
Canad. Math. Bull. Vol. 27 (4), 1984 

LOCALLY UNIFORMLY ROTUND RENORMING 
AND INJECTIONS INTO c0(T) 

BY 

G. G O D E F R O Y , S. T R O Y A N S K I , J. W H I T F I E L D * A N D V. Z I Z L E R t 

ABSTRACT. A norm |-| on a Banach space X is locally uniformly 
rotund (LUR) if lim \xn — x\ = 0 for every xn, xeX for which 
l im2|x | 2 + 2 \xn\

2~\x + xn\
2 = 0. It is shown that a Banach space X 

admits an equivalent LUR norm provided there is a bounded linear 
operator T of X into c0(T) such that T*c*(r) is norm dense in X*. 
This is the case e.g. if X* is weakly compactly generated (WCG). 

It is a well known result of J. Clarkson that a Banach space X admits an 
equivalent strictly convex norm if there is a bounded linear one-to-one 
operator T of X into some strictly convex Banach space Y (see [1] or [2]). For 
locally uniformly rotund norms the analogical result is no longer true, since e.g. 
Ioc(N), obviously possessing a bounded linear one-to-one operator into l2(N) 
still admits no equivalent LUR norm (see [2]). So, naturally, the following 
question arises: what additional property of a bounded linear one-to-one 
operator T of given Banach space X into, say, c0(T) would ensure that X 
admits an equivalent LUR norm? The space c0(T) can be chosen above since it 
is known to have an equivalent LUR norm (see [5] or [2]). One answer to this 
question is provided by Theorem 1. A good indication as to the uses of the 
methodology presented in this paper can be found in Theorem 2. 

The main source of this paper was a more detailed study of the geometry in 
the Day's construction of a LUR norm on c0(T) ([5]) and its variant for the 
spaces with long Schauder basis ([7]). The paper originated in discussions made 
by the authors at the Winter School of Abstract Analysis in Czechoslovakia, 
January 1983 and was finished when the last named author was a member of 
Sonderforschungsbereich 72 der Universitât Bonn. 

We will work in real Banach spaces for which we will keep the standard 
notations. The letters i, j , k, Z, m, n, p, s will be reserved to denote positive 
integers. The set of all positive integers will be denoted by N. 
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DEFINITION 1. A norm |-| of a Banach space X is called locally uniformly 

rotund (LUR), resp. weakly locally uniformly rotund (WLUR), resp. weakly 

star locally uniformly rotund (W*LUR) (in the case of X = Y*), if lim xn = x in 

the norm, resp. weak, resp. weak star topology, for every xn, xeX for which 
l im2|x |2 + 2 |x n | 2 - | x + xn|2 = 0. 

The key lemma of the paper is 

LEMMA 1. Suppose that the norm \-\ of a Banach space X has the following 
two properties 

(i) H is WLUR and 
(ii) \-\*-the dual norm of \-\ on X*-is LUR. 

Then X admits an equivalent LUR norm. 

Proof. First, since |-|* is LUR, there is a transfinite sequence Qa of bounded 
linear projections Qa : X* -» X*, 0 < a < r, such that Q0 = 0, Qa f 0 for a f 0, 
QT = Identity operator on X*, Q^Qp = QpQ^ = Q3 if j3 < a, and for all x* G X* 
and a, Qax* G {Q3+:Lx*} and (QŒ+1 - Q J X * is separable for all 0 < a < r. These 
projections have the following properties: 

(i) for all X * G X * and e > 0 , A(x*, s) = {a<r, \Qa+1-QJx*\> 

e ( | Q j + |Qa+i|)} is finite, and 
(ii) for all X * G X * , 

x* G sp{(QŒ+1 - Q J X * , a G A(x*)}, where A(x*) = U {AU*, e), 8 >0}. 

This is a variant of a result of D. Amir and J. Lindenstrauss and was shown in 
[4]. Let us denote, for 0 < a < r and fe S?-the unit sphere of (X, |-|)* by 

(1) h«(/) = l ( a + i - Q J / l / ( | Q « + i l + |Q«l). 

Furthermore, if K is a finite set of indexes a, 0 < a < r , let {gf}f=i be a 
sequence which is dense in the unit sphere of the space sp{(Q a + 1 -Q a )X*, 
a e K}, and for each such gf\ let {yy}J°=i be a sequence of the points of the unit 
sphere St of X such that limy gf(y*}) = 1. Now we shall define a function which 
assigns to each four-terms sequence (/, n, p,l), feS*, n, p, leN, a pseudonorm 
J5 f n p I on X as follows: 

First let f-^Af=(a1, a2,...) be a function which assigns to each feS*<^ 
(X, | ' |)* a finite or infinite but countable sequence (al9 a2,...) aye A(f) such 
that h^W^Ktf), / = 1 , 2 . . . , and {h^if)} excerpts the whole set {ha(f), 
a e A(/)}. Now, if / G N, let MfJ be the set (unordered) of the first / members of 
the sequence Af, if j <card A/; otherwise, for j>card Af put Mf4 = Mf,caxdAf. 
Furthermore put 

Df,n,p = sp{y fk, K <= M / in, j , k < p} 
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and let the desired pseudonorm Ef>n>PjI be 

/ 1 \ 1 / 2 

Ef,n,P,iM = yf(x) + - p2(x, DlnJ J , for xe X, 

where p(x, Dfnp) means the distance function to the subspace Dfnp. Now, if 
n, p, I are given positive integers, put 

Gn,DiI(x) = sup{^ f , l , l (x) , /€S?c(X, | . | )*} for xeX. 

