COMPOSITION OPERATORS BETWEEN WEIGHTED BANACH SPACES OF ANALYTIC FUNCTIONS

J. BONET, P. DOMAŃSKI, M. LINDSTRÖM and J. TASKINEN

(Received 19 February 1997)

Communicated by P. G. Dodds

Abstract

We characterize those analytic self-maps φ of the unit disc which generate bounded or compact composition operators C_{φ} between given weighted Banach spaces H_{v}^{∞} or H_{v}^{0} of analytic functions with the weighted sup-norms. We characterize also those composition operators which are bounded or compact with respect to all reasonable weights v.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 47B38; secondary 30D55, 46E15.

0. Introduction

The aim of this paper is to study boundedness and compactness of composition operators $C_{\varphi}, C_{\varphi}(f)=f \circ \varphi$ on weighted Banach spaces of analytic functions, where $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ is an analytic map on the unit disc \mathbb{D}. We are interested in complex spaces of the form

$$
\begin{gather*}
H_{v}^{\infty}:=H_{v}^{\infty}(\mathbb{D}):=\left\{f \in H(\mathbb{D}):\|f\|_{v}:=\sup _{z \in \mathbb{D}} v(z)|f(z)|<\infty\right\}, \tag{1}\\
H_{v}^{0}:=H_{v}^{0}(\mathbb{D}):=\left\{f \in H(\mathbb{D}): \lim _{|z| \rightarrow 1^{-}} v(z)|f(z)|=0\right\}, \tag{2}
\end{gather*}
$$

endowed with the norm $\|\cdot\|_{v}$, where $H(\mathbb{D})$ denotes the space of analytic functions on \mathbb{D} and $v: \mathbb{D} \rightarrow \mathbb{R}_{+}$is an arbitrary weight, that is, bounded continuous positive (which means strictly positive throughout the paper) function.

[^0]Composition operators were extensively studied on various 'integral type' spaces of analytic functions on the disc like Hardy spaces, Bergman spaces, Dirichlet spaces or Bloch spaces (see, for example, [CM, Sh] and[J]) and weighted spaces of continuous functions (see [SS]). The spaces H_{v}^{∞} or H_{v}^{0} are connected with the study of growth conditions of analytic functions and were also studied in detail (see [SW1, SW2, RS, BS, BBT, L1, L2]). Our purpose is to connect both topics.

Especially interesting are radial weights v, that is, $v(z)=v(|z|)$. In that case, if $v \equiv 1$, then we get $H_{v}^{\infty}=H^{\infty}$ the space of all bounded analytic functions and $H_{v}^{0}=\{0\}$. If $\lim \sup _{|z| \rightarrow 1^{-}} v(z)>0$, then obviously $H_{v}^{\infty}=H^{\infty}$ with an equivalent norm and also $H_{v}^{0}=\{0\}$. Moreover, $C_{\varphi}: H^{\infty} \rightarrow H^{\infty}$ is always bounded and it is compact if and only if $\overline{\varphi(\mathbb{D})} \subseteq \mathbb{D}$ (see [CM, Ex. 3.3.2]). Now, if $\lim _{|=| \rightarrow 1^{-}} v(z)=0$, the so-called non-increasing majorant of v, that is, the radial function $u: \mathbb{D} \rightarrow \mathbb{R}_{+}$, $u(r)=\sup \{v(R): r \leq R<1\}$, is also continuous and tends to zero at the boundary. By the maximum principle $H_{u}^{\infty}=H_{v}^{\infty}, H_{u}^{0}=H_{v}^{0}$, and the corresponding spaces are isometric. On account of what was just said, we call any radial, positive continuous function $v: \mathbb{D} \rightarrow \mathbb{R}_{+}$, which is non-increasing with respect to $|z|$ and is such that $\lim _{|=| \rightarrow 1^{-}} v(z)=0$, a typical weight. We will be mostly interested in the radial weights but as we have seen we may assume that the weight is typical. Nevertheless, we formulate our results in a more general (even non-radial) setting whenever it is possible.

Let us explain the organization of the paper. In Section 1 we summarize preliminaries on spaces H_{v}^{∞} and H_{v}^{0}. In Section 2 we collect results on boundedness of C_{φ} and in Section 3 analogous results on compactness. The last Section 4 contains some results on p-integral composition operators.

