A PARTITION THEOREM OF SUBBARAO

BY
HANSRAJ GUPTA

In a recent paper, Subbarao [1] has used generating functions to prove the

Theorem. Let $C(n)$ be the number of partitions of n such that all even multiplicities of the parts are less than $2 m, m>1$; and all odd multiplicities are at least $(2 r+1)$ and at most $2(m+r)-1, r \geq 0$. Let $D(n)$ be the number of partitions of n into parts which are either odd multiples of $(2 r+1)$ or are even and not divisible by $2 m$. Then

$$
C(n)=D(n)
$$

We give here a straight-forward
Proof. Let

$$
\begin{array}{lllll}
a_{1}^{m_{1}} & a_{2}^{m_{2}} & a_{3}^{m_{3}} & \cdots & a_{k}^{m_{k}} \tag{1}
\end{array}
$$

be a C-type partition of n with a 's distinct positive integers and

$$
m_{j}= \begin{cases}2 x_{j}, & 0<x_{j}<m ; \tag{2}\\ 2\left(y_{j}+r\right)+1, & 0 \leq y_{j}<m ;\end{cases}
$$

according as m_{j} the multiplicity of a_{j} is even or odd.
Without loss of generality, we can assume that in (1) the first k_{0} of the a 's have an even multiplicity, the next k_{1} an odd multiplicity exceeding $(2 r+1)$ and the rest an odd multiplicity equal to $(2 r+1)$.

Then, we have

$$
\begin{aligned}
n & =2 \sum_{j=1}^{k_{0}} a_{j} x_{j}+\sum_{j=k_{0}+1}^{k_{0}+k_{1}}\left\{2\left(y_{j}+r\right)+1\right\} a_{j}+(2 r+1) \sum_{j=k_{0}+k_{1}+1}^{k} a_{j} \\
& =2\left\{\sum_{j=1}^{k_{0}} a_{j} x_{j}+\sum_{j=k_{0}+1}^{k_{0}+k_{1}} a_{j} y_{j}\right\}+(2 r+1) \sum_{j=k_{0}+1}^{k} a_{j} \\
& =2 M+(2 r+1) N .
\end{aligned}
$$

Notice that

$$
\begin{equation*}
N=\sum_{j=k_{0}+1}^{k} a_{j} \tag{3}
\end{equation*}
$$

provides a partition of N into distinct summands, to which corresponds in the manner of Sylvester [2] a unique partition of N into odd parts repetitions allowed.

Let this be given by

$$
\begin{array}{llll}
b_{1}^{u_{1}} & b_{2}^{u_{2}} & \cdots & b_{h}^{u_{h}} . \tag{4}
\end{array}
$$

Again

$$
\begin{aligned}
M & =\sum_{j=1}^{k_{0}} a_{j} x_{j}+\sum_{j=k_{0}+1}^{k_{0}+k_{1}} a_{j} y_{j} \\
& =\sum_{j=1}^{k_{0}+k_{1}} a_{j} z_{j},
\end{aligned}
$$

where $z_{j}=x_{j}$ or y_{j} according as j is or is not

$$
\begin{equation*}
\leqslant k_{0} ; z_{j}>0 \tag{5}
\end{equation*}
$$

provides a partition of M in which the multiplicity of a_{j} is at most ($m-1$). Corresponding to this we have the unique partition

$$
\begin{array}{llllll}
c_{1}^{d_{1}} & c_{2}^{d_{2}} & c_{3}^{d_{3}} & \cdots & c_{v}^{d_{v}}, & v=k_{0}+k_{1} \tag{6}
\end{array}
$$

of M, with

$$
\begin{equation*}
c_{j}=a_{j} / m^{t}, \quad d_{j}=m^{t} z_{j} \tag{7}
\end{equation*}
$$

t being the index of the highest power of m which divides $a_{j}, t \geq 0$. Evidently the c 's in (6) are not necessarily all distinct.

We thus obtain the D-type partition

$$
\begin{equation*}
\left(2 c_{1}\right)^{d_{1}}\left(2 c_{2}\right)^{d_{2}} \cdots\left(2 c_{v}\right)^{d_{v}}\left\{(2 r+1) b_{1}\right\}^{u_{1}}\left\{(2 r+1) b_{2}\right\}^{u_{2}} \cdots\left\{(2 r+1) b_{h}\right\}^{u_{h}} \tag{8}
\end{equation*}
$$

of n from the C-type partition (1).
In the reverse process, (7) and the fact that $z_{j}<m$, play an important role but the reconstruction of (1) from (8) offers no special difficulty. The correspondence between the C-type and D-type partitions of n being one-one and onto, the theorem follows.

Example. Let us find the C-type partition corresponding to the D-type partition
$\begin{array}{llllll}2^{3} & 4^{37} & 8^{11} & 14^{2} & 9^{2} & 15^{1}\end{array}$
of 303 , when $r=1, m=5$.
Taking the even parts first, since

$$
37=25+2.5+2 ; \quad \text { and } \quad 11=2.5+1
$$

we have

$$
\begin{aligned}
& d_{1}=3, \quad d_{2}=25, \quad d_{3}=10, \quad d_{1}=2, \quad d_{5}=10, \quad d_{6}=1, \quad d_{7}=2 ; \\
& c_{1}=1, \quad c_{2}=2, \quad c_{3}=2, \quad c_{4}=2, \quad c_{5}=4, \quad c_{6}=4, \quad c_{7}=7 .
\end{aligned}
$$

Thus

$$
\begin{array}{llllll}
z_{1}=3, & z_{2}=1, & z_{3}=2, & z_{4}=2, & z_{5}=2, & z_{6}=1, \\
z_{7}=2
\end{array},
$$

Taking the odd parts now, we get

$$
b_{1}=3, \quad b_{2}=5 ; \quad u_{1}=2, \quad u_{2}=1
$$

The Sylvester partition into distinct parts corresponding to the partition $3^{2} 5$ into odd parts, is readily found to be $5^{1} 4^{1} 2^{1}$. We use the graph:

for the purpose. The required C-type partition, therefore, is

1^{6}	50^{2}	10^{4}	2^{4}	20^{4}	4^{2}	7^{4}	5^{3}	4^{3}	2^{3}

i.e. $\begin{array}{llllllll}1^{6} & 50^{2} & 10^{4} & 20^{4} & 7^{4} & 5^{3} & 4^{5} & 2^{7} .\end{array}$

REFERENCES

1. M. V. Subbarao, On a partition theorem of MacMahon-Andrews, Proc. Amer. Math. Soc., 27 (1971), 449-450.
2. H. Gupta, On Sylvester's theorem in partitions, Indian Jour. Pure and Applied Maths., 2 (1971), 740-748.

Panjab University, Chandigarh, India
Allahabad University, Allahabad, India

