GREEN'S FUNCTIONS OF FREE PRODUCTS OF OPERATORS, WITH APPLICATIONS TO GRAPH SPECTRA AND TO RANDOM-WALKS

EUGENE GUTKIN¹

Abstract. We systematically develop an algebraic technique of free products of operators and their Green's functions. We apply this framework to obtain, in a simple and uniform fashion, several results on the spectra of graph Laplaceans and random walks.

Introduction

Let X, Y be discrete groups, and let X * Y be their free product. Let A, B be bounded operators on $\ell^2(X), \ell^2(Y)$ respectively. Their free product, A * B, is an operator on $\ell^2(X * Y)$. The pairing $A, B \mapsto A * B$ is a natural operation. If A and B are convolution operators, then A * B is a convolution operator. Let S and T be generating sets of the groups X and Y, and let A and B be the corresponding incidence operators. Then A * B is the incidence operator on X * Y corresponding to the generating set $S \cup T$.

The Green's functions of A, B and A*B satisfy a system of algebraic equations. If A and B are selfadjoint convolution operators, the system yields considerable information about the spectrum of A*B [7]. For instance, A*B has no singular continuous spectrum. If $\sigma_p(A)$ and $\sigma_p(B)$ are the point spectra of A and B, then $\sigma_p(A*B) \subset \sigma_p(A) + \sigma_p(B)$. The (absolutely) continuous spectrum of A*B is a union of a finite number of intervals.

The present work is rooted in the observation that the group structure is largely irrelevant for these results. Let X and Y be arbitrary countable sets, each with a marked element, the root. We say that X, Y are rooted sets. Their free product, X * Y, is a rooted set, as well. Let A and B be operators on $\ell^2(X)$ and $\ell^2(Y)$, respectively. We define the free product operator, A * B, on $\ell^2(X * Y)$. If X, Y are groups, and the roots are the

Received July 22, 1996.

¹Partially supported by NSF Grants DMS-9013220, DMS-9400295.

respective identity elements, then X * Y is the free product of groups, and A * B coincides with the free product operator in the group sense.

Our construction extends to an arbitrary number of factors, yielding the free products $\mathcal{A} = *_{i=1}^n A_i$. Let $G_i, 1 \leq i \leq n$, and \mathcal{G} be the Green's functions of $A_i, 1 \leq i \leq n$, and \mathcal{A} , respectively. We obtain a system of n+1 algebraic equations on G_i , and \mathcal{G} (see Theorem 1 and Corollaries 1–3, especially Corollary 3). This system is a source of information about \mathcal{G} . If the operators A_i are selfadjoint and *invariant* with respect to groups Γ_i , transitively acting on $X_i, 1 \leq i \leq n$, then \mathcal{G} determines the spectrum of \mathcal{A} .

The system of equations of Corollary 3 can be explicitly solved only in very special cases. In Section 3 we investigate two such cases. In Section 3.1 we consider the free products A*B where each of the operators A,B has two distinct eigenvalues (with arbitrary multiplicities). By Proposition 1, the Green's function of A*B is single-valued on a double covering of \mathbb{C} , given by $\mathcal{R} = \{(t,w): w^2 = R(t)\}$, where R(t) is a quartic polynomial. In particular, \mathcal{R} is an elliptic curve. In Section 3.2 we obtain the Green's function of any $*^n A$, if A has two eigenvalues (Proposition 5).

Explicit expressions for the Green's functions yield the spectra of the corresponding free product operators (Proposition 2, Theorems 2 and 3). The absolutely continuous spectrum consists of one or two intervals, whose endpoints are algebraic functions of the parameters involved (Theorems 2 and 3). The point spectrum is more involved. We completely determine the point spectra of $*^nA$ (Theorem 3), and get a good bound on the point spectra of A*B (Proposition 2). We will report more comprehensively on this subject elsewhere [5].

There has been much interest in the spectra of graph Laplaceans, and, more generally, in the random walks on graphs [12]. In particular, there is considerable literature on random walks on free group products, and the spectra of related graphs (see the references in [12]). Several seemingly unrelated techniques have been used to calculate explicitly these spectra in special cases [1, 2, 3, 6, 7, 8, 10, 11].

The approach developed here allows to obtain these results in a simple and uniform way. Let K_n be the complete graph on n + 1 vertices. In Section 4.1 we calculate the spectra of $K_m * K_n$ and $*^n K_r$ for arbitrary m, n, r (Theorems 4 and 5). In Section 4.2 we determine the spectra of the product random walks on $K_m * K_n$, and of the simple random walks on $*^n K_r$, for arbitrary m, n, r (Theorems 6 and 7). We use the results of

Section 3, and exploit the elementary fact that the spectrum of a complete graph consists of two numbers.

We thank B. Simon for fruitful discussions and for providing the reference [9]. We also thank the anonimous referee for asking the right questions.

§1. Preliminaries

A rooted set, (X, e), is a countable (at most) set with a distinguished element, the root. We denote by $\ell^2(X)$ the Hilbert space of square summable functions on X. There is a natural correspondence between operators and kernels:

$$(Af)(x) \quad = \quad \sum_{y \in X} A(x,y) f(y).$$

If $A(x,y) \neq 0$, we write $x \rightsquigarrow y$. If $x \rightsquigarrow y$ and $y \rightsquigarrow x$, we say that x,y are neighbors, and write $x \sim y$.

CONDITION 1. i) For all $x \in X$, we have $|\{y : x \sim y\}| = q(x) \le q(A) = q < \infty$; ii) $\max_{x,y} |A(x,y)| = p(A) = p < \infty$.

EXAMPLE. The set X is a regular graph of degree q (i.e., q neighbors of a vertex), and A is the *incidence operator*: A(x,y) = A(y,x) = 1 if x and y are connected by an edge, and A(x,y) = 0 otherwise.

In what follows we assume Condition 1 (unless stated otherwise). Then A is bounded, $||A|| \leq pq$ (by Schwarz' inequality). Set

$$A^{n}(x,y) = \sum_{v_{1},\dots,v_{n-1}} A(x,v_{n-1}) \cdots A(v_{1},y), \ n > 0, \ A^{0}(x,y) = \delta_{x,y},$$

and define

(1)
$$F_{x,y}(t) = \sum_{n \ge 0} A^n(x,y)t^n.$$

By Condition 1, the series converges for sufficiently small |t|, and $F_{x,y}(t) = (1 - tA)^{-1}(x, y)$. We set $F_x(t) = F_{x,x}(t)$, and call it the return function for x. The first return function, $f_x(t)$, is defined by

(2)
$$f_x(t) = \sum_{n \ge 1} t^n \left(\sum_{v_i \ne x} A(x, v_1) \cdots A(v_{n-1}, x) \right),$$

and we have

(3)
$$F_x(t) = (1 - f_x(t))^{-1}.$$

We denote by $G_{x,y}(t)$ the kernel of the resolvent, $R(t) = (t - A)^{-1}$. For |t| sufficiently large

(4)
$$G_{x,y}(t) = \frac{1}{t} F_{x,y}(t^{-1}).$$

We set $G_x(t) = G_{x,x}(t)$. In what follows we assume that $A(x,y) = A(y,x) \in \mathbf{R}$. Then A is a bounded selfadjoint operator. The formulas above provide a connection between the return functions and the *spectrum* of A.

EXAMPLE. For $|X| = n < \infty$, let $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of A, and let $\phi_i(x)$ be the corresponding orthonormal (real) eigenfunctions. Then

(5)
$$G_{x,y}(t) = \sum_{i} \frac{\phi_i(x)\phi_i(y)}{t - \lambda_i}$$

is rational, with the simple poles at the eigenvalues of A.