We finish the introduction with some notation. If $1 \leq p<\infty$ and v is a weight, we define the Banach space

$$
\begin{equation*}
A_{v}^{p}:=A_{v}^{p}(\mathbb{D}):=\left\{f \in H(\mathbb{D}):\|f\|^{p}:=\int_{z \in D}|f(z)|^{p} v(z)^{p} d A(z)<\infty\right\} \tag{3}
\end{equation*}
$$

where $d A$ is the 2 -dimensional Lebesgue measure. If $f: \mathbb{D} \rightarrow \mathbb{C}$ is an analytic function, then $M(f, r):=\sup _{|=|=r}|f(z)|$ is a log-convex non-decreasing function (see the Hadamard Three Circle Theorem [C, V.3.13]). We reserve the letters v, w for weights. We denote the natural numbers by $\mathbb{N}=\{1,2,3, \ldots\}$. By C, C^{\prime}, c etcetera we denote positive constants which may vary from place to place but do not depend on indices or variables in given formulas or inequalities.

1. The spaces H_{v}^{∞} and H_{v}^{0}

Notice that the norm topology on H_{v}^{∞} is stronger than the topology $\tau_{c o}$ of uniform convergence on the compact sets of \mathbb{D}. Assume for a while that $\lim _{|=| \rightarrow 1^{-}} v(z)=0$.

Since $f_{r}(z):=f(r z)$ tends in $\tau_{c o}$ to f, the closed unit ball B_{v}^{0} of H_{v}^{0} is $\tau_{c o}$-dense in the unit ball B_{v} of H_{v}^{∞}. This implies (see [BS, Th. 1.1], compare [RS, Th. 1]) that $\left(H_{v}^{0}\right)^{\prime \prime}=$ H_{r}^{∞} isometrically and the embedding of H_{v}^{0} into H_{v}^{∞} is the canonical embedding into its bidual. Moreover, since point evaluations are continuous functionals on H_{v}^{0}, the pointwise convergence topology (denoted by τ_{p}) on H_{v}^{0} is weaker than the weak topology. Looking at the representation of $\left(H_{v}^{0}\right)^{\prime}$ (see [BS, Th. 1.1]), we realize immediately that if δ_{z} is a point evaluation at z on H_{v}^{0}, then for $f \in H_{v}^{\infty}$ we have $\left\langle f, \delta_{z}\right\rangle=f(z)$. Thus the pointwise convergence on H_{v}^{∞} is weaker than its weak-star topology. Since H_{v}^{0} is τ_{p}-dense in H_{v}^{∞} and C_{φ} is always τ_{p}-continuous, $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{r}^{\infty}$ is equal to the bi-adjoint map of $C_{\varphi}: H_{v}^{0} \rightarrow H_{w}^{0}$ whenever both operators are well defined and $\lim _{|=| \rightarrow 1^{-}} v(z)=\lim _{|=| \rightarrow 1^{-}} w(z)=0$.

In fact, from the papers of Lusky [L1, L2], we know that for radial weights and under quite general assumptions $H_{v}^{0} \simeq c_{0}$ and $H_{v}^{\infty} \simeq l_{\infty}$.

To each weight v corresponds the so-called growth condition $u: \mathbb{D} \rightarrow \mathbb{R}_{+}, u=1 / v$ and $B_{v}=\{f \in H(\mathbb{D}):|f| \leq u\}$. In [BBT] the new function $\tilde{u}: \mathbb{D} \rightarrow \mathbb{R}_{+}$is defined by $\tilde{u}(z):=\sup _{f \in B_{v}}|f(z)|$ and the weight associated with v is defined by $\tilde{v}:=1 / \tilde{u}$. It is shown there that \tilde{u} and \tilde{v} have the following useful properties:
(i) $0<\tilde{u} \leq u$ and $0<v \leq \tilde{v}, \tilde{v}$ is bounded;
(ii) \tilde{u} and \tilde{v} are continuous and, respectively, radial, non-decreasing and nonincreasing whenever u and v are so;
(iii) $\|f\|_{v} \leq 1$ if and only if $\|f\|_{\bar{v}} \leq 1$ for $f \in H(\mathbb{D})$;
(iv) for every $z \in \mathbb{D}$ there is $f_{z} \in B_{v}$ with $\tilde{u}(z)=\left|f_{z}(z)\right|$;
(v) if $\lim _{|=| \rightarrow 1^{-}} v(z)=0$, then $\tilde{u}(z)=\sup _{f \in B_{i}^{0}}|f(z)|$.

