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ABSTRACT. The spatial distribution of galaxies is compared with model
distributions. It is demonstrated that giant and dwarf galaxies in the
Local Supercluster occupy statistically identical regions. Various tests
suggest that galaxy formation is biased since all unbiased model distri-
butions are in confliet with observed distribution of galaxies., Multi-
fractal analysis shows that a cold dark matter dominated universe with
biased galaxy formation has a fairly constant fractal dimension over a
broad range of scales. This contrasts with the observed distribution
which does not show simple fractal features.

1 INTRODUCTION

Our understanding of the formation and evolution of the large scale
structure in the Universe has a number of weak points: we have still no
firm evidence on the nature of dark matter, very 1little is known on
physical processes involved in galaxy formation, there is no clear un-
derstanding how to explain the presence of large voids and coherent
motion of superclusters. In this report we shall discuss the large scale
distribution of galaxies and compare observations with theoretical mo-
dels.

Currently popular structure formation scenarios are based on either
hot or cold dark matter (CDM) dominated universes. Observational predic-
tions of these rivaling scenarios are different. Both scenarios have one
difficulty in common: not all test particles can be identified with
galaxies, Some particles remain in primordial form and do not partiei-
pate in galaxy formation. The absence of galaxy formation in low density
regions was emphasized already by Zeldovich and his collaborators
(Zeldovich, Einasto and Shandarin 1982 and references therein). Now this
phenomenon is called biased galaxy formation (Kaiser 1984). The biasing
mechanism is physically related to processes involved in galaxy forma-
tion. Since our knowledge on these processes is still poor we must first
study biasing from an empirical point of view by comparing the distribu-
tion of test particles in biased model samples with the distribution of
galaxies.
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A strong test of the rival scenarios is the spatial distribution of
galaxies of different luminosity. In CDM dominated scenarios the dis-
tribution should depend on the luminosity. It is expected that giant
galaxies populate preferentially high density regions but dwarf galaxies
can be found also in a low density environment (Dekel and Silk 1986). In
hot dark matter scenarios this problem has not been addressed specifi-
cally, but no prominent difference in spatial distribution is expected
(Doroshkevich, Shandarin and Saar 1978).

To test the scenarios and, more important, to obtain a sensible
description of the complex geometry of the large-scale structure, a
number of authors (Mandelbrot 1982, Lachieze—Rey 1986) have proposed
fractdl models of the galaxy distribution. It is not clear, however, of
the observed distribution has fractal features or not.

In the following we give a review of our recent results concerning
these problems. We have used conventional tests as well as some new ones
— the distribution of nearest neighbors and the fractal and multifractal
analysis. More detailed reports are in preparation (Saar et al. 1987,
Einasto 1987, Jones et al. 1987).

2. THE DISTRIBUTION OF BRIGHT AND FAINT GALAXIES

In a recent study we have found that voids are essentially empty: they
contain neither giant nor dwarf galaxies (Einasto et al. 1986a). Now we
address a different problem: do giant and dwarf galaxies populate iden-
tical or various regions? In the second case galaxies of various magni-
tude could populate regions of differing mean density, say dwarfs for-
ming low density halos around densely packed cores of giant galaxies in
clusters, as observed in groups with one concentration center.

To get an answer to these questions Einasto (1987) compared the dis-
tribution of galaxy samples with a number of test samples. The sample
Virgo A contains galaxies brighter than -17.5, the sample Virgo B
consists of galaxies with absolute magnitudes between -15.0 and -17.5,
the sample Virgo C is the sum of Virgo A and B. Absolute magnitudes
correspond to Hubble constant H = 100 km/s/Mpc, and distances are given
in units of nh~1 Mpc , where h is the Hubble constant in units of 100
km/s/Mpc. The absolute magnitude -17.5 corresponds to the apparent mag-
nitude limit, m = 14.5, of the CfA redshift survey at the far end of the
samples. The samples have a cubic geometry, being approximately centered
on the Virgo cluster. The supergalactic coordinates X,, Y,, Zy, of the
center, the cube size L, the number of galaxies, N, and the absolute
magnitude limit, M,, are given in Table 1.