If A is the incidence operator of a graph X, the return functions have a geometric interpretation: $A^n(x,y)$ is the number of walks on X of length n starting at y and ending at x. Thus $F_x(t)$ is the counting function for the closed walks starting at x, and $f_x(t)$ counts the closed walks that do not come back prematurely.

DEFINITION 1. Let A be an operator on $\ell^2(X)$. We say that A is invariant if there is a group, Γ , acting transitively on X, and A(gx, gy) = A(x, y) for $g \in \Gamma$. If X is a graph, and its incidence operator is invariant, we say that the graph is symmetric.

If A is invariant, then $F_x(t)$, $f_x(t)$, and $G_x(t)$ do not depend on x. Let $|X| < \infty$, and let A be an invariant operator. In the preceding example, for any x

$$G_x(t) = \sum_i \frac{\phi_i^2(x)}{t - \lambda_i}.$$

Denote by Λ the set of eigenvalues of A, and let $m(\lambda) \geq 1$ be the multiplicity, $\sum_{\lambda} m(\lambda) = |X|$. Since $\sum_{x} \phi_{i}^{2}(x) = 1$ for any i, we have

(6)
$$G_x(t) = \frac{1}{|X|} \sum_{\lambda \in \Lambda} \frac{m(\lambda)}{t - \lambda} = G(t), \quad F_x(t) = \frac{1}{|X|} \sum_{\lambda \in \Lambda} \frac{m(\lambda)}{1 - \lambda t} = F(t).$$

Let the notation be as above. If $G_x(t)$ does not depend on $x \in X$, or if x is a distinguished element (see Section 2 below), we say that $G_x(t) = G(t)$ is the *Green's function*.

§2. Free Products of Operators and Green's Functions

Let $(X_i, e_i), 1 \leq i \leq n, n \geq 2$, be arbitrary rooted sets. Identifying the roots in the union, $\cup_i X_i$, we obtain the bouquet, $(\#_i X_i, e)$, of the sets X_i , where the root e is the image of the points e_i . The notation $(\#_{i \in I} X_i, e)$, where $I \subset \{1, \ldots, n\}$, is self-explanatory. We will now define the free product, $*_{i=1}^n(X_i, e_i) = (\mathcal{X}, e)$.

Set $\tilde{X}_i = X_i \setminus \{e_i\}$, and $\mathcal{X}_1 = \#_{i=1}^n X_i$. Then $\mathcal{X}_1 = \{e\} \cup \tilde{X}_1 \cup \cdots \cup \tilde{X}_n$, a disjoint union. Let $x \in \mathcal{X}_1$, $x \neq e$. There is a unique $i \in \{1, \ldots, N\}$, such that $x \in \tilde{X}_i$. We identify x with the root of the bouquet $\#_{j \neq i} X_j$. After having done this for all $x \in \mathcal{X}_1$, we obtain a new rooted set, \mathcal{X}_2 , where $e \in \mathcal{X}_1 \subset \mathcal{X}_2$. Continuing this process indefinitely, we obtain the increasing tower $\{e\} \subset \mathcal{X}_1 \subset \mathcal{X}_2 \subset \cdots \subset \mathcal{X}_m \subset \cdots$. The union, $\mathcal{X} = \bigcup_{k=0}^{\infty} \mathcal{X}_k$, is the free product of $X_i, 1 \leq i \leq n$. For any point $(x) \in \mathcal{X}$, $(x) \neq e$, there is a unique sequence, i_1, \ldots, i_m of indices $i_k \in \{1, \ldots, n\}$, $i_k \neq i_{k-1}$ for all k, and for each i_k there is a unique $x_{i_k} \in \tilde{X}_{i_k}$ so that (x) is coded by the sequence $(x_{i_1}, \ldots, x_{i_m})$. The correspondence between \mathcal{X} and the set of such sequences is one-to-one. We think of elements $(x) \in \mathcal{X}$ as words, and of m = |(x)| as the "length" of (x). Then $\mathcal{X}_m = \{(x) : |(x)| \leq m\}$, and |(x)| = 0 if and only if (x) = e.

The construction of $*_{i=1}^n X_i$ does require the sets X_i to be rooted, but nothing else. If each X_i is the vertex set of a graph with a distinguished vertex, e_i , then $*_{i=1}^n X_i$ is the free product of the graphs X_i , $1 \leq i \leq n$. If each X_i is a group, and $e_i \in X_i$ is the identity, then $*_{i=1}^n X_i$ is the free product of the groups X_i , $1 \leq i \leq n$, and e is the identity element.

Let the notation be as above, and let $A_i(x,y)$ be operators on $\ell^2(X_i)$, $1 \le i \le n$. We will define operators \mathcal{A}_i on $\ell^2(\mathcal{X})$ via their kernels $\mathcal{A}_i((x),(y))$. Let, for simplicity of notation, i = 1. Let $(x) = x_{i_1} \cdots x_{i_k}$ and $(y) = y_{j_1} \cdots y_{j_l}$ be in \mathcal{X} . If k = 0 then (x) = e, and we set $\mathcal{A}_1(e,(y)) = A_1(e_1,y_1)$, if l = 1 and $j_1 = 1$, and $\mathcal{A}_1(e,(y)) = 0$ otherwise. For k > 0 we set $\mathcal{A}_1((x),(y)) = A_1(x_{i_k},y_{j_k})$, if l = k, $x_{i_1} \cdots x_{i_{k-1}} = y_{j_1} \cdots y_{j_{k-1}}$, and $i_k = j_k = 1$. Otherwise $\mathcal{A}_1((x),(y)) = 0$. If all of A_i satisfy Condition 1, then \mathcal{A}_i satisfy it as well, and $p(\mathcal{A}_i) = p(A_i), q(\mathcal{A}_i) = q(A_i)$.

DEFINITION 2. Let the notation be as above. The operator $\sum_{i=1}^{n} A_i$ on

 $\ell^2(*_{i=1}^n X_i)$ is the free product of the operators A_1, \ldots, A_n . We denote it by $A = *_{i=1}^n A_i$.

EXAMPLES. 1. Let $X_i, 1 \leq i \leq n$, be rooted graphs, and let A_i be the incidence operator of X_i . Then $*_{i=1}^n A_i$ is the incidence operator of the graph $*_{i=1}^n X_i$. 2. Let A_i be the transition operator for a random walk on $X_i, 1 \leq i \leq n$. Let $\mu_i \geq 0, \sum_{i=1}^n \mu_i = 1$. The operator $*_{i=1}^n \mu_i A_i$ is the transition operator for a random walk on $*_{i=1}^n X_i$.

For $i \in \{1, ..., n\}$ we denote by $\mathcal{X}^{(i)} \subset \mathcal{X}$ the set of words $(x) = x_{i_1} \cdots x_{i_k}$ such that $i_1 = i$, and, by convention, set $e \in \mathcal{X}^{(i)}$. Then $\mathcal{X}^{(i)}$ are rooted sets, and $\mathcal{X} = \#_{i=1}^n \mathcal{X}^{(i)}$. Set $\mathcal{Y}^{(i)} = \#_{j \neq i} \mathcal{X}^{(j)}$.

In what follows we consider various rooted sets. The root will always be clear from the context, and we suppress it from notation. For $1 \le i \le n$ we denote by $(f_i(z))$ $F_i(z)$, $G_i(z)$ the (first) return function and the Green's function for A_i , and by $(\phi_i(z))$ $\Phi_i(z)$ the (first) return function for A_i on $\mathcal{X}^{(i)}$. In the formula below the "hat" above a symbol means the symbol is deleted.

