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Abstract

We characterize those analytic self-maps <p of the unit disc which generate bounded or compact com-
position operators Cv between given weighted Banach spaces H£° or H® of analytic functions with the
weighted sup-norms. We characterize also those composition operators which are bounded or compact
with respect to all reasonable weights v.

1991 Mathematics subject classification (Amer. Math. Soc): primary 47B38; secondary 3OD55, 46E15.

0. Introduction

The aim of this paper is to study boundedness and compactness of composition

operators Cv, Cv(f) = /oi/)on weighted Banach spaces of analytic functions, where

(p : D —• D is an analytic map on the unit disc D. We are interested in complex

spaces of the form

(1) / / ~ := //»(D) := {/ e //(D) : | | / L := supv(z)|/(z)| < oo},

(2) H°v := //°(O) := {/ e ff(O) : lim u(z)|/(z)| = 0},
|z|-M-

endowed with the norm || • ||u, where / / (D) denotes the space of analytic functions

on D and v : D —> K+ is an arbitrary weight, that is, bounded continuous positive

(which means strictly positive throughout the paper) function.
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Valencia, Spain, supported by DGICYT (Spain), grant no. SAB 95-0092 in the academic year 1995/96.
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Composition operators were extensively studied on various 'integral type' spaces of
analytic functions on the disc like Hardy spaces, Bergman spaces, Dirichlet spaces or
Bloch spaces (see, for example, [CM, Sh] and[J]) and weighted spaces of continuous
functions (see [SS]). The spaces H™ or H° are connected with the study of growth
conditions of analytic functions and were also studied in detail (see [SWl, SW2, RS,
BS, BBT, LI, L2]). Our purpose is to connect both topics.

Especially interesting are radial weights v, that is, v(z) — v(\z\). In that case,
if v = 1, then we get H^ = Hx the space of all bounded analytic functions and
H° = {0}. If limsupi-i^,- v(z) > 0, then obviously Hx = H^ with an equivalent
norm and also //t° = {0}. Moreover, Cv : H°° —• Hx is always bounded and it is

compact if and only if <p(D) c O (see [CM, Ex. 3.3.2]). Now, if lim,-,^,- v(z) = 0,
the so-called non-increasing majorant of u, that is, the radial function w : D —>• R+,
u(r) = sup{v(R) : ; • < / ? < 1}, is also continuous and tends to zero at the boundary.
By the maximum principle //H°° = Hx, //u° = H°, and the corresponding spaces are
isometric. On account of what was just said, we call any radial, positive continuous
function v : D —> R+, which is non-increasing with respect to ]z| and is such that
liiri|_-|^i- v(z) = 0, a typical weight. We will be mostly interested in the radial
weights but as we have seen we may assume that the weight is typical. Nevertheless,
we formulate our results in a more general (even non-radial) setting whenever it is
possible.

Let us explain the organization of the paper. In Section 1 we summarize prelim-
inaries on spaces H£° and H°. In Section 2 we collect results on boundedness of Cv

and in Section 3 analogous results on compactness. The last Section 4 contains some
results on /^-integral composition operators.

We finish the introduction with some notation. If 1 < p < oo and v is a weight,
we define the Banach space

(3) A"v := A$m •= U e H(D) : \\f\\" := f \f{z)\"v{zYdA{z) < oo),:= f

where dA is the 2-dimensional Lebesgue measure. If / ' : D —> C is an analytic
function, then M(f,r) := supM=,. | / ( z ) | is a log-convex non-decreasing function
(see the Hadamard Three Circle Theorem [C, V.3.13]). We reserve the letters v, w for
weights. We denote the natural numbers by N = (1, 2, 3. . . . } . By C, C", c etcetera
we denote positive constants which may vary from place to place but do not depend
on indices or variables in given formulas or inequalities.

1. The spaces H™ and H°

Notice that the norm topology on H™ is stronger than the topology xco of uniform
convergence on the compact sets of D. Assume for a while that lim,-^, v(z) = 0.
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Since /,. (z) := f(rz) tends in xco to / , the closed unit ball Bt° of H° is xco-dense in the
unit ball Bv of H^. This implies (see [BS, Th. 1.1], compare [RS,Th. 1]) that (//°)" =
H^° isometrically and the embedding of H° into H™ is the canonical embedding
into its bidual. Moreover, since point evaluations are continuous functionals on
H°, the pointwise convergence topology (denoted by xp) on H° is weaker than the
weak topology. Looking at the representation of (//")' (see [BS, Th. 1.1]), we
realize immediately that if <5_- is a point evaluation at z on H°, then for / e H™
we have (f, 8-_) = / ( z ) . Thus the pointwise convergence on H™ is weaker than its
weak-star topology. Since / /° is xp-dense in H™ and Cv is always xp-continuous,
C^ : H^ ->• H^r is equal to the bi-adjoint map of Cp : H° ->• H° whenever both
operators are well defined and lim -|^i v{z) = limj-j^i w(z) = 0.

