Let us notice that the only reason to assume that G is locally finite in the case of
positive characteristic was to meet the assumptions under which Theorem A could be
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used. Thus the assertion of Theorem 2 also holds for arbitrary semigroups if K is not
algebraic over its prime subfield (cf. [8, Theorem 3]).

Theorem 2 may be also obtained using Burnside's theorem on irreducible semigroups
of matrices (cf. [2]). This may be done through Corollary 1, Theorem 1 and some
considerations which are quite different from those presented here.

3. Main theorems. Before stating the main theorems we will prove the following
lemma.

LEMMA 3. Let K be an infinite field and A a K-algebra. Assume there exists n 5= 1 such
that for any aeA there is a subalgebra Ba in A with aeBa and nBa =£n. Then A is
semilocal and nA =£ n.

Proof. It is easy to see that we may assume that A contains a unity 1 and 1 e Ba for
any aeA. Then aA{a) = {X.eK\ \-a is not invertible in A}<^{keK\X.-a is not
invertible in Ba} = aB(a). Since |<rBo(a)|;SnBii =£n (cf. [7]), |o-A(a)|«=n. It follows from [7,
Theorem 3], that A is semilocal and nA =s n.

The above lemma does not hold in the case of a finite field K. For example put
oo

A = © Kh Kt = K for i = 1, 2 , . . . . However, it may be checked that the assertion holds if
i = l

we assume that for any finite set of elements au . .., a, e A there exists a subalgebra B in
A with a b . . . , a , e B and nB =£ n.

Now we are ready to prove our main result for fields of characteristic zero.

THEOREM 3. Let ch K = 0. Then K[G] is semilocal if and only if
(i) G is locally finite and there exists Ns^l such that G has no subgroup of order

exceeding N, and
s

(ii) E(G)= U £•• for some disjoint subsemigroups E{ with the property that if e,feEt
i = l

and geG then ege is invertible in eGe if and only if so are the elements efge and egfe—and
then ege = efge = egfe.

Proof. In view of Corollary 1 we may assume that K is algebraically closed.

Necessity. G is locally finite by Theorem B. If H<=G is a subgroup, then K[H]=*
K[H]I(K[H]DJ(K[G]))^K[G]U(K[G]) since K[H]HJ(K[G])<= J(K[H]) = 0 by [10].
Thus |H|ssdimK K[G]/J(K[G]) and by Theorem 1 it is enough to put N = dimK K[G]I
J(K[G]).

From Theorem 2 it follows that E(GI~K)<^G1~K is finite. Let E , , . . . , Es be all the
classes of the congruence ~K in E(G). If g e G and e,feE{ for some i, then e-fe
J(K[G]) and so ege-efgee J(K[G])C\K[eGe] = J{K[eGe]). Assume that ege is invertible
in eGe. Then (ege)k = e for some k3=l and (e-(efge)k)e J(K[eGe]). Since J(K[eGe]) is
nil ideal, (e - (efge)k)n = 0 for some n 3= 1 and there exists r ^ 1 such that {efge)' = e. Thus
ege - efge e J(K[eGe]) n K[(eGe){] c /(K[(eGe),]) = 0 and ege = efge. Similarly ege = egfe.
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If we assume that egfe is invertible in eGe, then, as above, ege is also invertible in eGe
and ege = efge = egfe. In particular, efe = e and so the sets Et are semigroups.

Sufficiency. Let us notice that the assumptions on G are inherited by any subsemi-
group H. The number of nonempty sets H D E, will be thus denoted by sH. We will prove
that there exists a common bound (dependent on N and s) on dimensions of /C-algebras
K[H]/J(K[H]) for finitely generated, and hence finite, subsemigroups H in G. Then the
assertion will follow from Lemma 3. It will be done in two steps.

Step I. There exists a bound on the number aH of maximal ideals of K[H]. Let us
notice first that if e, fe Et C\H for some i, then these elements belong to the same ideals in
K[H]. Moreover, for any maximal ideal M in K[H] there exists eeE(H) with e£M (see
the proof of Theorem 1). Thus we easily get:

s

2, ae.He. s= aH, where e{ is a representative from Et. (*)
i = l

Assume sH = 1. Then (eHe)0 = 0 or (eHe)0 is a nil ideal in eHe if eHe is a semigroup
with zero. Since H is finite, then o> = {£ Ajgf € K[(eHe)0] \ £ Af = 0} is nilpotent and so
w<=J(K[eHe]). Now |(eHe),|«7V and hence dimKK[eHe~\U(K[eHe])^N+l. Thus
/C[eHe] has at most N + l maximal ideals which implies aH^aeHe =£N+1.

If H is an arbitrary finite subsemigroup in G, then

aeHe forany eeE(H). (* *)

Moreover, it is easily seen that Et D (eHe)0 = 0 if e e E;. Hence the number s(eHe),, of
nonempty sets Ef n(eHe)0 is less than sH. Thus, in view of (*) and (* *), the proof may be
completed by induction.

Step II. There exists a bound on dimensions of simple images of K[H]. Let A be a
simple ring and let <p : K[H]~* A be an epimorphism. Since K is algebraically closed and
|W| <°o, A — Mm(K) for some m s= 1. We may assume that there is no finite subsemigroup
H' in G with sH'<sH and such that Mm(K) is an image of K[H'].