Theorem 1. Let the setting be as above. Then, for $1 \le i \le n$,

(7)
$$F_i\left(\frac{z}{1-\phi_1(z)-\cdots-\hat{\phi}_i-\cdots-\phi_n(z)}\right) = \frac{1-\phi_1(z)-\cdots-\hat{\phi}_i-\cdots-\phi_n(z)}{1-\sum_{k=1}^n \phi_k(z)}.$$

Proof. We will use the language of graphs in the argument, linking the vertices x, y whenever $C(x, y) \neq 0$, for a suitable kernel. Set, for simplicity of notation, i = 1, and compute the series $\phi_1(z)$. Let Γ be any loop contributing to $\phi_1(z)$. The first move of Γ is from e to some $x_1 \in X_1$. At x_1 there is a subset of \mathcal{X} , isomorphic to $\mathcal{Y}^{(1)}$, "attached" by its root to x_1 . From x_1 the "walk" goes into $\mathcal{Y}^{(1)}$, and makes a loop, β_1 , in $\mathcal{Y}^{(1)}$, which ends upon return to x_1 for the last time. After that Γ moves to another vertex, $x_2 \in X_1$. Repeating this construction, we obtain a unique decomposition:

$$\Gamma: e \to x_1, \beta_1, x_1 \to x_2, \beta_2, \dots, x_{k-1}, \beta_{k-1}, x_{k-1} \to e.$$

The points x_1, \ldots, x_{k-1} are in X_1 , and are all different from e. Thus $e \to x_1 \to \cdots \to x_{k-1} \to e$ is a first return loop, γ , in X_1 , and $\beta_1, \ldots, \beta_{k-1}$ are (rooted) closed walks in $\mathcal{Y}^{(1)}$. The contribution of Γ to $\phi_1(z)$ factorizes in

an obvious way. To write it down, we use the general notation $h(z|\alpha)$ for the contribution of α to a counting function, h(z). Denote by $(\psi_i(z)) \Psi_i(z)$ the (first) return function for the operator \mathcal{A} restricted to $\mathcal{Y}^{(i)}$. Then

$$\phi_1(z|\Gamma) = f_1(z|\gamma) \prod_{j=1}^{k-1} \Psi_1(z|\beta_j).$$

The correspondence $\Gamma = (\gamma; \beta_1, \dots, \beta_{k-1})$ is one-to-one. Fixing γ and summing up over all $\beta_1, \dots, \beta_{k-1}$, we obtain an expression for the contribution to $\phi_1(z)$ from all loops Γ corresponding to the same $\gamma = \bar{\Gamma}, |\gamma| = k > 0$:

(8)
$$\sum_{\bar{\Gamma}=\gamma} \phi_1(z|\Gamma) = f_1(z|\gamma) \Psi_1(z)^{k-1} = f_1(z\Psi_1(z)|\gamma) / \Psi_1(z).$$

Since $\mathcal{Y}^{(1)} = \#_{i \neq 1} \mathcal{X}^{(i)}$, we have $\Psi_1(z) = \left(1 - \hat{\phi}_1(z) - \phi_2(z) \cdots - \phi_n(z)\right)^{-1}$. Substituting this into eq. (8), summing up over all γ , and replacing '1' with an arbitrary i:

(9)
$$\phi_i(z)/[1 - \sum_{j \neq i} \phi_j(z)] = f_i \left(\frac{z}{1 - \phi_1(z) - \dots - \hat{\phi}_i - \dots - \phi_n(z)} \right).$$

Expressing f_i in terms of F_i , by eq. (3), we obtain the claim.

Remark. The argument above does not use all of our assumptions on X_i and A_i , only that $q_i(x)$ is finite for any $x \in X_i$.

We denote by $\mathcal{G}(z)$ and $\mathcal{F}(z)$ the Green's function and the return function for the operator \mathcal{A} on $\ell^2(\mathcal{X})$.

COROLLARY 1. (see ([7, 8] in the group case) Let the notation be as above, and set

$$s_i(w) = w(\phi_1(w^{-1}) + \dots + \hat{\phi}_i(w^{-1}) + \dots + \phi_n(w^{-1})).$$

Then, for $1 \leq i \leq n$,

$$\mathcal{G}(w) = G_i(w - s_i(w)).$$

Proof. By the proof of Theorem 1

(10)
$$\mathcal{F}(z) = (1 - \phi_1(z) - \dots - \phi_n(z))^{-1}.$$

Substituting this into eq. (7), and using eq. (4), we obtain

(11)
$$\mathcal{G}(\frac{1}{z}) = G_i \left(\frac{1 - \phi_1(z) - \dots - \hat{\phi}_i - \dots - \phi_n(z)}{z} \right).$$

With $z^{-1} = w$, this implies the claim.

Remark. Specializing Corollary 1 to the case when A_i are convolution operators on the groups X_i , and n=2, we obtain a known result ([7], Theorem 5.1). If A_i are the incidence operators of Cayley graphs (here n is arbitrary), then Corollary 1 (equivalently, Theorem 1) is also in the literature ([8], Theorem 4.9).

COROLLARY 2. Let the notation be as above, and set, for $1 \le i \le n$

(12)
$$\xi_i(z) = \frac{1 - \phi_1(z) - \dots - \hat{\phi}_i - \dots - \phi_n(z)}{z}.$$

Then eq. (7) is equivalent to the system $(1 \le i \le n)$

(13)
$$G_i(\xi_i(z)) = \frac{n-1}{\sum_{i=1}^n \xi_i(z) - z^{-1}}.$$

The Green's function of (\mathcal{X}, e) satisfies

(14)
$$\mathcal{G}(z) = \frac{n-1}{\sum_{i=1}^{n} \xi_i(z^{-1}) - z}.$$

Proof. Straightforward computation, using eq. (11).

We put Corollary 2 in a form more suitable for our applications.

COROLLARY 3. Let $(X_i, e_i), 1 \leq i \leq n$, be arbitrary rooted sets, let A_i be operators on $\ell^2(X_i)$, and let $G_i(z)$ be their Green's functions. Let $x_i = x_i(t)$ be the solutions of the system $(1 \leq i \leq n)$

(15)
$$G_i(x_i) = \frac{n-1}{\sum_{i=1}^n x_i(t) - t}.$$

Then the Green's function of the free product operator, $\mathcal{A} = *_{i=1}^{n} A_i$, is given by

(16)
$$\mathcal{G}(t) = \frac{n-1}{\sum_{i=1}^{n} x_i(t) - t}.$$

The following is known in the group case (compare with [7], Corollary 5.2).

COROLLARY 4. Let (X_i, e_i) be finite rooted sets, and let A_i be (selfadjoint) operators on $\ell^2(X_i)$, $1 \leq i \leq n$. Then the Green's function of the free product, $*_{i=1}^n A_i$, is algebraic.

Proof. The Green's functions G_i are rational, hence the solutions of the system (15) are algebraic functions. Eq. (16) implies the claim.

§3. Explicit Green's Functions and Spectra

The system (15) can be explicitly solved only in special cases. We will do this for two classes of examples. As a benefit, we will completely determine the spectra of certain free product operators.

Let G be a Green's function of a selfadjoint operator L. That is, for $t \in \mathbf{H}$, the upper half-plane, $G(t) = \langle f | (t-L)^{-1} f \rangle$, for a certain vector f. Note that our definition of the resolvent, $R(t) = (t-L)^{-1}$, agrees with the one in [4, 7], and differs by sign from the one in [9]. The spectral measure of L is determined by $\lim G(x+i\epsilon)$, as $\epsilon \to 0$. We say that a Green's function is algebraic, if its analytic continuation is an algebraic function on a Riemann surface, \mathcal{R} , which is a finite-sheeted branched covering of the Riemann sphere, $p: \mathcal{R} \to \mathbf{C}$. The following problem typically arises in this situation. Given G(t) as a function on \mathcal{R} , and $r \in \mathcal{R}$, such that $p(r) \in \mathbf{R} \subset \overline{\mathbf{H}}$, determine whether r belongs to the 'physical sheet' of \mathcal{R} . We will use a well known fact, which we formulate as a lemma, for future reference.