The sample Virgo A is essentially complete, but the sample Virgo B
is incomplete in respect to dwarf galaxies. However, in the box under
study it contains all dwarf spiral and irregular galaxies observed by
Fisher and Tully (1981) in their radio survey which has a limiting red-
shift about 3200 km/s, thus being the most complete dwarf sample with
measured redshifts currently available,

A pair of test galaxy samples was generated with statistically
identical spatial distribution. For this purpose the combined sample
Virgo C was divided at random into two equal parts, C1 and C2. To find
the sensitivity of the method galaxy samples with shifted spatial dis-
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tribution were generated by adding to X, Y and Z coordinates of all
galaxies in the sample Virgo B 200 km/s in redshift space. Finally the
sample Virgo C was divided by cluster analysis into two parts, Cc and
Cj, containing galaxies in high and low density environment, respective-
ly. The neighborhood radius was chosen to get approximately equal number
of galaxies in both parts.

Table 1, Data on observed samples

Sample Xo Yg Z, L Mo N Pm c(o0)
h™* Mpe
Virgo A 0 15 0 20 -17.5 524 0.128 0.308
Virgo B 0 15 0 20 -15.0 -17.5 488 0.119
Virgo C 0 15 0 20 -15.0 1012 0.247
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Fig. 1. The integral nearest neighbors distributions for samples
Virgo A and B sample pairs A-B, B-A (panel a), sample pairs Virgo C1 and
C2 (panel b), pairs Virgo A and shifted Virgo B (BS, panel c¢), and clus-
tered and isolated galaxy sample pairs Virgo C,; and Virgo C;j (panel d).
For reference the last panel includes the distribution for the pair B-A.

After some trial it was found that the most sensitive statistic to
compare the spatial location is the cross distribution of nearest neigh-
bors for all samples and sample pairs: the distribution of nearest
giants (Virgo A) for all dwarfs (Virgo B) and vice versa etc. The resul-
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ting distributions are plotted in Fig. 1. The number of galaxies in all
samples is approximately equal, which makes the comparison of distribu-
tions easy (instead of normalized radii we can use absolute neighborhood
radii as an argument of the nearest neighbor distribution).

The comparison of results demonstrates that the nearest neighbor
distributions for bright and faint galaxies are practically identical
and, moreover, coincide with the pairwise distributions A-B, B-A. The
Kolmogorov test tells the same - all distributions coincide at a 99%
confidence level. This result tells us that the samples A and B cover
the same region.

Additional evidence for this fact is given by panel b, which shows
that by randomly dividing the whole sample (bright plus faint galaxies)
we get the same results as for samples of different luminosity.

On the contrary, the spatial distributions of clustered and isolated
galaxies are extremely different, as demonstrated by panel d. And, of
coarse, the pair distributions for shifted samples differ strongly from
those for the real samples. The last result shows that the nearest
neighbor test is rather sensitive to even small differences in spatial
distribution.

We come to the conclusion that bright and faint galaxies populate
statistically identical regions in space. Presently we do not know whe-
ther the Virgo Supercluster is representative for the whole Universe or
not. To check this point larger and deeper dwarf galaxy samples are
needed.

3. BIASED GALAXY FORMATION

An important property of the observed distribution of galaxies is the
absence of visible objects between galaxy filaments and superclusters.
Numerical simulations represent the formation of a connected network of
filaments. However, simulations also demonstrate the presence of a
striking difference between theory and observations: in simulations
there exists a more or less homogeneous population of non-clustered test
particles, which has no counterpart in the observed distribution.
Analytical calculations suggest that it is impossible to evacuate
voids between galaxy filaments completely, since gravitation, the only
force responsible for the formation of large scale structure, works very
slowly (Einasto, Joeveer and Saar 1979). Thus there must be primeval
particles in voids, seen in numerical simulations as the population of
field particles. This discrepancy between simulations and observations
has a simple explanation: suppose that galaxies form only in a high-den-
sity environment, and in regions of low density matter remains in the
primeval form (Zeldovich, Einasto and Shandarin 1982). To bring simula-
tions into agreement with observations we have used two biasing schemes
in the present study. In the first case the bias level n is given by
the threshold density in units of mean density at the start of model
calculations corresponding to the end of the linear regime, and in the
second case - at the present epoch.
We must stress that both of the biasing rules used are extremely
simplified and have been chosen only by their present popularity among
astronomers. The real goal of biasing is to transform the distribution
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of total density into distribution of galaxies, and thus a good biasing
scheme must mimic the galaxy formation process as well as possible. So
far no biasing scheme has been built on this principle, and, consequent-
ly, all our comparisons between simulations and observations stand in
doubt. The problem of galaxy formation and physically justified biasing
seems to be one of the most urgent project in cosmology.