In fact, from the papers of Lusky [LI, L2], we know that for radial weights and
under quite general assumptions H° ~ c0 and H™ — lx.

To each weight v corresponds the so-called growth condition u : ID) —> R+,u = l/v
and Br = {/ € / / (D) : | / | < «}. In [BBT] the new function u : D> -> R+ is defined
by «(z) := sup/ e S | / ( z ) | and the weight associated with v is defined by v := 1/M. It
is shown there that it and v have the following useful properties:

(i) 0 < ii < u and 0 < v < v, v is bounded;
(ii) u and v are continuous and, respectively, radial, non-decreasing and non-

increasing whenever u and v are so;
(iii) II/Ik. < 1 if and only if ||/IK-, < 1 for / e //(0>);
(iv) for every z e D there is / . e Bv with w(z) = | / ; (z) | ;
(v) if limi-i^i- v(z) = 0, then u(z) = sup/eB0 | / ( z ) | .

As in [T] a weight v is called essential if there exists a C > 0 such that v(z) <
v(z) < Cv(z) for all z e D.

There are many known criteria for v to be essential (see [BBT], especially Pro-
position 3.4 there). In particular, if viz) = \/M(f, \z\) for some analytic function
/ : D —> C, then v = v. It turns out that tending to zero at the boundary is preserved
by the tilde operation.

PROPOSITION 1.1. Let v be a weight on D. Then limu-K1- v(z) = 0, whenever
limi-i^] v(z) = 0. In particular, ifv is a typical weight, then v is typical as well.

COROLLARY 1.2. Ifk : D -> R+ is a radial weight then H%° is strictly bigger than
Hx if and only (/lim|_-|^i k(z) — 0.

PROOF OF PROPOSITION 1.1. Let us take u = l/v as usual; then the growth condi-
tion u tends to +00 at the boundary. Since there is a radial non-decreasing function
< u tending to +00 at the boundary, we may (and we will) assume that u is radial.

Let r,, € (0, 1), u(rn) = n. We take f0 = 0 and we define inductively a sequence
of functions (/„) analytic on a neighbourhood of D such that:
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(a) M(fj,r,) <i for i <j;
(b) M(/y, l) = yand/,(l) = y;
(c) M(fj-fj_urj)<2-J.

Assume that f\, ... , /„_) are defined satisfying (a) - (c) for j < n — 1. Then we
define bn, 0 < bn < 2~", such that bn < i — M(fn_i, r,) for / = 1 , . . . ,« . We define a
function g, analytic on a neighbourhood of D such that g(z) := a,,/(Rn — z)", where

It is easily seen that:

M(g,rn)<bn, g(D=h M(g,l)=\.

By the choice of bn we obtain that /„ = fn^+g satisfies conditions (a) - (c) for j — n.
Let us define / := lim^oo /„. Since M(f, rn) < n = u(rn) for n € M, we have
| / ( z ) | < u(z) + 1 for any z e O and there is a constant C such that | / ( z ) | < CM(Z)
for any z e D. Clearly, M(Z) > | / ( z ) | / C and l im i^ , - u(z) = +cx>. This completes
the proof.

In any case we can substitute v by v but unfortunately we have no easy way of
calculating v from v.

PROPOSITION 1.3. For every weight v we have isometrically H™ = H^ and, if
limu-K1- v(z) = 0, then H° = / /? .

PROOF. By the property (iii), H™ = //?° isometrically and H° is an isometric
(closed) subspace of //". As we mentioned before, if T = Cid : H° —> H°, then
7"' : / / j 0 0 -^ / / ~ is also equal to Cid : //s°° -> / / ~ . Clearly, if T were not onto, then
T" would have not been onto as well.

2. Boundedness of Cv

We give firstly necessary and sufficient conditions for the operator Cv to be bounded
on f/~.

PROPOSITION 2.1. Lef v and w be weights. The following statements are equival-
ent:

(i) the operator Cv : H™ -> / / ~ w bounded;
(ii) supzeDu;(z)/ii((p(z)) = M < oo,
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(iii) sup,€D w(z)/v((p{z)) = M < oo.

If v and w satisfy lim|-|_^i v(z) = l im^^!- w(z) = 0, then the above conditions are
equivalent to

(iv) the operator Cv : H° —»• H° is bounded.

REMARK. Contrary to many cases of classical function spaces, an analytic self-map
q> : D —> O does not necessarily induce a bounded composition operator for general
weights. For example, consider u(z) = w(z) = e~il~^r' and <p{z) = (z + l ) /2 .
Then v = v and, for z = r e R, v{r)/v{<p{r)) = e

i/0-r) for 0 < r < 1. Thus
v(r)/v(<p(?-)) ->• oo, when A- —> 1, so Q, is not bounded on H™.

If v is essential, then for every z e D w e have that v(z) < Cv{z), and the necessity
of (4) in the next corollary follows from this.

COROLLARY 2.2. Assume that v is an essential weight. The operator Cv : H^° —>
H^ is bounded if and only if

(4) mp:eDw(z)/v(<p(z)) < oo.