LEMMA 1. Let G be an algebraic Green's function, and let $p : \mathbb{R} \to \mathbf{C}$ be the corresponding branched covering. Let $t \in \mathbf{R}$ be a point, which is not in the branch locus of p, and let $r \in \mathbb{R}$ be a point above t.

- 1. If G has a pole at r, and $\operatorname{Res}_r G < 0$, then r is not in the physical sheet.
- 2. Let G(r) be finite. If $G(r) \in \mathbf{R}$ and G'(r) > 0, then r is not in the physical sheet.

3.1. Free products of two operators

Throughout this subsection we consider invariant selfadjoint operators A and B on $\ell^2(X)$ and $\ell^2(Y)$ respectively, where X and Y are countable (e. g., finite) sets. Then A*B is an invariant selfadjoint operator on $\ell^2(X*Y)$. We are interested in the Green's function and the spectrum of A*B. The

standing assumption will be that the spectrum of each of the operators A, B is pure point, with two distinct eigenvalues.

By the preceding material, the Green's functions satisfy

(17)
$$G_A(z) = \frac{u}{z-a} + \frac{v}{z-b}, \ G_B(z) = \frac{r}{z-c} + \frac{s}{z-d}$$

where a < b, c < d, and u, v, r, s > 0, see eq. (6). Set

$$g = (2u - 1)b + (2v - 1)a, h = (2r - 1)d + (2s - 1)c, S = a + b + c + d,$$

$$\Sigma = g + h, \ \Delta = g - h, \ T = (a + b)(c + d) + 2(ab + cd),$$

and define the following polynomials:

$$(18) M(t) = -2t + S,$$

(19)
$$N(t) = -\Sigma t^2 + S\Sigma t - \frac{1}{2} [\Sigma T + g(c-d)^2 + h(a-b)^2],$$

(20)
$$D(t) = (t - (a+c))(t - (a+d))(t - (b+c))(t - (b+d)),$$

(21)
$$E(t) = ght^2 - Sght + \frac{1}{4}[g^2(c-d)^2 + h^2(a-b)^2 + 2ghT].$$

PROPOSITION 1. Let A and B be operators, satisfying the standing assumptions. Let the notation be as above, and set R(t) = D(t) + E(t). Then the Green's function of A * B satisfies

(22)
$$\mathcal{G}(t) = \frac{N(t) - M(t)\sqrt{R(t)}}{2D(t)}.$$

Proof. Set $x = x_1(t), y = x_2(t)$. By Corollary 3

$$\frac{u}{x-a} + \frac{v}{x-b} = \frac{r}{y-c} + \frac{s}{y-d} = \frac{1}{x+y-t}.$$

This is equivalent to the system (here we use u + v = r + s = 1, see eq. (6))

$$xy = (t + \frac{1}{2}(g - a - b))x + \frac{1}{2}(g + a + b)y + (-\frac{1}{2}((g + a + b)t + ab),$$

$$xy = \frac{1}{2}(h+c+d)x + (t+\frac{1}{2}(h-c-d))y + (-\frac{1}{2}((h+c+d)t+cd))x + (t+\frac{1}{2}(h+c+d)x + (t+\frac{1}{2}(h+c+d))y + (-\frac{1}{2}(h+c+d)x + (t+\frac{1}{2}(h+c+d)x + (t+\frac{1}{2}(h+c+d)x$$

We separate the variables to arrive to two quadratic equations on x, y with polynomial (in t) coefficients. Solving them, and using eq. (16), we obtain the Green's function of A * B:

(23)
$$\mathcal{G}(t) = \frac{2(t + \frac{1}{2}(\Delta - S))(-t + \frac{1}{2}(\Delta + S))}{N(t) + M(t)\sqrt{R(t)}}.$$

Multiplying the numerator and the denominator in eq. (23) by $N(t) - M(t) \cdot \sqrt{R(t)}$, we get in the denominator:

$$N^2(t) - M^2(t)[D(t) + E(t)] = [N^2(t) - M^2(t)E(t)] - M^2(t)D(t).$$

We will prove the identity

$$N^{2}(t) - M^{2}(t)E(t) = \Delta^{2}D(t).$$

Set $N^2(t) - M^2(t)E(t) = X(t) = \sum_{i=0}^4 X_i t^i$, and $D(t) = \sum_{i=0}^4 D_i t^i$. The coefficients X_i, D_i are polynomials in a, b, c, d, g, h, and the identity above is equivalent to the system $(0 \le i \le 4)$

(24)
$$X_i(a, b, c, d, g, h) = \Delta^2 D_i(a, b, c, d).$$

These identities are verified directly from eqs. (18–21). For i = 4, 3 the verification is very simple. To sketch a proof of eq. (24) for i = 2, 1, 0, we will use a self-explanatory notation for the coefficients of the polynomials N(t), M(t). Then, by eqs. (18–21)

$$X_2 = -2\Sigma N_0 - 4E_0 + S^2 \Sigma^2 - 5S^2 gh = -2\Sigma N_0 - 4E_0 - S^2 gh + \Delta^2 S^2.$$

By eqs. (19,21)

$$-2\Sigma N_0 - 4E_0 - S^2 gh = \Delta^2 T,$$

hence $X_2 = \Delta^2(S^2 + T)$. By eq. (18), $D_2 = S^2 + T$, which proves eq. (24) for i = 2. The identity $X_1 = \Delta^2 D_1$ is equivalent to the one we have just proved (note that $D_1 = -ST$). For i = 0 eq. (24) becomes

$$N_0^2 - S^2 E_0 = \Delta^2(a+c)(a+d)(b+c)(b+d)$$

This is proved directly from eqs. (19,21), and we leave it to the reader. Our identity and eq. (18) yield

(25)
$$N^{2}(t) - M^{2}(t)R(t) = 4(t + \frac{1}{2}(\Delta - S))(-t + \frac{1}{2}(\Delta + S))D(t)$$

which proves the claim.

Proposition 1 means, in particular, that the Green's function of A*B is algebraic on the Riemann surface $\mathcal{R}=\{(t,w):w^2=R(t)\}$, which is a 2-sheeted covering of the Riemann sphere, via p(t,w)=t. The sheets of \mathcal{R} correspond to the two branches of $\sqrt{R(t)}$, where on the physical sheet we have, asymptotically, $\sqrt{R(t)}\sim t^2$, as $t\to\infty$. The involution $(t,w)\mapsto (t,-w)$ interchanges the physical and the nonphysical sheets. Note that \mathcal{R} is an elliptic curve, since R is a quartic polynomial, and $p:\mathcal{R}\to\mathbf{C}$ is the canonical covering.

Let \mathcal{R}_{-} (resp. \mathcal{R}_{+}) be the part of the physical (resp. nonphysical) sheet above \mathbf{H} . Since the branch locus of $p: \mathcal{R} \to \mathbf{C}$ consists of zeros of the quartic polynomial R, and since \mathcal{R}_{-} and \mathcal{R}_{+} are disjoint, we conclude that R has no roots in \mathbf{H} . Thus, all roots of R are real, which also follows directly from eqs. (20-21), see the proof of Theorem 2, below.

Let the notation be as above. If the inequalities

$$(26) a+d \neq S/2,$$

(27)
$$E(a+c), E(b+d), E(a+d), E(b+c) \neq 0$$

hold, we say that the operators A, B are in general position.

PROPOSITION 2. Let the operators A and B satisfy the standing assumptions. If they are in general position then the point spectrum of A * B consists of at most two eigenvalues; One of them is contained in $\{a+c,b+d\}$, and the other in $\{a+d,b+c\}$.