As in [T] a weight v is called essential if there exists a $C>0$ such that $v(z) \leq$ $\tilde{v}(z) \leq C v(z)$ for all $z \in \mathbb{D}$.

There are many known criteria for v to be essential (see [BBT], especially Proposition 3.4 there). In particular, if $v(z)=1 / M(f,|z|)$ for some analytic function $f: \mathbb{D} \rightarrow \mathbb{C}$, then $v=\tilde{v}$. It turns out that tending to zero at the boundary is preserved by the tilde operation.

Proposition 1.1. Let v be a weight on \mathbb{D}. Then $\lim _{|z| \rightarrow 1^{-}} \tilde{v}(z)=0$, whenever $\lim _{|=| \rightarrow 1^{\sim}} v(z)=0$. In particular, if v is a typical weight, then \tilde{v} is typical as well.

COROLLARY 1.2. If $\lambda: \mathbb{D} \rightarrow \mathbb{R}_{+}$is a radial weight then H_{λ}^{∞} is strictly bigger than H^{∞} if and only if $\lim _{|=| \rightarrow 1^{-}} \lambda(z)=0$.

Proof of Proposition 1.1. Let us take $u=1 / v$ as usual; then the growth condition u tends to $+\infty$ at the boundary. Since there is a radial non-decreasing function $\leq u$ tending to $+\infty$ at the boundary, we may (and we will) assume that u is radial.

Let $r_{n} \in(0,1), u\left(r_{n}\right)=n$. We take $f_{0} \equiv 0$ and we define inductively a sequence of functions $\left(f_{n}\right)$ analytic on a neighbourhood of $\overline{\mathbb{D}}$ such that:
(a) $M\left(f_{j}, r_{i}\right)<i$ for $i \leq j$;
(b) $M\left(f_{j}, 1\right)=j$ and $f_{j}(1)=j$;
(c) $M\left(f_{j}-f_{j-1}, r_{j}\right) \leq 2^{-j}$.

Assume that f_{1}, \ldots, f_{n-1} are defined satisfying (a) - (c) for $j \leq n-1$. Then we define $b_{n}, 0<b_{n}<2^{-n}$, such that $b_{n}<i-M\left(f_{n-1}, r_{i}\right)$ for $i=1, \ldots, n$. We define a function g, analytic on a neighbourhood of $\overline{\mathbb{D}}$ such that $g(z):=a_{n} /\left(R_{n}-z\right)^{n}$, where

$$
a_{n}=\left(\frac{1-r_{n}}{b_{n}^{-1 / n}-1}\right)^{n}, \quad R_{n}=1+\frac{1-r_{n}}{b_{n}^{-1 / n}-1}
$$

It is easily seen that:

$$
M\left(g, r_{n}\right) \leq b_{n}, \quad g(1)=1, \quad M(g, 1)=1
$$

By the choice of b_{n} we obtain that $f_{n}=f_{n-1}+g$ satisfies conditions (a) - (c) for $j=n$. Let us define $f:=\lim _{n \rightarrow \infty} f_{n}$. Since $M\left(f, r_{n}\right) \leq n=u\left(r_{n}\right)$ for $n \in \mathbb{N}$, we have $|f(z)| \leq u(z)+1$ for any $z \in \mathbb{D}$ and there is a constant C such that $|f(z)| \leq C u(z)$ for any $z \in \mathbb{D}$. Clearly, $\tilde{u}(z) \geq|f(z)| / C$ and $\lim _{|:| \rightarrow 1^{-}} \tilde{u}(z)=+\infty$. This completes the proof.

In any case we can substitute v by \tilde{v} but unfortunately we have no easy way of calculating \tilde{v} from v.

Proposition 1.3. For every weight v we have isometrically $H_{v}^{\infty}=H_{\hat{v}}^{\infty}$ and, if $\lim _{|z| \rightarrow 1^{-}} v(z)=0$, then $H_{v}^{0}=H_{\tilde{v}}^{0}$.

Proof. By the property (iii), $H_{v}^{\infty}=H_{\tilde{v}}^{\infty}$ isometrically and $H_{\tilde{v}}^{0}$ is an isometric (closed) subspace of H_{v}^{0}. As we mentioned before, if $T=C_{\mathrm{id}}: H_{\hat{v}}^{0} \rightarrow H_{v}^{0}$, then $T^{\prime \prime}: H_{\bar{v}}^{\infty} \rightarrow H_{v}^{\infty}$ is also equal to $C_{\text {id }}: H_{\tilde{v}}^{\infty} \rightarrow H_{v}^{\infty}$. Clearly, if T were not onto, then $T^{\prime \prime}$ would have not been onto as well.