Finally, define the following norm on X: 

/ 1 \ 1/2 

\\x\\=(\x\2 + l ^ ^ G ^ x ) J , for xeX. 

Evidently, ||-|| is an equivalent norm on X. We shall now show that it is LUR. 
For it assume that x,-, x e X are so that 

(2) lim2||x||2 + 2||x i | |
2-||x + xJ-||

2 = 0 

and suppose without loss of generality that |x| = 1. Then 

2|x|2 + 2 ix i |
2 - | x + x J 2 ^ 2 | x | 2 + 2 |x J | 2 - ( |x | + |x1-|)2-(|xJ.|-|x|)2 

and thus {x,-} is bounded and by another simple convexity argument, 

(3) l im2|x | 2 + 2 | x i |
2 - | x+x J - | 2 -0 . 

Therefore, by WLUR of the norm |-| of X, we have that lim x] = x in the weak 
topology of X. Thus to prove that lim |x,- - x| = 0, it suffices to show that x,- is 
precompact in the norm topology. Therefore, take an s > 0 and look for a 
finite e-net for {x,-}. To find one, let first feS* be a unique element for which 
/(x) = 1 (observe that |-| is Fréchet differentiate—see [1] or [2]). We show that 

xewcl{D f A P ,n,pEiV}, 

where wcl{-} denotes the weak closure of {•}. To see this, first observe that there 
are g£ffs", q = 1, 2 , . . . (for definition of these see (1)), such that limq g™f*« = f 
(use the property (ii) of the projections Q^). So, if we choose y ^ (for 
definition see again (1)), so that g ^ K y ^ ' S > 1 — 2> then we have that 

Therefore, by WLUR of |-|, we have that limq y£jq
s,,= x in the weak topology of 

X. So, we can find a convex combination of some of these points which is no 
farther from x than e/4. Thus there is a couple n, peN such that 

(4) p(x,D f ,n ,p)<8/4. 

Suppose here without loss of generality that Dfnp arises from M f n which is 
formed by the first n members of the sequence Af= (a l5 a2,. . . , an , . ..) and 
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that h0in(f)>sup{h0L(f), a^ at, i = 1, 2 , . . . , n}. Then, using the uniform 
equicontinuity of {ha(/)}, it is easy to see that there is a 8X>0 such that if 
he St p(fl9 {/ ,- /})<8, then 

min{ha(/i), a e{al7. . . , an}}>max{hoc(f1), a ^ { a 1 ? . . . , an}} 

and thus 

A/i = (a{, a i , . . . , a i , . . . ) , where (a(, a£ , . . . , a ^ 

is a permutation of (a l5 a2,.. •, «n). Therefore 

Mf,n = Mfi,n and thus Df^p = Dh^p. 

Then, by the use of Fréchet differentiability of |-|, choose 8 >0 so that if h e S*, 
h2(x) > 1 - Ô, then p(h, {/, -/}) < ^ and thus 

(5) Dh n 5 P = D^n5p. 

Finally chosen leN so that />4/8. So, we have chosen / G S * , n, p, leN. We 
shall fix them by the end of our proof. From (2) we have that 

(6) lim a}-, = 0, where 

Ojf = 2G2,pJ(x) + 2G2,p, i(xy)-G2
p,{(x + xy). Let £ e S ? be such that 

(7) 0 < q = supf6S*(/2(x + x,-) + y p2(x + x,-, D/,n,p) j 

1 
-/J

2(x + X J)-yp2(x + XJ-,Dfi5n,p)7>0. 

Then we have 

a,- >2(/f(x) + y p2(x, D w ) ) + 2(/2(xy) + y p2(xy, Dfpn,p)) 

- yff(x + Xj;) + y p2(x + xy, Df.,n,p) j - q = bj - q, for some fy. 

Here, by a simple convexity argument, by > 0 and since bj < ay + q, lim ay + q = 
0 (see (6), (7)), we have that lim fy = 0. It follows from this and from a 
convexity argument that 

(8) \im(f](x)-fi(xi)) = 0 and lim(p(xy, Dfj,n,p)-p(x, D w ) ) = 0 

We now show that beginning with some /o, each / 2 ( x ) > l —ô. Suppose the 
contrary is true, i.e. that there is a subsequence j k , and elements hkeS* such 
that hk

l(x)>fjk(x) + 8. Then we would have by convexity arguments 

aik >2(h2
k(x) + jp2(x, Dhk,n,p)) + 2(/2(xJk) + i p2(x,,, D ^ ) ) 
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= 2(hftx) - /?(x)) + y (p2(x, Dhk,n,p) - p2(x, Df]k,n,p)) 

+ 2(/?k(x) + y p2(x, D/]k,n,p)) + 2(/fk(xJk) + y p2(xJk, D ^ ) 

- (/£(* + x j + y P2(* + xk, Dfi^ - ck 

>2(h 2 (x) - / 2 (x) ) + y (p2(x, Dhk,n,p) - p2(x, Df]k,n,p))- cJk 

> 2 S - y - c f k > ô - q k . 