Proof. By the preceding discussion and eq. (22), the poles of \mathcal{G} on the Riemann surface $\mathcal{R} = \{(t, w) : w^2 - R(t) = 0\}$ are contained in the set $p^{-1}(\{a+c, b+d, a+d, b+c\})$, where $p: \mathcal{R} \to \mathbf{C}$ is the canonical projection. By eqs. (26-27), $|p^{-1}(\{a+c, b+d, a+d, b+c\})| = 8$. Let t_0 be any of the four numbers a+c, a+d, b+c, b+d, and let $p_0, r_0 \in \mathcal{R}$ be the two points above it. Note that if $p_0 = (t_0, w_0)$, then $r_0 = (t_0, -w_0)$. Since, by eq. (25)

$$(N(t_0) - M(t_0)w_0)(N(t_0) + M(t_0)w_0) = 0$$

and

$$N(t_0) + M(t_0)w_0 = 0, N(t_0) - M(t_0)w_0 = 2N(t_0) \neq 0,$$

the function \mathcal{G} has a pole at p_0 , and r_0 is a regular point. Thus, \mathcal{G} has four poles in \mathcal{R} , one above each of the numbers a+c, a+d, b+c, b+d. Moreover, the poles are simple, and the residue of \mathcal{G} at p_0 is $2N(t_0)/D'(t_0) \neq 0$.

By straightforward computations

$$N(a+c) = N(b+d) = -\frac{1}{2}(b-a+d-c)[g(d-c)+h(b-a)],$$

$$N(a+d) = N(b+c) = -\frac{1}{2}(b+c-a-d)[g(c-d)+h(b-a)]$$

and

$$0 < D'(b+d) = [b-a+d-c](d-c)(b-a) = -D'(a+c),$$
$$D'(b+c) = -[b+c-a-d](d-c)(b-a) = -D'(a+d).$$

Thus

(28)
$$\frac{N(a+d)}{D'(a+d)} = \frac{1}{2} \left[\frac{g}{b-a} - \frac{h}{d-c} \right] = -\frac{N(b+c)}{D'(b+c)},$$

(29)
$$\frac{N(a+c)}{D'(a+c)} = \frac{1}{2} \left[\frac{g}{b-a} + \frac{h}{d-c} \right] = -\frac{N(b+d)}{D'(b+d)}.$$

Next, we invoke Lemma 1. By eq. (28) (resp. eq. (29)), at most one of the two poles of \mathcal{G} above a+d,b+c (resp. above a+c,b+d) is in the physical sheet.

A complete analysis of the point spectrum of A * B requires detailed calculations. We will return to this and related questions elsewhere [5]. Next we turn to the continuous spectrum of A * B.

PROPOSITION 3. Let the operators A and B satisfy the standing assumptions (we don't assume they are in general position), and let the notation be as above. Then A*B has no singular continuous spectrum: $\sigma_c(A*B) = \sigma_{ac}(A*B)$. If $t_1 < t_2 < t_3 < t_4$ are the roots of the quartic polynomial R = D + E, then $\sigma_c(A*B) = [t_1, t_2] \cup [t_3, t_4]$.

Proof. Set L = A * B, Z = X * Y. Then L is an invariant selfadjoint operator on $\ell^2(Z)$. Let $\mathcal{G}_z(t), z \in Z, t \in \mathbf{H}$ be the Green's function of L, corresponding to $\delta_x \in \ell^2(Z)$ [4]. By invariance of L, we have $\mathcal{G}_z(t) = \mathcal{G}_e(t)$, where e is the root of Z. Let μ be the spectral measure, corresponding to δ_e , and let μ_f be the one corresponding to $f \in \ell^2(Z)$ [4]. Then, by invariance of L, the measure μ_f is absolutely continuous with respect to μ [7], hence μ is the spectral measure of L.

Let $\mu = \mu_{ac} + \mu_{sc} + \mu_{pp}$ be the standard decomposition of μ . Using that on the physical sheet $\mathcal{G}_e = \mathcal{G}$, which is algebraic, by eq. (22), and the standard

characterization of the singular continuous spectrum, [9] Section 1.1, we obtain that $\mu_{sc} = 0$. Thus $\mu = \mu_{ac} + \mu_{pp}$.

Let $t = x + i\epsilon$, and for any function on **H** set $f(x+i0) = \lim_{\epsilon \to 0} f(x+i\epsilon)$, if the limit exists. Then (see [9], Theorem 1.6)

$$\pi d\mu_{ac}(x) = |\Im \mathcal{G}(x+i0)| dx.$$

Eq. (22) implies the claim.

Remark. The fact that A * B has no singular continuous spectrum, probably, is quite general. For instance, $\mu_{sc}(A * B) = 0$ if A and B are arbitrary (right) convolution operators on discrete groups [7].

Lemma 2. Let A and B be a pair of operators, satisfying the standing assumptions, and let the notation be as above. Set

$$\alpha = \frac{1}{4}(b+d-a-c)^2 + \frac{1}{4}(a+d-b-c)^2 - gh,$$

$$\gamma = (a-b)^2(c-d)^2 + g^2h^2 - g^2(c-d)^2 - h^2(a-b)^2.$$

Then $0 < \sqrt{\gamma} \le \alpha$. The equality $\alpha = \sqrt{\gamma}$ holds if and only if b - a = d - c and u = r, v = s (see eq. (17) for notation).

Proof. Substituting the expressions for g and h in terms of the spectral data of A, B into the formulas above, we obtain

(30)
$$2\alpha = [(a-b) - (c-d)]^2 + 2[(b-a)(d-c)[1 - (u-v)(r-s)],$$

(31)
$$\gamma = (a-b)^2(c-d)^2[1-(u-v)^2][1-(r-s)^2].$$

Since |u-v|, |r-s| < 1, we have

$$0 < [(a-b) - (c-d)]^2 < 2\alpha < [(a-b) + (c-d)]^2,$$

and $\gamma > 0$. The inequality $\alpha \geq \sqrt{\gamma}$ follows from

$$[1 - (u - v)(r - s)]^{2} \ge [1 - (u - v)^{2}][1 - (r - s)^{2}].$$

The equality $\alpha = \sqrt{\gamma}$ holds if and only if (a-b)-(c-d)=0 and u-v=r-s. Since u+v=r+s=1, the latter equation is equivalent to u=r. Recall that S = a + b + c + d, and set

$$\beta = \frac{1}{4}(g-h)[g(c-d)^2 - h(a-b)^2] + \frac{1}{16}(b+d-a-c)^2(a+d-b-c)^2.$$

LEMMA 3. Let the setting be as above. Then the quartic polynomial R (see Proposition 1) satisfies

(32)
$$R(w + S/2) = w^4 - \alpha w^2 + \beta.$$

Proof. By eqs. (20-21), D(t) and E(t) are invariant with respect to $t \to S - t$. Hence R(w + S/2) is an even polynomial in w. The claim follows by a direct computation.

DEFINITION 3. Let A_i be bounded linear operators on Hilbert saces \mathcal{H}_i , i=1,2. They are essentially unitarily equivalent if there exist Hilbert spaces $\mathcal{M}_1, \mathcal{M}_2$ such that the operators $A_i \otimes Id_{\mathcal{M}_i}$ on $\mathcal{H}_i \otimes \mathcal{M}_i$, i=1,2 are unitarily equivalent.

THEOREM 2. Let the operators A and B satisfy the standing assumptions, and let the notation be as above.