If vandwsatisfy Y\ml:^i- v(z) = lim|_-|^i- w(z) = 0,thenCv : H° —*• H° isbounded
if and only if (A) holds.

REMARKS. (1) If H™ = H°°, then C», : / / ~ -^ H™ is continuous for all weights
w and, if w tends to zero at the boundary CV(H™) c / / ° . On the other hand, by
Proposition 1.1 and by properties of associated weights, one can prove that if (zn) c D,
lim^sc \zn\ = 1 and v is a weight on D> tending to zero at the boundary, then there
is a sequence of functions /„ e Bv such that \fn{zn)\ —> oo as n —> oo. Thus, if

Hoc _ Hoo a n d 9^(|U) n 9 0 ^ 0 then Cvfn is unbounded in / / ~ . Finally, in that

case C^ : / / ~ -^ / / ~ is bounded if and only if<p(B) c D.
(2) The condition in the corollary is no more necessary for boundedness of Cv

whenever v is not essential. Let us take an arbitrary non-essential weight v and
w = v. Then, clearly limsupi.^,- w(z)/v(z) = +oo but Cid : H™ —> H™ is an
isometry.

PROOF OF PROPOSITION 2.1. (iii) implies (ii) is trivial as w < w.

(ii) implies (i): By assumption, we have w(z) < Mv(<p(z)) for all z € D. Thus

w(z)\f(<p(z))\ = —^-{i(^(z))|/(^(z))| < M\\f\U

(i) implies (iii) and (iv) implies (iii): If not, then there is a sequence (zn) c O, with
w(zn) > nv{(p{zn)) for all «. For all n, there exists /„ e Bv (which can be chosen in
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fi°, whenever lini|-|^i- v(z) = 0, by xp-density of B° in Br) such that \fn(<p(zn))\ >
u((p(zn))/2. By (i) or (iv), (/„ o <p) is bounded in H^(D) = //?"(£>), so there is
C > 0 such that \fn(<p(z))\w(z) < C for all z e D and all n e N. On the other hand,

\fn((p(z,,))\w(z,,) = \M<p(ztt))\v(<p(zn))w(ztt)/v((p(ztt)) > n/2

for all n, so we have a contradiction.
(iii) implies (iv): By (iii) implies (i) and Proposition 1.3, it suffices to show that
C v ( / ) e t f ? for e a c h / € / / ? .

Take / 6 //?. Given s > 0, there is r, e]0, 1[, such that v(z)\f(z)\ < s/M for
\z\ > r,. For|z| > r, we consider two cases: If |^(z)| > /i.then

s.)| ^p
v((p(z))

For \<p(z)\ < ru we have that there is r2 > ru 0 < /-2 < 1, such that

w(z)\f(<p(z))\ < w(z)sup|: |sri|/(z)| < e for \z\ > r2.

s for \z\ > r2.

THEOREM 2.3. Let v be a typical weight. The following assertions are equival-
ent:

(i) all operators Cv : H™ -> H™ are bounded;
(ii) all operators Cv : H° —>• //" are bounded;

(iii) the following inequality holds;

v(\ -2~"~x)
(5> i£ ; °

REMARK. For example, an essential weight v(z) = (1 — \z\)a, a > 0, satisfies the
conditions of Theorem 2.3 The condition (5) was used by Lusky [L2, p. 310], when
he studied the isomorphism //° ~ c0. Also see [SW2].

PROOF. By Proposition 2.1, (i) holds if and only if (ii) does.
By the Schwarz lemma, if <p(0) = 0, then \<p(z)\ < |z|foreveryz e D and therefore

Cv : / /~ -+ H™ is bounded. For pen, let

ap(z) = (p - z)/(l - pz),

that takes D onto itself. If each CUp is bounded, then all Q are bounded. Indeed, each
<p — ap o \jr, where \fr = ap o y>, p = <p(0) and \(f(0) = 0. We have to show that for
any p e l ) , Cap is bounded on //U°°(D) if and only if v satisfies (5).
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(i) implies (iii): Let us assume that all CUp are bounded. Then, by Proposition 2.1,
for every p e D there exist Mp > 0 such that v(z) < Mpv(ap(z)) for all z e D.
Since it is easily seen that supM=r |ap(z)| = (\p\ + r ) / ( l + \p\r), we get that v(z) <
MPv((\p\ + r)/(\ + \p\r)) for all \z\ = r. Let us define l(r) = v(l - r), s = 1 - r .

Since 1 - (\p\ + 1 - s ) / ( l + |p|Cl - s)) = s(l - |p | ) / ( l + |p | - |p |s) , we obtain
fors < 1/2 that

Finally, for p = 2/5, we use the second inequality in (6) to get M > 0 and s0 > 0
such that l(s) < M/( | ) for all s e]0, so[. This immediately implies (5).
(iii) implies (i): If (5) is satisfied, then / denned as above has the property that there
are M > 0 and t0 €]0, 1[ with l(t) < Ml{t/2) for all t > t0. Then for any c < oo we
find« € Nsuchthatc < 2" andhence/(?) < Mnl{'7). Wetakec =
Then by the first inequality in (6), for all p € D there is Mp > 0 with

i p i ( i - o y
lit) < Mf

for all t > t0. Clearly, this implies that for all p e D there exists Mp > 0 such that
for every \z\ = r we have that v(z) < Mpv{ap(z)) by the argument above.