Let i e { l , . . . , s}. We will first show that <p(e) = <p(/) for e,feEt. It may be assumed

that <p(e) = \ I where / is the unity of M,r<p(e)(K"). Then <p(/)= I for some
L0 0J LBf BfAfJ

rectangular matrices Af, Bf since efe = e and fef = f.
Let F be the ideal in H generated by (eHe)0. Then e(H/F)e = (e(H/F)e)1 U{d} where

6 is the zero element of e(HIF)e. Since cp(K[F])<<p(K[H]) = Mm(K) and sF<sH, we have
(p(K[F]) = 0. Thus <p(K[H]) = cp(K[H/F]) for a homomorphism <p such that <p = <pi}i and
ip : K[H] —* K[H/F] is a natural homomorphism. Hence H may be replaced by H/F in
our considerations and so we may assume that the zero is the only non-invertible element
in eHe. Now the assumption (ii) means that ege = egfe = efge for any geH.

If g e H then <p(g) may be written in the form 8 8 , where ugeMUvM(K)D
LBe Q J

<p(eHe). The condition cp(ege) = <p(efge) implies MR = UfK = uR + AfBg, and so AyBK=0.
Since <p(H) is an irreducible subsemigroup in Mm(K), Af = 0. Similarly Bf = 0, which yields
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Thus we have shown that <p(H) has at most s idempotents. Since cp(e)<p(H)(p(e) =
<p(eHe)c<p((eHe),)U{0}, it is enough to prove the following lemma in order to establish
Step II.

LEMMA 4. Let H<^Mm(K) be a torsion irreducible semigroup. If H has at most s
nonzero idempotents and \(eHe)l\^N for some 0 / e e £ ( H ) , then m^N(2s + \).

Proof. As above, we may assume that e = , H contains the zero matrix,

eHe = (eHe)t U{0}, and any element g e H has a representation of the form R R for
LBR Q J

some invertible or zero matrix uR e M,re(K).

[ u A 1" [I u~*A "1R E = n * K is an idempotent in H for some n 3= 1.

Thus, by the hypothesis, we have at most Ns possibilities for such products eg. Since the
set {AR}ReH generates a K-space of dimension (rn — t r e ) t r e , then we get at least (m —

tr e) tr e - Ns nonzero elements of the form R in H. Now Mm(/C) has no nonzero nil

ideals and so any left ideal in H contains a non-nilpotent element.

Since H is torsion, for any eg = R e f/\{0} there exists heH such that heg is a

nonzero idempotent. Assume that h\ R = h' \ R is non-zero idempotent for

some h,h', g,g'eH with ug = ug. = 0. Then uhAR = uh.As.. and BhAR = BhAR.. If u , ,^0,
then AR= u^uh'AR'. If u h = 0 , then uh. = 0 and uRhAs = ARBhAf, = ARBh'AR, = uRh'AR'.

Since (BhAR)2 = BhAR ^ 0, because h\ R M 0, we have uRh ^ 0. Thus Ag = u~,] uRh'AR..

Hence in both cases Ag = uAg. for some ve(eHe)u and so the same idempotent as from

[0 A, lR may be obtained by left multiplication from at most N different elements

8 . It follows that ( ( m - t r e)tr e - / V s ) / N « s and hence m=£(2s + l)iV since t r e ^

N. This completes the proof of Step II and so the proof of the theorem.
By slight modifications of the above reasoning one can easily obtain the following

result for positive characteristics.

THEOREM 4. Let ch K = p > 0 and let G be locally finite. Then K[G] is semilocal if and
only if

(i) there exists Ns=l such that any subgroup in G has a p-subgroup of index not
exceeding N, and

s

(ii) E(G)= U Et for disjoint sets Et with the property that if e , / e E , and geG, then
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ege is invertible in eGe if and only if so are efge and egfe—and then ege, efge and egfe are
in the same coset of some normal p-subgroup in (eGe)t.

4. Special cases. Let us mention some particular cases in which the obtained descrip-
tion simplifies considerably. As an easy consequence of Theorems 3 and 4 we obtain the
following result.

COROLLARY 2. Let G be commutative. Then K[G] is semilocal if and only if G is
torsion with E(G) finite and

(i) G has no infinite subgroups if ch K = 0, and
(ii) any subgroup in G contains a p-subgroup of finite index if ch K = p>0.

In [5] the problem of characterising the local semigroup algebras was raised; even in
the case of group algebras the complete answer is not known. Here we can prove the
following result.

THEOREM 5.

(i) / / ch K = 0, then K[G] is local if and only if G is locally finite and eGe ={e} for
any e e E(G).

(ii) Assume G is locally finite and ch K = p > 0. Then K[G] is local if and only if eGe
is a p-group for any e e E(G).

Proof. Assume that K[G] is local. Then any e e E(G) is a minimal idempotent and so
eGe is a group since G is torsion. Thus the necessity follows as in Theorems 3 and 4.

In view of Lemma 3, to prove sufficiency it is enough to show that K[H] is local for
any finite subsemigroup H in G. We may choose a K-basis for the augmentation ideal in
K[H] consisting of elements of the forms e - g and e -f where e,feE(H) and gk =e for
some k 3= 1. Thus it is enough to prove that all such elements are nilpotent. For e and g as
above we have (e - g)fc e K[eHe~\. Since K[eHe] is local (by [10, Lemma 8.1.17]) and
locally finite, (e — g)k is nilpotent. Thus e — g is also nilpotent. For e, / e E[H] put x = efe
and y — fef. It may be easily checked that ( e - / ) 2 " + 1 =(e — x)n — (f—y)" for any nSsl . Now
xr = e and ys = / for some r, s 3= 1 and hence, as above, e — f is nilpotent. This completes
the proof.

ADDED IN PROOF. Recently, we have realized that the theory of completely 0-simple
semigroups may be used to simplify the proof of the sufficiency in Theorems 3 and 4.
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