1) Suppose that A and $B - \lambda Id$ are not essentially unitarily equivalent for any λ . Then the continuous spectrum of A*B is a union of two disjoint intervals:

$$\sigma_c(A*B) = \left[\frac{S}{2} - \sqrt{\frac{1}{2}(\alpha + \sqrt{\gamma})}, \frac{S}{2} - \sqrt{\frac{1}{2}(\alpha - \sqrt{\gamma})}\right]$$

$$\cup \left[\frac{S}{2} + \sqrt{\frac{1}{2}(\alpha - \sqrt{\gamma})}, \frac{S}{2} + \sqrt{\frac{1}{2}(\alpha + \sqrt{\gamma})}\right].$$

2) If there exists λ such that A and $B - \lambda Id$ are essentially unitarily equivalent, then the continuous spectrum of A * B is a single interval:

$$\sigma_c(A*B) = \left[\frac{S}{2} - \sqrt{\alpha}, \frac{S}{2} + \sqrt{\alpha}\right].$$

Proof. By Lemma 2 and Lemma 3, all roots of R are real. They are

$$\begin{split} \frac{S}{2} - \sqrt{\frac{1}{2}(\alpha + \sqrt{\gamma})} &< \frac{S}{2} - \sqrt{\frac{1}{2}(\alpha - \sqrt{\gamma})} \\ &\leq \frac{S}{2} + \sqrt{\frac{1}{2}(\alpha - \sqrt{\gamma})} \\ &< \frac{S}{2} + \sqrt{\frac{1}{2}(\alpha + \sqrt{\gamma})}. \end{split}$$

If $\alpha > \sqrt{\gamma}$, then the roots are distinct, and Proposition 3 applies. If $\alpha = \sqrt{\gamma}$, then

$$\sqrt{R(t)} = (t - S/2)\sqrt{(t - S/2 + \sqrt{\alpha})(t - S/2 - \sqrt{\alpha})}.$$

The argument of Proposition 3 applies and shows that $\sigma_c(A*B) = [S/2 - \sqrt{\alpha}, S/2 + \sqrt{\alpha}].$

It remains to show that the dichotomy $\alpha > \sqrt{\gamma}$ versus $\alpha = \sqrt{\gamma}$ is equivalent to the dichotomy of the Theorem. By Lemma 2, $\alpha = \sqrt{\gamma}$ if and only if there exist p, q > 0, p + q = 1, and $\lambda \in \mathbf{R}$ such that

(33)
$$G_A(z) = \frac{p}{z-a} + \frac{q}{z-b}, \ G_B(z) = \frac{p}{z-a-\lambda} + \frac{q}{z-b-\lambda}.$$

Equivalently, the eigenvalues of A (resp. B) are a < b (resp. $a + \lambda < b + \lambda$), with the same relative multiplicities p and q. Let m, n be natural numbers such that m|X| = n|Y| = h. Setting $\mathcal{M} = \mathbf{C}^m, \mathcal{N} = \mathbf{C}^n$, we obtain that $A \otimes Id_{\mathcal{M}}$ and $(B - \lambda) \otimes Id_{\mathcal{N}}$ are selfadjoint operators, acting on the same space \mathbf{C}^h , with the same eigenvalues a < b, of the same multiplicities. Hence, they are unitarily equivalent. We leave the proof of the opposite implication to the reader.

Using eqs. (30-31) we can directly express the intervals comprising the continuous spectrum of A * B in terms of the spectral data of the operators A and B. Leaving the general case to the reader, we will restict ourselves to the case when $\sigma_c(A * B)$ is a single interval. The following is an immediate corollary of Theorem 2 and its proof.

COROLLARY 5. Let the operators A and B satisfy the standing assumptions, and let the notation be as above. Then the set $\sigma_c(A*B)$ is connected if and only if A and B are essentially unitarily equivalent. Let this be the case, and let a, b, λ, p, q be as in eq. (33). Then

$$\sigma_c(A*B) = [a+b+\lambda-2(b-a)\sqrt{pq}, a+b+\lambda+2(b-a)\sqrt{pq}] \subset [2a+\lambda, 2b+\lambda].$$

The inclusion is strict (on both ends), unless p = q = 1/2.

3.2. Free powers of an operator

In this subsection we consider arbitrary 'free powers' of a single operator A on $\ell^2(X)$, where (X, e) is a rooted set. Let G(t) be the Green's function of A, based at e. For n > 1 we denote by $*^nA$ the n-th free power of A, i.e., $*^nA = *_{i=1}^nA_i$, where $A_i = A$ for all i.

PROPOSITION 4. Let $\mathcal{G}_n(t)$ be the Green's function of $*^n A, n > 1$. Then

(34)
$$\mathcal{G}_n(t) = \frac{n-1}{nx-t}$$

where x = x(t) satisfies

$$G(x) = \frac{n-1}{nx-t}.$$

Proof. This is a special case of Corollary 3, where we have, by symmetry, $x_i = x_j$ for all i, j.

From now until the end of Section 3 the standing assumption will be that $|X| < \infty$ and that A is invariant and selfadjoint. In addition, we assume that A has two eigenvalues. Thus G(z) = p/(z-a) + q/(z-b), where a < b and p, q > 0, p + q = 1. Some of the propositions to follow remain valid, with obvious modifications, if $|X| = \infty$.

Proposition 5. Let A satisfy the standing assumptions, and let the notation be as above. Set

$$P_n(t) = (n-2)t + n^2(pb+qa) - n(n-1)(a+b),$$

$$R_n(t) = t^2 + 2[(n-2)(pb+qa) - (n-1)(a+b)]t + [n(pb+qa) - (n-1)(a+b)]^2 + 4(n-1)ab.$$

Then the Green's function of $*^nA$ satisfies

(36)
$$\frac{1}{2}\mathcal{G}_n(t) = \frac{n\sqrt{R_n(t)} - P_n(t)}{(t - na)(t - nb)}.$$

Proof. Specializing in eq. (35), we have

$$\frac{p}{x-a} + \frac{q}{x-b} = \frac{n-1}{nx-t}$$

which gives a quadratic equation on x. Substituting x(t) into eq. (34) and getting rid of the radicals in the denominator, like in the proof of Proposition 1, we obtain the claim.

Proposition 5 means, in particular, that the Green's function \mathcal{G}_n of $*^n A$ is algebraic on the Riemann surface $\mathcal{R}_n = \{(t, w) : w^2 = R_n(t)\}$, which is a 2-sheeted covering of the Riemann sphere, via $p_n(t, w) = t$. The sheets of \mathcal{R} correspond to the two branches of $\sqrt{R_n(t)}$, where on the physical sheet we have, asymptotically, $\sqrt{R_n(t)} \sim t$, as $t \to \infty$. Our considerations involving \mathcal{G}_n as a meromorphic function on the Riemann surface \mathcal{R}_n are analogous to those of Section 3.1, concerning the Green's function of A * B. If anything, they are simpler in the present case. Note that \mathcal{R}_n is the Riemann sphere, since R_n is a quadratic polynomial.

THEOREM 3. Let A be an operator satisfying the standing assumptions, and let G(z) = p/(z-a) + q/(z-b) be its Green's function. We consider the operators $*^n A, n > 1$, and assume that $np, nq \neq 1$ for any n.