At present we consider the results presented below as giving some
hints to be taken into account in constructing future biasing prescrip-
tions. Tables and Figures correspond to the first biasing case (both
cases yield rather similar results).

The numerical simulation used (Gramann 1987) corresponds to a CDM do-
minated scenario with a positive cosmological constant. The input para-
meters of the model were adjusted to get 9, = 0.8 and Qyatter = 0.2 for
the present epoch. The simulation was made with 643 particles in a 643
mesh, The data on model samples are given in Table 2, where samples are
designated by GR-n, index n > 0 denoting the bias level, and index 0
labeling unbiased samples with all test particles included.

Table 2. Data on model samples

Sample L Bias N Pm c(0)
level
GR-0 40 0.0 262144 8.000 1.000
1.0 40 1.0 174227 5.317 0.675
1.5 40 1.5 115802 3.534 0.453
2.0 40 2.0 75825 2.314 0.297
2.5 40 2.5 50823 1.551 0.196
3.0 40 3.0 35160 1.073 0.126
3.5 40 3.5 25100 0.766 0.088
4.0 40 4.0 18055 0.551 0.066

For both biasing rules we have varied the bias level and compared
the distribution of test particles with the observed distribution of
galaxies in the Virgo Supercluster. Several methods have been tried, and
two of them have been found to be rather sensitive to the bias level,
the filling factor test and the multiplicity distribution of particles.

3.1 Filling factor test. In this test we calculated the filling factor
of model and observed samples for a wide interval of threshold densities
which divide the space into the 'empty’ and ’'filled’ regions., To do so
we calculated a smooth density field for all samples using a cubic ‘top
hat’ smoothing method as customary in numerical modeling of structure
evolution (Hockney and Eastwood 1981). The smoothing length was taken as
1=1.25 h 1 Mpe.

The filling factor of model samples depends critically on the bias
level. In unbiased samples the density is nonzero over the whole space,
thus at zero threshold density practically the whole space is ’'filled’.
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All biased samples contain really empty regions of zero density. The
volume of these empty regions is the larger the higher is the bias
level. The filling factor at zero threshold density, C(0), decreases
with growing bias level, reaching C(0) = 0.066 for the bias level 4.0
(see Table 2). The real Universe also contains regions completely void
of luminous galaxies, and the filling factor at zero threshold density
level C(0) = 0.308. This value determines the bias level which brings
models into agreement with observations, to be close to n = 2. The fil-
ling factor versus threshold density curves are presented in Fig. 2.
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Fig. 2. Filling factor versus threshold density for model and obser-
ved samples. Model samples are labeled with the bias level parameter n,
the value n = 0 corresponding to unbiased samples.

3,2 Multiplicity test. We use the multiplicity function to determine the
fraction of quasi-randomly distributed particles. To make calculations
easier and the mean density of particles per unit volume, pp, in model
samples closer to the respective density in observed samples we have
picked from the original sample 323 random particles, From this sample
we chose subsamples for different bias levels. Thereafter by cluster
analysis the fraction of single (isolated) objects, and of systems of
higher multiplicity has been found. The multiplicity function has been
calculated for a series of neighborhood radii, and the results are pre-
sented in Fig. 3.

As expected, the fraction of isolated galaxies is sensitive to the
bias level. Unbiased samples have the largest fraction of isolated
galaxies for a given neighborhood radius (radii are expressed in units
of the Poisson radius, i.e. the radius of a sphere which contains in the
mean one particle). With increasing bias level the fraction of isolated
particles decreases, and relatively more particles are located in large
systems. Best agreement with observations is achieved for a bias level
n = 1, We see also that in case of systems of higher multiplicity the
model curves fit observations rather poorly.

3,3 Discussion of bias level tests. The filling factor and multipliecity

tests both demonstrate the need for biased galaxy formation. The bias
level needed to bring models into agreement with observations is, how-
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ever, different. The mean density, pp, of particles per cell of length 1
in model samples is much higher than in the observed one (see Tables 1
and 2). To clarify possible reasons for this discrepancy we have studied
the density dependence of both tests by generating model subsamples with
smaller number of particles.