Since lim cik = 0, we have arrived to the contradiction with the fact that 
lim Oj-,= 0. Thus, beginning with some jo, / 2 (X) > 1 - S and therefore Df. n p = Df n p. 
So, by combining (8) with (4), we have that starting with some index j 0 , it must 
be that 

p(xi? Df^p)<e/2. 

Since dim Df,n,p<
00 and {x,} is bounded, one can easily find a finite e - n e t for 

{Xj}. This completes the proof of Lemma 1. 

THEOREM 1. Let the norm |-| of a Banach space Y have the following two 
properties 

(i) H is WLUR and 
(ii) |-|*-the dual norm of \-\ on X*-is LUR. 

Let X be a Banach space which admits a bounded linear operator T of X into Y 
such that T*Y* is norm dense in X*. Then X admits an equivalent LUR norm 
the dual of which is also LUR. 

Proof. By a result in [3], X admits an equivalent norm, the dual of which is 
LUR. So, having in mind the Asplund's averaging technique (see [1] or [2]), to 
finish our proof by applying Lemma 1, it suffices to show that X admits an 
equivalent WLUR norm. This is easy to see, one can just construct the norm 

||x|| = (|x|2 + |Tx|2)1/2, for x e X : 

Then if we assume that xn, x e X are such that lim 2 ||x||2 + 2 | |xn | |2- ||x + x j | 2 = 0, 
then by the convexity argument, we have that {xn} is bounded and that 
lim Txn = Tx in the weak topology of Y, because of WLUR of |-| of Y. Thus, if 
/ e Y*, then lim T*/(xn) = lim f(Txn) = f(Tx) = T*/(x) and since T* Y* is norm 
dense in X* and {xn} is bounded, we have that lim xn = x in the weak topology 
of X This shows that ||-|| is WLUR. The proof of Theorem 1 is completed. 
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Remark 1. Theorem 1 applies e.g. if X* is WCG. To see this use the well 
known fact that X* then admits a relatively weakly compact Markusevic basis, 
i.e. biorthogonal system {ea, /„}, aeT, ea eX* , fa eX** such that sp{ea} = X*5 

{fa} is total on X* and such that {ea} is relatively weakly compact (see e.g. [3]). 
Then it is easy to see that the map T of X into c0(T) defined by Tx(a) = ea(x) 
can be used for Theorem 1, since c0(T) actually admits an equivalent LUR 
norm the dual of which is also LUR (see e.g. [2]). Since there are subspaces of 
WCG spaces, which are not themselves WCG ([6]), the following Theorem 
generalizes the remark above. 

THEOREM 2. Let X be a Banach space such that X* is a subspace of a WCG 
Banach space Y. Then X admits an equivalent LUR norm. 

Proof. By the result in [3], X admits an equivalent norm the dual of which is 
LUR. So, to apply Lemma 1 we need only to show that X admits an equivalent 
WLUR norm. We show in fact that X** admits an equivalent W*LUR norm. 
For it first take a bounded linear w*-w continuous one-to-one map T of Y* 
into c0(r) for some T (see Remark 1) and |-| be an equivalent LUR norm on 
c0(r). Then it is easy to check that the norm 

ll/lh(l/|2 + |T/|2)1/2, for /cY*, 

is a W*LUR dual norm on Y*: Assuming that lim 2 ||/n||
2 + 2 | | / | |2-f|/+/n | |2 = 0, 

we have by the LUR property of |-|, that lim Tfn = Tf, and since T is a w*-w 
homeomorphism on the balls of Y, we have that lim fn=f pointwise on Y 
Now, to see that X** has an equivalent W*LUR norm, obviously it suffices to 
show the following simple fact: If Z 2 is a Banach space such that Z* is W*LUR 
and Zx is a subspace of Z2 , then Z% is also W*LUR. To see this, take /, fn e Z% 
such that lim 2 |/|2 + 2 \fn\

2~\f+fn\
2 = Q- Let /, fn be the corresponding classes 

to /, fn in Z*/Zt and take f, f'neZ*2 such that f'ef, \f'\ = \f\, f^efn9 | / ; | = |/n | . 
Then we have 0 < 2 | / f + 2 \ff

n\
2-\f + / ; | 2 < 2 |/|2 + | / n | 2 - | / + / n | 2 = 2 |/|2 + 

2 l /n | 2 - | /+ /n | 2 -^0 , and thus l i m / ; = / ' in the w* topology of Zf, since Z\ is 
W*LUR. Therefore lim/n = / in the pointwise topology of Z*. This completes 
the proof of Theorem 2. 
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