THEOREM 2.4. Let <p : D> —>• D fee an analytic map. The following statements are
equivalent:

(i) /or any typical weight v the map Cv is bounded on H£°;
(ii) for every 0 e] — n, 7r], a6 o tp fixes a point in D>, w/iere afl(z) = e'"z,-

(iii) e/rner (p is a rotation or for any 9 e] — n, n], ^ = ote o cp fixes an attracting
point p0 e D, that is, ^r{pH) = pe andrj/n{z) -> p e uniformly on compact sets, where
i/f,, := \/f o • • • o i/r, (n times);

(iv) either <p is a rotation or liminf|r|_>i-(l — |^)(z)|)/(l — |z|) > 1;
(v) there is an rQ e ]0 , 1[ such that \<p(z)\ < \z\ for every z e D w//n |z| > r0.

For the proof of Theorem 2.4 we need the following result.

LEMMA 2.5. For any two increasing sequences rn —*• 1 and Rn —*• 1 such that

r0 < RQ < /'| < /?] < r3 < ?̂3 < • • • f/jere w an analytic map f : 0

. Af (/, /?„)
hm = oo,
»-<» Af (/, rfl)

vvnere Af (/, r) = sup|_|=). | / ( z ) | .
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PROOF. We define f0 = 1. Assume that we have already found polynomials

/ i , / 2 , . . . , / „ - ! such that

(a) fk\nD < 1/2, (b) TTi > £ f ° r ^ = ! , . . . , « — 1.

Then put M := M (X^Li ' / " r « ) a n c ' / > ( z ) = ^ / ( ( l — £ ) ^ « ~ z)> where A, e are
chosen positive and

(c) = — , (d) — = 2Mn.
(l-E)Rn-rn 22"' eRn

In fact, it suffices to take

A 2Mn{Rn-rn) (Rn - rn)
A = —-—• and s =

(22n+1Mn + l) Rn(2

Clearly /J,.,|O < 1/22" because of (c). Moreover, by (d), fn{Rn) = 2nM. Now,
by Runge's Theorem, we can approximate fn on RnD by a polynomial /„ satisfying
(a) and (b). We define / = XX I / '• ^fie series converges almost uniformly. The
condition limn M(f, Rn)/M(f, rn) = oo follows from (b).

PROOF OF THEOREM 2.4. (i) implies (v): Assume that there is a sequence (z j in
O w i t h \zn\ - > 1 s u c h t h a t \<p(zn)\ > \zn\ fo r a l l n. D e f i n e rn = \zn\, Rn = \<p(zn)\ a n d

without loss of generality we may assume that r0 < Ro < /-, < /?, < r2 < R2 < • • • •
By Lemma 2.5, there exists / e H(B) such that lim^oc M(/, Rn)/M(f, rn) = oo.
Take v(z) = 1/M(/, |z|) and assume that Q : //u°° -> / / ^ is bounded. Then there is
c > 0 such that ||Q,|| < c. Moreover, with ae(z) = e'ez, \\CaJ = 1 and ||/||v. = 1,
so

\\Ca^(f)\\v <c for all 6e]-JT,7t].

Now,

s u p | / o a 9 o g > ( z ) |

for all n and all 0. Choosing 6n in a suitable way, we get | / o afl/i o <p(zn)\ =
M(f, \<p(zn)\) = M(f, Rn). Thus, | |Ca 9 n O//)L > M{f, R,,)/M(f, rn) for all n, and
we have a contradiction,
(v) implies (i) is obvious.
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(i) implies (ii): Let us assume firstly that cp is an automorphism. Then either <p is a
rotation and (ii) is satisfied or <p(z) = ae((p — z) / ( l — pz)), where p ^ O . Since
sup|.|=r \<p(z)\ = (\p\ + r)/(\ + \p\r) > rforr < 1, it follows that (v) is not satisfied.
We have proved that if <p is an automorphism, then Cv satisfies (i) only for rotations,
and then (ii) is satisfied as well.

Now let <p be a non-automorphism. Then every ctg o <p is also a non-automorphism.
Hence, by [Sh, Section 5.4], either ae o <p has a fixed point or i]/n :— f o • • • o f, (n
times), where f = ae o cp, satisfies IYo,(z)| -»• 1 uniformly on compact sets. Suppose
that some a0 o <p has no fixed point. Let K := {z : |z| < r0}, where r0 is given in (t>).
By the Maximum Modulus Theorem, supze/!. \<p(z)\ = supz£3K |<p(z)| and therefore it
follows from (v) that sup_ei)/f \\j/n(z)\ < r0. Since \^rn{z)\ —> 1 uniformly on compact
sets, we obtain a contradiction,
(ii) implies (iii): Assume that <p is an automorphism. Hence

(p(z) = e'"- — for some p € D, 9 G] - n, n].
1 -pz

If p z/z 0, then for a suitable chosen 90, \p\ = cos(90/2) and by [Sh, Section 0.5.4], (p
is a parabolic automorphism, meaning (see [Sh, p. 5]) that <p has a single fixed point
lying on the boundary of D. If p = 0, then <p is a rotation.