1-0 T T T T T T

0.8

-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5 1.0
log(r/rpois)

Fig. 3. The multiplicity function versus neighborhood radius for
isolated particles and systems of multiplicity 2 - 3, 4 - 31, and 32 and
higher for the observed and model samples. The observational results are
given by solid line, and model curves by dashed lines marked by their
bias level.

Surprisingly enough, we come to the conclusion that principal pro-
perties of the multiplicity distribution are fairly stable and almost
independent on the number density of samples. A similar check indicates
that filling factors are also practically identical for model samples
with both high and low mean particle densities. Thus the reason for the
discrepancy must lie elsewhere.

One possibility to explain the discrepancy may be the fact, that all
test particles in model calculations left over after the biasing proce-
dure have been identified with galaxies. This may not be the best bias-
ing scheme. Actually galaxies can be formed by coalescing of a number of
test particles, as suggested by White et al. (1986). If this is the case
then we cannot use the multiplicity function test in the present form
since isolated particles may not correspond to real galaxies.

Whatever bias level is the best, it must be the same for both giant
and dwarf galaxies since the distribution of all galaxies is similar.
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4. FRACTAL DESCRIPTION OF LARGE-SCALE STRUCTURE

The complicated geometry of superclusters does not lend itself easily to
quantitative description. More or less regular patterns of this geometry
are often deformed by seemingly irregular features. One possible way to
follow is the study of the topology (connectedness) of large scale
structure (Gott, Melott and Dickinson 1986, Einasto et al. 1986b) and
another one seems to be the use a fractal description of this geometry
(Mandelbrot 1982).

In using the fractal description we are confronted with the follo-
wing problem: is there any scale interval over which the geometry of
superclusters can be considered approximately self-similar? To answer
this question one needs to determine the fractal dimension D of known
samples of galaxies for different scales. We use here an analog of the
capacity dimension

_ d(n NQ))
D(1) d(ln 1/1) @)

obtained by counting the sample volume with cubes of side 1 (the scale)
and counting the number of cubes containing galaxies (N). This dimension
corresponds to the exponent in the relation M(r) ~ rD, usually used to
calculate fractal dimensions, where M is the mean number of galaxies in
a sphere of radius r, The first tests of this kind have been done by
Jones et al. (1987) and show that one can find a self-similarity (D is
constant for a significant scale interval) only in case of numerical
simulations (as before, the CDM scenario with cosmological term was
used). The Coma sample exploited for the fractal dimension test is coni-
cal, has a limiting redshift V, = 8000 km/s, magnitude limit M, = -20,
declination limit & ) 0°, galactic latitude limit b > 40°, and contains
425 galaxies. As seen from Fig. 4, the fractal dimension of the real
sample changes continuously. The Coma sample consists only of supergiant
galaxies of low spatial density, thus it does not describe well the fine
structure on scales 1 ¢ 5 n~1 Mpe.

Another problem that must be answered is the possibility of the
existence of a mixture of fractal sets in the data. This sort of geo-
metry is predicted, e.g. by the classical adiabatic or ’pancake’ theory,
where one may obtain large-scale pancakes, chains and more or less sphe-
rical clusters. The way to describe this situation is to use the recent-
ly developed multifractal formalism (Halsey et al. 1986, see also a
poster by V. Martinez at this Symposium). The trick here is to study the
scale dependence (dimension) of the sum

B =Pl (2)
p;i>0

where pj = Ny/N is the relative number of galaxies in the i-th box of
side 1, and the exponent q can be chosen freely. If we take q = 0, this
sum counts the number of occupied regions and we get once more the nor-
mal fractal dimension. With increasing q the sum (2) is dominated by
more dense regions, and negative values of q pick out the most rarefied
regions of the sample. For given scale size 1, one can transform the
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quantities q and B into more physical parameters - the exponent a, des—
cribing a local density law through the mass - scale relation m(l) ~ 1¢
and the fractal dimension, f, of all regions with a common scaling expo-
nent o. The resulting f(e) curve is called a multifractal spectrum and
describes well both the local structure and the geometry of the dis-
tribution. A few examples are good enough to show this - for a classical
self-similar fractal the spectrum reduces to one peak, with a = f = D;
for a mixture of sheets and chains one gets two peaks in the spectrum at
a =2 and 1, and so on.

0 2 L alpha
-2.0 -15 -1.0 -0.5

log 1

Fig. 4 (left). Fractal dimensions, D, of the observed Coma sample
(o), the full (f) and biased (b, bias level n = 2) CDM simulations ver-
sus scale, 1 (in units of the sample size).