1. The operator $*^n A$ has no singular continuous spectrum. Its absolutely continuous spectrum is a single interval:

$$\sigma_{ac}(*^n A) = \sigma_c(*^n A)$$

$$= \left[(1 + p(n-2))a + (1 + q(n-2))b - 2(b-a)\sqrt{(n-1)pq}, \right.$$

$$(1 + p(n-2))a + (1 + q(n-2))b + 2(b-a)\sqrt{(n-1)pq} \right].$$

- 2. Let p < q (resp. q < p). Then the point spectrum of $*^nA$ consists of the single point nb (resp. na), as long as n < 1/p (resp. n < 1/q). The point spectrum is empty for n > 1/p (resp. n > 1/q).
- *Proof.* 1. The proof is analogous to the argument of Theorem 2 and Proposition 3, and we leave details to the reader. The endpoints of $\sigma_{ac}(*^n A)$ are the two roots of R_n .
- 2. The argument follows the proof of Proposition 2. By eq. (36), the only possible poles of \mathcal{G}_n in \mathcal{R}_n are above $na, nb \in \mathbf{R}$. Denote by t any of the two numbers. A direct computation gives

(37)
$$P_n(na) = n(nq-1)(a-b), \ P_n(nb) = n(np-1)(b-a).$$

Hence, t is not in the branch locus, and exactly one of the two points of \mathcal{R}_n above t is a pole of \mathcal{G}_n . Let $p(t) \in \mathcal{R}_n$ be the pole, and let $r(t) \in \mathcal{R}_n$ be the regular point (we suppress the dependence on n, to simplify the notation). Both poles are simple, and from eqs. (36-37)

$$\operatorname{Res}_{p(a)}\mathcal{G}_n = 1 - nq, \ \operatorname{Res}_{p(b)}\mathcal{G}_n = 1 - np.$$

A direct computation gives

$$G'_n(p(a)) = c(a)(1 - nq), \ G'_n(p(b)) = c(b)(1 - np),$$

where c(a), c(b) > 0. Hence the sign of \mathcal{G}' at the regular point above a (resp. b) is the same as the sign of 1 - nq (resp. 1 - np). Lemma 1 implies that p(a) (resp. p(b)) is in the physical sheet if and only if 1 - nq > 0 (resp. 1 - np > 0). Since $np + nq = n \ge 2$, both p(a) and p(b) cannot be in the physical sheet, which implies the claim.

§4. Applications

4.1. Graph spectra

By the spectrum of a graph, Γ , we mean the spectrum of its incidence operator, A_{Γ} . Another set, frequently associated with Γ , is the spectrum of the graph Laplacean (see, e. g, [2]). If Γ is regular (every vertex has the same number of edges), the two spectra are related by a translation. We will consider only symmetric (therefore regular) graphs.

If Γ_1, Γ_2 are two rooted graphs, we denote by $\Gamma_1 * \Gamma_2$ their free product. By the construction of Section 2, this is a special case of the free product of rooted sets. If A_1, A_2 are the incidence operators, then $A_1 * A_2$ is the incidence operator of $\Gamma_1 * \Gamma_2$. If Γ_1, Γ_2 are symmetric graphs, i.e. there are groups, H_1, H_2 , acting transitively on Γ_1, Γ_2 by automorphisms, then $H_1 * H_2$ transitively acts on $\Gamma_1 * \Gamma_2$, thus $\Gamma_1 * \Gamma_2$ is symmetric. In particular, $\Gamma_1 * \Gamma_2$ does not depend on the choice of roots in Γ_1, Γ_2 . Everything we said so far about the free product of two graphs extends to the free products of any number of graphs. We will use the self-explanatory notation: $*_{i=1}^n \Gamma_i, *^n \Gamma$.

We denote by $K_n, n \geq 1$, the *complete graph* on n+1 vertices (any two vertices are neighbors). It is symmetric (under the natural action of S_{n+1} , the symmetric group).

THEOREM 4. Let $1 \le m < n$. The (absolutely) continuous spectrum of $K_m * K_n$ is the union of two disjoint intervals:

$$I_{m,n} = \frac{1}{2} \left[m + n - 2 - \sqrt{4(\sqrt{m} + \sqrt{n})^2 + (m-n)^2}, \right.$$
$$m + n - 2 - \sqrt{4(\sqrt{m} - \sqrt{n})^2 + (m-n)^2} \right]$$

and

$$J_{m,n} = \frac{1}{2} \left[m + n - 2 + \sqrt{4(\sqrt{m} - \sqrt{n})^2 + (m-n)^2}, \right.$$
$$m + n - 2 + \sqrt{4(\sqrt{m} + \sqrt{n})^2 + (m-n)^2} \right].$$

The point spectrum of $K_m * K_n$ is the set $\{-2, m-1\}$.

Proof. The spectrum of K_n consists of two points: -1 and n. The multiplicities are n and 1 respectively. We denote by A, B the incidence operators of K_m, K_n , and use the notation of Section 3.1. Thus a = 1, b = m, c = -1, d = n, u = m/(m+1), v = 1/(m+1), r = n/(n+1), s = 1/(n+1). Substituting this into eqs. (18-22), we obtain

(38)
$$N(t) = -(m+n-2)t^2 + (m+n-2)^2t -[(m+n+2)(mn-7) + 24],$$

(39)
$$R_{m,n}(t)$$

= $(t - \frac{m+n}{2} + 1)^4 - \left[2(m+n) + \frac{(m-n)^2}{2}\right](t - \frac{m+n}{2} + 1)^2 + \frac{1}{16}(m-n)^2[(m+n+4)^2 - 4mn],$

and for the Green's function of the graph $K_m * K_n$:

(40)
$$\mathcal{G}_{m,n}(t) = \frac{N(t) + (2t - m - n + 2)\sqrt{R_{m,n}(t)}}{2(t+2)(t+m+n)(t-m+1)(t-n+1)}.$$

We use Theorem 2 to find the absolutely continuous spectrum of $K_m * K_n$. By eq. (39), $\alpha > 0$, $\alpha^2 - 4\beta > 0$, and $\beta > 0$ (because m < n). Thus, by Theorem 2, the continuous spectrum of $K_m * K_n$ is a union of two intervals, whose endpoints are $\frac{1}{2}(m+n) - 1 \pm \sqrt{(\sqrt{m} \pm \sqrt{n})^2 + (\frac{1}{2}(m-n))^2}$.

The inequalities eqs. (26-27) hold (because m < n), thus A and B are in general position. We use Proposition 2 and explicit calculations, like in the proof of Theorem 3, to compute the point spectrum of $K_m * K_n$.

EXAMPLES. 1 (see [7, 8]). Let m = 1, n = 2. From eq. (40) we obtain the Green's function of $K_1 * K_2$:

$$\mathcal{G}_{1,2}(t) = \frac{-t^2 + t + 1 + (2t-1)\sqrt{t^4 - 2t^3 - 5t^2 - 6t + 1}}{2(t+2)(t(t-1)(t+3))}$$

By Theorem 4, the point spectrum of $K_1 * K_2$ is $\{-2, 0\}$, and the continuous spectrum:

$$\left[\frac{1}{2} - \frac{1}{2}\sqrt{13 + 8\sqrt{2}}, \frac{1}{2} - \frac{1}{2}\sqrt{13 - 8\sqrt{2}}\right]$$

$$\cup \left[\frac{1}{2} + \frac{1}{2}\sqrt{13 - 8\sqrt{2}}, \frac{1}{2} + \frac{1}{2}\sqrt{13 + 8\sqrt{2}}\right].$$

2. Set m=1, n>1. By Theorem 4, the point spectrum is $\{-2,0\}$, and $\sigma_c(K_1*K_n)=I_n\cup J_n$, where

$$I_n = \left[\frac{n-1}{2} - \frac{1}{2} \sqrt{(n+1)^2 + 4 + 8\sqrt{n}}, \frac{n-1}{2} - \frac{1}{2} \sqrt{(n+1)^2 + 4 - 8\sqrt{n}} \right],$$

$$J_n = \left[\frac{n-1}{2} + \frac{1}{2} \sqrt{(n+1)^2 + 4 - 8\sqrt{n}}, \frac{n-1}{2} + \frac{1}{2} \sqrt{(n+1)^2 + 4 + 8\sqrt{n}} \right].$$

THEOREM 5. Let $K_r, r \geq 1$, be the complete graph on r+1 vertices, and let $\mathcal{G}_n^{(r)}$ be the Green's function of $*^nK_r, n > 1$. Then

$$\mathcal{G}_n^{(r)} = \frac{(n-2)t + n(r-1) - n\sqrt{t^2 - 2(r-1)t + (r+1)^2 - 4nr}}{2(t+n)(t-nr)}.$$

For r > 1 the point spectrum of $*^nK_r$ is a single point, $\{-n\}$, if $2 \le n \le r$, and is empty if n > r. The graph $*^nK_1$ has no point spectrum. The (absolutely) continuous spectrum of $*^nK_r$:

$$\sigma_c(*^n K_r) = [r - 1 - 2\sqrt{(n-1)r}, r - 1 + 2\sqrt{(n-1)r}].$$

Proof. Straightforward from Proposition 5 and Theorem 3.