Now, let <p be a non-automorphism. Then every ae o cp is also a non-automorphism.
Hence the assumption and [Sh, Section 5.2.1], give that every ae o cp fixes an attracting
point in D.
(iii) implies (iv): Let us assume that each a9 o <p has an attracting fixed point pe in D.
Ifliminf|_-Ki-(1 - |<p(z)|)/(l - |z|) < 1, then there is a sequence (zn) c D, \zn\ ->• 1
andlimn(l - \<p(zn)\)/(\ - \zn\) = S < 1. Without loss of generality, we may assume
that zn -> w e 3D. Clearly, \<p(zn)\ ->• 1, and we may assume that <p(zn) -> r\ e 3D.
Choosing 9 e ] - i , 7r] suitable, we get ag o <p(zn) —> w. Now, by Julia's theorem
[Sh, p. 63],

all A > 0.
1+A. 1+A.7 1+A, 1+A.

Since pe is an attracting point of ag o <p, it is in any disc (A./(l + A.))D + w/(l + A.),
which gives a contradiction by taking A > 0 small enough.
(iv) implies (v): The condition is obviously satisfied for rotations. Now, if
l iminf | r h l - (1 - |<p(z)|)/(l - |z|) > 1, then there is r0 e]0, 1[ such that (1 - \<p(z)\)/
(1 — |z|) > 1 for \z\ > r0. Clearly, then \(p(z)\ < \z\, and we are done.
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3. Compactness of Cv

To deal with the compactness we need the following form of the Weak Compactness
Theorem. The proof is similar to the case of H1. The reader is asked to refer to [Sh,
Section 2.4].

LEMMA 3.1. Let X and Y be H^ and H™ or H° and //,',' respectively. A bounded
operator Cv : X —> Y is compact, if and only if, given any bounded sequence
(/„) C X which converges to 0 uniformly on the compact subsets of O, also the
sequence (Cv(fn)) converges to 0 in Y.

COROLLARY 3.2. Let v and w be weights. If there exists an r,0 < r < 1, such that
\<p(z)\ < r for all z e D , then Cv : H^ - • H™ is compact.

THEOREM 3.3. Let v and w be weights. The following assertions are equival-
ent:

(i) the operator Cv : H™ —> H^ is compact;
(ii) lim,_,- supM r ) | > , w(z)/d((p(z)) = 0 or <p(D) c D.

If v and w satisfy lim|-|_*i- v(z) = limir|^i w(z) = 0, then the above conditions are
also equivalent to the following ones:

(iii) the operator Cv : H° —>• H° is compact;
(iv) lim,-!^,- w(z)/v(<p{z)) = 0,
(v) limlrh l- w(z)/i(<p(z))=0.

REMARKS. (1) It is not difficult to show that if H™ = H^, then Cv : H^ ->• H~
is compact for any weight w tending to zero at the boundary. On the other hand, if
Hoo _ ^oc^ t h e n c^ . ^oc _^ ^oc i s c o m p a c t if and only if <p(B) c ID (compare the

remark after Proposition 2.1).
(2) If for a fixed typical weight v, Cv : H™ —> H^ is compact, then there is r < 1

such that \cp(z)\ < \z\ for \z\ > r. Thus Q, : H^ —> H^ is bounded for any typical
weight w.

(3) If for some weights v, w tending to zero at the boundary, Cv : H^ —>• / / j * is
compact, then it is weakly compact and C^ : H^ —»• H°.

PROOF. We assume first that v and w satisfy l im j r h | - v(z) = limi-,^, w(z) = 0.

(v) implies (iv) is obvious.
(iv) implies (i): By Proposition 2.1, C^ is bounded. We shall use Lemma 3.1. Take
a bounded sequence (/„) c Bv and assume that /„ -> 0 in the xco -topology. For
given £ > 0 there is r0 e]0, 1[ with w(z) < ev(<p(z))/2 for all \z\ > ra. Put
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C := sup.gD w(z) < oo. For/? big enough, we have that supM<,o \fn((p(z))\C < e/2
and thus

\\Cv(fn)\\w <

so (i) follows.
(i) implies (v): If not, then there are c > 0 and a sequence (z,,) c O, \z,,\ —»• 1, with
w(zn) > cv(<p(zn)) for all n. For all n, there exists /„ e Bv such that \fn(<p(zn))\ =
u((p(z,,)). By going to a subsequence we can assume that <p(zn) —>• z0 for some z0 e D,
when n —>• oo. If |zo| ^ 1, then by assumption,