Fig. 5 (right). Multifractal spectrum - fractal dimension, f, versus
scaling exponent, o, for a biased axion simulation (case ’'b’ in Fig. 4).
The scale 1 = 1/20-th of the sample size.

Thus, even in the case of a constant fractal dimension it is better
to find the multifractal spectrum to reveal the real fractal content of
the data. Our example, displayed for the biased model case in Fig. 4, is
presented in Fig. 5. The spectrum starts at a = 0.4, corresponding to
the most concentrated region of the model, and ends near o = 2.8 (the
most rarefied regions have approximately uniform density, m(r) ~ r3).
The fractal dimension of those regions (f = 1) is not much less than the
full fractal dimension of the sample D = fpay = 1.5. We see that the
spread of local density law (a) and associated fractal dimension (f) is
rather large and we have a clear case of fractal mixture.

The multifractal approach is evidently useful for comparing simula-
ted models and observations, testing the features of density distribu-
tions that could not be tested before. Perhaps even more important is
the possibility of revealing distinet features in the spectra of the
observed structure which will reflect distinct physical mechanisms infl-
uencing the formation of the structure. In this context we may think
that the low density regions are spherical voids while the higher den-
sity regions are filamentary in nature. This could be quantitatively
tested, revealing itself in the f(a) curve.
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5. CONCLUSIONS

We have shown that:

(i) giant and dwarf galaxies occupy practically identical regions in
space, in conflict with a conventional CDM galaxy formation scenario;

(ii) unbiased model samples are in conflict with observations, de-
monstrating the need for a biased galaxy formation mechanism;

(iii) the dimension of the observed galaxy distribution does not re-
main constant for any large scale interval, casting doubt on simple
fractal models.

We thank Dr John Huchra for supplying us with a copy of his redshift
compilation (Huchra 1983) and our collaborator Mirt Gramann for permiss-
ion to use her results prior to publication.

REFERENCES

Dekel, A. and Silk, J., 1986. Astrophys. J. 303, 39.

Doroshkevich, A.G., Shandarin, S.F. and Saar, E., 1978. Mon. Not. R.
astr. Soc. 184, 643.

Einasto, J., Einasto, M., Gramann, M,, Melott, A. and Saar, E. 1986a.
Tartu Astr. Obs. Preprint A-7.

Einasto, J., Gramann, M., Einasto, M., Melott, A., Saar, E. and Saar, V.
1986b. Tartu Astr. Obs. Preprint A-9.

Einasto, J., Joeveer, M. and Saar, E., 1979. Tartu Astr. Obs. Preprint
(Mon. Not. R. astr. Soc. 193, 353, 1980).

Einasto, J., Klypin, A. A, and Saar, E., 1986. Mon. Not. R. astr. Soc.
219, 457.

Einasto, J., Klypin, A. A., Saar, E. and Shandarin, S.F., 1984, Mon.
Not. R. astr. Soc. 206, 529.

Einasto, M., 1987. Preprint.

Fisher, J.R. and Tully. R.B., 1981, Astrophys. J. Suppl. 47, 139.

Gott, J.R., Melott, A.L. and Dickinson, M., 1986. Astrophys. J. 306,
341,

Gramann, M., 1987. Preprint.

Halsey, T.C., Jensen, M.H.,, Kadanoff, L.P., Procaccia, I. and Shraiman,
B.I., 1986. Phys. Rev. A 33, 1141,

Hockney, R. W. and Eastwood, J. W., 1981, Computer Simulation Using
Particles, McGraw Hill, N. Y.

Huchra, J. P., 1983. Redshift compilation.

Jones, B.J.T., Martinez, V., Saar, E. and Einasto, J., 1987. Preprint.

Kaiser, N., 1984. Astroph. J. 284, LY.

Lachieze-Rey, M., 1986. Preprint.

Mandelbrot, B.B., 1982. The Fractal Geometry of Nature. Freeman and Co.,
San Francisco.

Saar, E., Einasto, J., Einasto, M. and Gramann, M., 1987. Preprint.

white, S.D.M., Frenk, C.S., Davis, M. and Efstathiou, G., 1986. Preprint
Steward Obs. No. 620.

Zeldovich, Ya.B., Einasto, J. and Shandarin, S.F., 1982, Nature,

300, 407.

https://doi.org/10.1017/5S0074180900136713 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900136113