EXAMPLES. 1. The graph $*^{n+1}K_1$ is the n+1-regular tree, T_n . Specializing to r=1 in Theorem 5, we obtain its Green's function:

$$G_{T_n}(t) = \frac{(n-1)t - (n+1)\sqrt{t^2 - 4n}}{2(t+n+1)(t-n-1)},$$

and the absolutely continuous spectrum: $\sigma(T_n) = [-2\sqrt{n}, 2\sqrt{n}]$ (there is no point spectrum). These results are well known (see, e.g., [2]). 2. Setting r = 2, n = 2 in Theorem 5, we obtain: $\sigma_c(*^2K_2) = [1 - 2\sqrt{2}, 1 + 2\sqrt{2}]$, and $\sigma_p(*^2K_2) = \{-2\}$. We leave details to the reader.

4.2. Random walks on free products

A random walk on a graph, Γ , is given by the probabilities, $0 \leq p(e) \leq 1$, on the edges of Γ , so that $\sum_{e \sim x} p(e) = 1$ for any vertex $x \in \Gamma$. Equivalently, a random walk is determined by its transition operator, $(Pf)(x) = \sum_{y \sim x} P(x,y) f(y)$, and P(x,y) = p(e), where e is the edge joining x with y. We say that a random walk on Γ is invariant if its transition operator is invariant (under a transitive group on Γ). By the spectrum (Green's function) of a random walk on Γ we mean the spectrum (Green's function) of its transition operator.

An invariant random walk on a rooted graph, (Γ, e) , is determined by the probabilities of the edges of e. For the simple random walk these probabilities are equal to 1/d, where d is the number of edges of e. Let $\Gamma_i, 1 \leq i \leq n$, be symmetric graphs, and let P_i be the transition operator for an invariant random walk on $\Gamma_i, 1 \leq i \leq n$. Any n-tuple, $p_i > 0, \sum_{i=1}^n p_i = 1$, defines a product random walk on $*_{i=1}^n \Gamma_i$, its transition operator is $*_{i=1}^n p_i P_i$. If the random walks on Γ_i are simple for $1 \leq i \leq n$, and $p_1 = \cdots = p_n = 1/n$, then the product random walk on $*_{i=1}^n \Gamma_i$ is also simple.

THEOREM 6. ([3]) Let $r \geq 1, n > 1$. The (absolutely) continuous spectrum of the simple random walk on $*^nK_r$ is $\frac{1}{rn}[r-1-2\sqrt{(n-1)r},r-1+2\sqrt{(n-1)r}]$. The point spectrum is nonempty if and only if $2 \leq n \leq r$. Then it consists of a single point, $\{-1/r\}$.

Proof. The transition operator of the simple random walk on a k-regular graph, Γ , is $k^{-1}A_{\Gamma}$. In our case, k=nr, and the spectrum of A_{Γ} is given by Theorem 5.

THEOREM 7. Let $1 \leq m \leq n$, and p,q > 0, p + q = 1. We assume that $(p,m) \neq (q,n)$, and consider the product random walk on $K_m * K_n$ defined by these data. Its (absolutely) continuous spectrum is the union of two intervals, I, J (depending on p, q, m, n). Define $\ell_{\pm}(p, q, m, n) > 0$ by

$$\ell_{\pm}^{2} = \frac{1}{4}(p-q)^{2} + \frac{1}{4}(\frac{p}{m} - \frac{q}{n})^{2} + \frac{1}{2}\left[\frac{p}{m} + \frac{q}{n} \pm \frac{4pq}{\sqrt{mn}}\right].$$

Then

$$I = \frac{1}{2} \left[1 - \left(\frac{p}{m} + \frac{q}{n} \right) - 2\ell_+, 1 - \left(\frac{p}{m} + \frac{q}{n} \right) - 2\ell_- \right],$$

$$J = \frac{1}{2} \left[1 - \left(\frac{p}{m} + \frac{q}{n} \right) + 2\ell_-, 1 - \left(\frac{p}{m} + \frac{q}{n} \right) + 2\ell_+ \right].$$

If m < n, the point spectrum is $\{-(p/m + q/n), p - q/n\}$. If m = n > 1, the point spectrum is $\{-1/m\}$. If m = n = 1, the point spectrum is empty.

Proof. The transition operator of this random walk is the free product $m^{-1}pA_m*n^{-1}qA_n$, where A_ℓ is the incidence matrix of the complete graph K_ℓ . In the notation of Section 3.1, a=-p/m, b=p, c=-q/n, d=q, u=m/(m+1), v=n/(n+1), r=n/(n+1), s=1/(n+1). We compute the parameters α and γ of Theorem 2, and obtain

$$m^{2}n^{2}[\alpha \pm \sqrt{\gamma}] = \frac{1}{2}m^{2}n^{2}(p-q)^{2} + \frac{1}{2}(pn-qm)^{2} + mn[pn+qm \pm 4pq\sqrt{mn}].$$

It is elementary to check that $pn + qm \pm 4pq\sqrt{mn} \geq 0$, hence the expression above is positive (we have ruled out p = q, m = n). Thus $\ell_{\pm} = \sqrt{(\alpha \pm \sqrt{\gamma})/2} > 0$, and Theorem 2 gives the continuous spectrum.

We use Proposition 2 and explicit calculations, like in the proof of Theorem 3, to determine the point spectrum.

Remark. Theorems 6 and 7 together yield the spectra of all product random walks on $K_m * K_n$. Proposition 1 allows to find explicitly their Green's functions. We leave this to the reader.

REFERENCES

- [1] K. Aomoto and Y. Kato, Green functions and spectra on free products of cyclic groups, Ann. Inst. Fourier, 38 (1988), 59–85.
- [2] R. Brooks, The spectral geometry of k-regular graphs, J. Analyse Math., 57 (1991), 120–151.
- [3] D. I. Cartwright and P. M. Soardi, Random walks on free products, quotients and amalgams, Nagoya Math. J., 102 (1986), 163–180.
- [4] N. Danford and J. T. Schwartz, Linear Operators, Interscience, New York, 1963.
- [5] E. Gutkin, Point spectra of free products of operators, in preparation.
- [6] G. Kuhn, Random walks on free products, Ann. Inst. Fourier, 4 (1991), 467–491.
- [7] J. C. McLaughlin, Random walks and convolution operators on free products, Doctoral Dissertation, New York University, 1986.
- [8] G. Quenell, Combinatorics on free product graphs, Geometry of the Spectrum, pp. 257–282.
- [9] B. Simon, Spectral analysis of rank one perturbations and applications, CRM Proceedings and Lecture Notes, pp. 109–149.
- [10] D. Voiculescu, Addition of certain noncommuting random variables, J. Funct. Anal., 66 (1986), 323–346.

- [11] W. Woess, Nearest neighbor random walks on free products of discrete groups, Boll. U.M.I., 5-B (1986), 961–982.
- [12] W. Woess, Random walks on infinite graphs and groups a survey of selected topics, Bull. London Math. Soc., **26** (1994), 1–60.

Mathematics Department University of Southern California Los Angeles, CA 90089-1113 U.S.A.

egutkin@math.usc.edu