0 = lim u>(z,,) > climv((p(zn)) = cv(zQ) > 0,
n n

which is a contradiction. Thus \zo\ = 1. Now, since |<p(z,,)| —> 1, there exist natural
numbers a (n) with lim,, a (n) — oo and such that \<p{zn)\

a(n) > l /2foral l« . We define
the analytic functions g,,(~) := za(")fn(z) foralln. Clearly (^,,) is a bounded sequence
in H^°. It converges pointwise to 0 because of the factor za(n). Hence, supposing that
Cv is compact, Lemma 3.1 implies that ||C^(gn)|L -> 0 as n —> oo. On the other
hand, we get for all n,

which is a contradiction.
(i) if and only if (iii): By Proposition 2.1, if one of the considered operators is com-
pact, then both are bounded and Cv : H™ -> / / ~ is the bi-adjoint of Cv : H° -> H°
(see Section 1). Apply the Schauder Theorem.

Now, in the general case, (i) implies (ii) is similar to (i) =>• (v) and (ii) implies (i)
is similar to (iv) implies (i).

COROLLARY 3.4. Let v and w be essential weights and assume that lirri|-|_i w(z) =
0. Then Cv : H™ —• H^ is compact (or, equivalently, Cv : H° —>• H° is compact),
if and only if

(1) lim W = 0.
1-1-1- v(<p(z))

We see below that for general weights our simple characterization of compactness
in 3.4 fails. Of course, in that case v is no more essential and this fact gives another
motivation for the concept of an essential weight.
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EXAMPLE 3.5. There exist a typical weight w and a compact composition operator
Cy-.H™^ H™ which does not satisfy (1).

CONSTRUCTION. Let us define increasing sequences (/„), (/?„) tending to 1 as
follows:

1 1rn

r0 = - , /•„+, = " , po = 0, pn < /•„ < pn+i for n e N.

Choose an increasing sequence (an) of natural numbers such that

(8) an(\ogrn+l - logrj > n.

We define three non-decreasing, unbounded and continuous functions r\, B, 9 : R_ —>
R+ as follows:

(i) ^ s 0 on ( -oo , logr0] and for each n e N the function r\ is affine on
[log rn, log rn+\] with the derivative = an;

(ii) for n even 0 = 9 = r\ on [log pn, log />„+,];
(iii) for n odd 6* is affine on [log pn, log pn+\ ];
(iv) for« odd^ is affine on [logpn, logrn] and constant on [logr,,, logpn + 1].

We could choose (pn) in such a way that:

(v) |ij(logpB) - ijOogrJI < 1 and |0(s) - rj(s)| < 1 for all 5 € R_.

Now, we can define our typical weights:

v(z) : = e ^ ( l o g | z | ) , w(z) := e-
W(lo8|; |).

Clearly, our assumptions imply that #(s) > 9(s) > r/(s) for ^ e R_. By the
Hadamard Three Circle Theorem and (v),

w{z) > e-
§(ioglz{) >e~xv(z).

On the other hand, on the annulus {z : rn < \z\ < rn+]], we have v(z) = bn\z\~a"
with an natural. Moreover, l/u(z) is a supremum of a sequence M(b~xz"n, \z\), which
means that v = v. Taking the above into account, we obtain that w is equivalent to
v = v.

We will show that Cv : / / ~ = / / ~ ^> / / ~ = H™ is compact for <p(z) := z / ( 2 - z )
but still lini|;|_i- w(z)/w(<p(z)) ^ 0.

Observe, that \<p(z)\ < <p(\z\) = |z|/(2 - |z|), thus if \z\ e (rfl, rn + 1), then |<^(z)| <
€ (rn_,,rn) . Hence

https://doi.org/10.1017/S1446788700001336 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001336


[13] Weighted Banach spaces of analytic functions 113

and the function on the right hand side is decreasing with respect to \z\. Summarizing,
by (8) for |z| € (rn,rn+l),

v(<p(z)) v((p(rn))

By Corollary 3.4, Cv is compact.
On the other hand, for n even

w(rn) w(rn) v{rn)

w(<p(rn)) w{rn_Y) v(pn)

This completes the proof.
Theorem 3.3 yields a direct method to deduce the compactness of C^ in some

weighted spaces once we know the compactness with respect to other weights. Pre-
cisely, assume that v is essential and that Cv : H™ —> H™ is compact. If the weights
v and w o n D satisfy

(9)
v o (p v o (p

for some constant C > 0, then C9 : //v°° —> H™ is compact. Namely, the assumptions
imply that (ii) of Theorem 3.3 is satisfied for v and w, hence, by (9), it is satisfied by
v and co as well. We especially have the following corollary.

COROLLARY 3.6. Assume that v and w are typical weights, v is essential, v/w is
increasing as \z\ ->• 1, <p(0) = 0 and that Cv : H™ —*• H™ is compact. Then also
Cv : H^ ->• H™ is compact.

PROOF. In this case (9) is equivalent to

w v v v
< C , or to — o <p < C —.

w o tp v o cp w w

But this holds with C = 1 by the Schwarz lemma, since v(z)/w(z) is radial and
increasing as \z\ —*• 1.

