Canad. Math. Bull. Vol. 17 (1), 1974

A PARTITION THEOREM OF SUBBARAO

BY

HANSRAJ GUPTA

In a recent paper, Subbarao [1] has used generating functions to prove the

THEOREM. Let C(n) be the number of partitions of n such that all even multiplicities of the parts are less than 2m, m > 1; and all odd multiplicities are at least (2r+1) and at most $2(m+r)-1, r \ge 0$. Let D(n) be the number of partitions of n into parts which are either odd multiples of (2r+1) or are even and not divisible by 2m. Then

$$C(n) = D(n).$$

We give here a straight-forward

Proof. Let

(1)
$$a_1^{m_1} a_2^{m_2} a_3^{m_3} \cdots a_k^{m_k}$$

be a C-type partition of n with a's distinct positive integers and

(2)
$$m_{j} = \begin{cases} 2x_{j}, & 0 < x_{j} < m; \\ 2(y_{j}+r)+1, & 0 \le y_{j} < m; \end{cases}$$

according as m_i the multiplicity of a_i is even or odd.

Without loss of generality, we can assume that in (1) the first k_0 of the *a*'s have an even multiplicity, the next k_1 an odd multiplicity exceeding (2r+1) and the rest an odd multiplicity equal to (2r+1).

Then, we have

$$n = 2\sum_{j=1}^{k_0} a_j x_j + \sum_{j=k_0+1}^{k_0+k_1} \{2(y_j+r)+1\}a_j + (2r+1)\sum_{j=k_0+k_1+1}^{k} a_j$$
$$= 2\left\{\sum_{j=1}^{k_0} a_j x_j + \sum_{j=k_0+1}^{k_0+k_1} a_j y_j\right\} + (2r+1)\sum_{j=k_0+1}^{k} a_j$$
$$= 2M + (2r+1)N.$$

Notice that

(3)

$$N = \sum_{j=k_0+1}^k a_j$$

provides a partition of N into distinct summands, to which corresponds in the manner of Sylvester [2] a unique partition of N into odd parts repetitions allowed.

Let this be given by

(4)
$$b_1^{u_1} \ b_2^{u_2} \ \cdots \ b_h^{u_h}$$

Again

$$M = \sum_{j=1}^{k_0} a_j x_j + \sum_{j=k_0+1}^{k_0+k_1} a_j y_j$$
$$= \sum_{j=1}^{k_0+k_1} a_j z_j,$$

where $z_j = x_j$ or y_j according as j is or is not

$$(5) \qquad \leqslant k_0; \, z_j > 0;$$

provides a partition of M in which the multiplicity of a_j is at most (m-1). Corresponding to this we have the unique partition

(6)
$$c_1^{d_1} c_2^{d_2} c_3^{d_3} \cdots c_v^{d_v}, \quad v = k_0 + k_1$$

of M, with

(7)
$$c_j = a_j/m^t, \quad d_j = m^t z_j$$

t being the index of the highest power of m which divides a_j , $t \ge 0$. Evidently the c's in (6) are not necessarily all distinct.

We thus obtain the D-type partition

(8)
$$(2c_1)^{d_1}(2c_2)^{d_2}\cdots(2c_v)^{d_v}\{(2r+1)b_1\}^{u_1}\{(2r+1)b_2\}^{u_2}\cdots\{(2r+1)b_h\}^{u_h}$$

of n from the C-type partition (1).

In the reverse process, (7) and the fact that $z_j < m$, play an important role but the reconstruction of (1) from (8) offers no special difficulty. The correspondence between the *C*-type and *D*-type partitions of *n* being one-one and onto, the theorem follows.

EXAMPLE. Let us find the C-type partition corresponding to the D-type partition

$$2^3$$
 4^{37} 8^{11} 14^2 9^2 15^1

of 303, when r=1, m=5.

Taking the even parts first, since

$$37 = 25 + 2.5 + 2;$$
 and $11 = 2.5 + 1;$

we have

$$d_1 = 3, d_2 = 25, d_3 = 10, d_4 = 2, d_5 = 10, d_6 = 1, d_7 = 2;$$

Thus

$$z_1 = 3$$
, $z_2 = 1$, $z_3 = 2$, $z_4 = 2$, $z_5 = 2$, $z_6 = 1$, $z_7 = 2$;
 $a_1 = 1$, $a_2 = 50$, $a_3 = 10$, $a_4 = 2$, $a_5 = 20$, $a_6 = 4$, $a_7 = 7$.

 $c_1 = 1$, $c_2 = 2$, $c_3 = 2$, $c_4 = 2$, $c_5 = 4$, $c_6 = 4$, $c_7 = 7$.

[March

A PARTITION THEOREM OF SUBBARAO

Taking the odd parts now, we get

1974]

$$b_1 = 3, \quad b_2 = 5; \quad u_1 = 2, \quad u_2 = 1.$$

The Sylvester partition into distinct parts corresponding to the partition 3^2 5 into odd parts, is readily found to be 5^1 4^1 2^1 . We use the graph:

* * * * * * * * * *

for the purpose. The required C-type partition, therefore, is

 1^{6} 50^{2} 10^{4} 2^{4} 20^{4} 4^{2} 7^{4} 5^{3} 4^{3} 2^{3}

i.e. $1^6 50^2 10^4 20^4 7^4 5^3 4^5 2^7$.

References

1. M. V. Subbarao, On a partition theorem of MacMahon-Andrews, Proc. Amer. Math. Soc., 27 (1971), 449-450.

2. H. Gupta, On Sylvester's theorem in partitions, Indian Jour. Pure and Applied Maths., 2 (1971), 740–748.

PANJAB UNIVERSITY, CHANDIGARH, INDIA

Allahabad University, Allahabad, India 123