THEOREM 3.7. Let <p : D -> O be an analytic map such that d<p(D) D 3D) ^ 0.
Then there exists an essential typical weight v such that C^ : H™ —*• H^° is bounded
but not compact.

COROLLARY 3.8. Let <p : D —> D be an analytic map. The following assertions
are equivalent:

(i) Cv : H™ —>• //w°° is compact for any (typical) weight v;
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(ii) Cv : H® —> H® is compact for any weight v tending to zero at the boundary;
(iii) C,p : H°° ->• H°° is compact;
(iv) ^>(O) c rD> for some r < 1.

PROOF OF THEOREM 3.7. The weight w(z) = (1 — |z|) is typical and essential and
Cv : H™ —• / / ~ is always bounded by Theorem 2.3. Let us assume that Cv is
compact in that case.

By Theorem 3.3, there is r0 < 1 such that for any r > /-0:

1 — |z| < \{\ — |^(z)|) for \z\ = r.

Let us define M(r) := sup|.(=,. |<p(z)|, then we have

(10) 1 - r < j ( l - M(r)) for r > /•<,.

The function M(r) is non-decreasing, tends to 1 as r -» 1" and, by the Hadamard
Three Circle Theorem, it is logarithmically convex. In particular, logM(r)/\ogr is
non-decreasing as r —»• 1~. By (10), there is S > 1 such that for r > r0 we have
logM(r) / logr > S. We define inductively a sequence (/•„)„€N such that /-,,_i = M{rn).

Obviously,

(11) /•„_, < r f for « G N

and limn^oo r,, = 1. We define an increasing function u : [0, 1) -> K+ which is equal
to 1 on [0, r0], u{rn) = 2" and it is affine on each interval [/"„_[, /•„]. The weight we
are looking for is defined as v(z) = 1/M(|Z|).

Firstly, we show that v is essential. By [BBT, Proposition 3.4], it suffices to prove
the so-called condition (U) for v, that is, to find a > 0 and C > 0 such that

(12) u ( y ) ( l - y ) a < C u ( x ) ( l - x ) a f o r a l l Q < x < y < \ .

We take C = 4 and arbitrary a such that ((1 — ro)/(l — rll&))a > 2. Indeed, for
any x, y either u(y) < 2u{x) or we find n < k such that

rn < y, u(y) < 2u(rn) and x < rk, u(rk) < 2u(x).

Thus

( \ a(n-k)

l - ' -d /
Since g(t) : = (1 — t)/(\ — tl/s) is an increasing function,

1 - r0 1 - r,
TTi < rn for any / > 0

I l /o — -\ I/a J —

— rn 1 — r,
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and, by (11), we get

1 - r0 < 1 - r,

1 - r?1 ~ 1 - rl+l-

Combining with (13), we get

u{y) ^
u(x) '".•+1

which gives (12) and v is essential.
Now, for \z\ > r0 we find n e N such that rn < \z\ < rn+\, then

v(z) < u(M(\z\))

v(<p(z)) - u(\z\) - u(rn)

by the definition of (/-„). Thus Cv : H™ -+ H™ is bounded by Proposition 2.1.
On the other hand, for any n € N there is zn, \zn\ = rn such that \(p(zn)\ = rn-\.

Clearly,

viz,,) = «(/-„_,) = 1

)) ~ u(rn) ~ 2

and (since |z,,| -> 1 as « -> oo) C^ : //K°° ->• //u°° is not compact by Corollary 3.4.

4. Integral operators Cv

Unfortunately we are not able to give a characterization of nuclear, integral or
absolutely summing composition operators for general weights. It is, however, not
too complicated to find sufficient conditions for example as follows.

PROPOSITION 4.1. Let 1 <p<oo,l/p+l/q = l,letv and w be radial weights
and let <p : D ->• D be analytic. The operator Cv : //u°° -> / / ~ is p-integral, if

(14) sup / — - 2q ,—^rP
dA(^) < °°-

In the case p = 1 the integral is replaced by a supremum in the usual way.

PROOF. Since the identity operator //u°° —• Ap
v c Lp(v(z)dA(z)) is order bounded,

it is enough to show that Q : //r°° ->• / / ~ factorizes through the above defined
map; see [DJT, Propositions 5.18 and 5.5]. To this end it suffices to prove that
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Cv : Ap
v —»• H™ is bounded. Indeed, using the Bergman reproducing kernel ([Z,

Section 4.1]) and the dominated convergence theorem,

sup\f o<p(z)\w(z) = sup

where \Jlf\ is the 2-dimensional Jacobian determinant of <p. The identity \JV\ = \<p'\2

and (14) permit us to conclude.

EXAMPLE 4.2. An example of integral composition operators.

CONSTRUCTION. Let v(z) := (1 - |z|)" and w(z) := (1 - |z|)", where a, ft > 0.
Let Q c 0> be an open subset such that 3£2 n 3D = {1}. We also assume that dQ
is Dini-smooth ([Po, Theorem 3.5]) except at the point 1 where it has a Dini-smooth
corner of opening yn, where y < 1, in the sense of [Po, p. 51]; we make the technical
assumption that for some c > 0 the inequality

(15) < c ( l - R e ( z ) )

is satisfied for every z e Q. Let <p be a Riemann conformal mapping O -*• Q such that
lim.-^i <p(z) = 1, ̂ (0) = 0 ([Po, Theorem 2.6]); for example <p(z) := 1 - a{\ - z)Y

for a suitable a e C.
We show that (14) is satisfied for /? = 1 and the operator Cv is thus 1-integral,

if

(a) /? > 2 > (a + 2)y,or
(b) )8 > (a + 2)y > 2.

By [Po, Theorem 3.9], there exists a neighbourhood £/ of 1 such that for some
constants c, C > 0,

(16)

(17)

c <

c <

(l-z)y

cp'(z)

< C for z € U, and

< C for z e
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and the same estimates also hold for numbers z outside U, because of <p(B \ U) C D
and the Dini-smoothness assumption on 9ft. From (17) we deduce that | / J = \<p'\2 is
bounded from below and above by a positive constant times |1 - z\2iY~u. Moreover,
(15) implies that there exists a C" > 0 such that |1 - § | < C'(l - | £ | ) f o r £ e ft ; this
and (16) imply that fore' > 0, 1 - \<p(z)\ > c'\\ - z\Y forz e D. Hence, fore" > 0

Hence,

u>(z) „
(19) sup = < C sup

We now distinguish between the two cases (a) and (b) mentioned above. If (a) holds,
(19) is not larger than

r i\-W _ (i- -„
c sup 1 FJ - C s u p 71—n^7 < °°-

In the case (b) (19) can be estimated by

(1 - IzlV
C sup

Clearly we can here take the sup only over the values 0 < z, § < 1. The partial

derivative of

with respect to | vanishes at the point £ = (((a + 2)y - 2 + 2z)/((a +
and at this point (20) becomes equal to a constant times (1 - zy-^+^)Yz^+2)Y-2_ T h i s

expression is also finite, if the condition (b) is satisfied.

References

[BBT] K. D. Bierstedt, J. Bonet and J. Taskinen, 'Spaces of holomorphic functions with growth
conditions and associated weights', Studia Math, (to appear).

[BS] K. D. Bierstedt and W. H. Summers, 'Biduals of weighted Banach spaces of analytic functions',
J. Austral. Math. Soc. (Series A) 54 (1993), 70-79.

[C] J. Conway, Functions of one complex variable (Springer, Berlin, 1978).
[CM] C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions (CRC Press,

Boca Raton, 1995).

https://doi.org/10.1017/S1446788700001336 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001336


118 J. Bonet, P. Domanski, M. Lindstrbm and J. Taskinen [18]

[DJT] J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Studies in
Advanced Mathematics 43 (Cambrige University Press, Cambridge, 1995).

[J] H. Jarchow, 'Some functional analytic properties of composition operators', Quaestiones Math.
18 (1995), 229-256.

[LI] W. Lusky, 'On the structure of Hvo(D) and hvo(D)', Math. Nachr. 159 (1992), 279-289.
[L2] , 'On weighted spaces of harmonic and holomorphic functions', J. London Math. Soc.

51(1995), 309-320.
[Po] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss. 299

(Springer, Berlin, 1992).
[RS] L. A. Rubel, A. L. Shields, 'The second duals of certain spaces of analytic functions', J. Austral.

Math. Soc. 11 (1970), 276-280.
[Sh] J. H. Shapiro, Composition operators and classical function theory (Springer, Berlin, 1993).
[SW1] A. L. Shields, D. L. Williams, 'Bounded projections, duality, and multipliers in spaces of

harmonic functions', J. Reine Angew. Math. 299/300 (1978), 256-279.
[SW2] , 'Bounded projections and the growth of harmonic conjugates in the disk', Michigan

Math. 7.29(1982), 3-25.
[SS] R. K. Singh and W. H. Summers, 'Composition operators on weighted spaces of continuous

functions',/ Austral. Math. Soc. (Series A)45 (1988), 303-319.
[T] J. Taskinen, Compact composition operators on general weighted spaces, Department of

Mathematics, Univ. Helsinki Preprint 121, 1996.
[Z] K. Zhu, Operator theory in function spaces (Dekker, New York, 1995).

Dept. Matematica Aplicada Faculty of Matematics and Comp. Sci.

Univ. Politecnica de Valencia A. Mickiewicz University, ul.

E-46071 Valencia Matejki 48/49

Spain 60-769 Poznari

e-mail: jbonet@pleiades.upv.es Poland

e-mail: domanski@math.amu.edu.pl

Department of Mathematics Department of Mathematics

Abo Akademi University, FIN-20500 P. O. Box 4, FIN-00014

Abo University of Helsinki

Finland Finland

e-mail: mlindstr@ra.abo.fi e-mail: taskinen@cc.helsinki.fi

https://doi.org/10.1017/S1446788700001336 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001336