2. Boundedness of C_{φ}

We give firstly necessary and sufficient conditions for the operator C_{φ} to be bounded on H_{v}^{∞}.

Proposition 2.1. Let v and w be weights. The following statements are equivalent:
(i) the operator $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{w}^{\infty}$ is bounded;
(ii) $\sup _{z \in \mathbb{D}} w(z) / \tilde{v}(\varphi(z))=M<\infty$,
(iii) $\sup _{z \in \mathbb{D}} \tilde{w}(z) / \tilde{v}(\varphi(z))=M<\infty$.

If v and w satisfy $\lim _{|=| \rightarrow 1^{-}} v(z)=\lim _{|=| \rightarrow 1^{-}} w(z)=0$, then the above conditions are equivalent to
(iv) the operator $C_{\varphi}: H_{v}^{0} \rightarrow H_{w}^{0}$ is bounded.

REMARK. Contrary to many cases of classical function spaces, an analytic self-map $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ does not necessarily induce a bounded composition operator for general weights. For example, consider $v(z)=w(z)=e^{-(1-|z|)^{-1}}$ and $\varphi(z)=(z+1) / 2$. Then $v=\tilde{v}$ and, for $z=r \in \mathbb{R}, v(r) / v(\varphi(r))=e^{1 /(1-r)}$ for $0<r<1$. Thus $v(r) / v(\varphi(r)) \rightarrow \infty$, when $r \rightarrow 1$, so C_{φ} is not bounded on H_{v}^{∞}.

If v is essential, then for every $z \in \mathbb{D}$ we have that $\tilde{v}(z) \leq C v(z)$, and the necessity of (4) in the next corollary follows from this.

COROLLARY 2.2. Assume that v is an essential weight. The operator $C_{\varphi}: H_{v}^{\infty} \rightarrow$ H_{w}^{∞} is bounded if and only if

$$
\begin{equation*}
\sup _{z \in \mathbb{D}} w(z) / v(\varphi(z))<\infty \tag{4}
\end{equation*}
$$

If v and w satisfy $\lim _{|F| \rightarrow 1^{-}} v(z)=\lim _{|z| \rightarrow 1^{-}} w(z)=0$, then $C_{\varphi}: H_{v}^{0} \rightarrow H_{w}^{0}$ is bounded if and only if (4) holds.

REMARKS. (1) If $H_{v}^{\infty}=H^{\infty}$, then $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{w}^{\infty}$ is continuous for all weights w and, if w tends to zero at the boundary $C_{\varphi}\left(H_{v}^{\infty}\right) \subseteq H_{w}^{0}$. On the other hand, by Proposition 1.1 and by properties of associated weights, one can prove that if $\left(z_{n}\right) \subseteq \mathbb{D}$, $\lim _{n \rightarrow \infty}\left|z_{n}\right|=1$ and v is a weight on \mathbb{D} tending to zero at the boundary, then there is a sequence of functions $f_{n} \in B_{v}$ such that $\left|f_{n}\left(z_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$. Thus, if $H_{w}^{\infty}=H^{\infty}$ and $\partial \varphi(\mathbb{D}) \cap \partial \mathbb{D} \neq \emptyset$ then $C_{\varphi} f_{n}$ is unbounded in H_{w}^{∞}. Finally, in that case $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{w}^{\infty}$ is bounded if and only if $\overline{\varphi(\mathbb{D})} \subseteq \mathbb{D}$.
(2) The condition in the corollary is no more necessary for boundedness of C_{φ} whenever v is not essential. Let us take an arbitrary non-essential weight v and $w=\tilde{v}$. Then, clearly $\lim \sup _{|z| \rightarrow 1^{-}} w(z) / v(z)=+\infty$ but $C_{\text {id }}: H_{v}^{\infty} \rightarrow H_{w}^{\infty}$ is an isometry.

Proof of Proposition 2.1. (iii) implies (ii) is trivial as $w \leq \tilde{w}$.
(ii) implies (i): By assumption, we have $w(z) \leq M \tilde{v}(\varphi(z))$ for all $z \in \mathbb{D}$. Thus

$$
w(z)|f(\varphi(z))|=\frac{w(z)}{\tilde{v}(\varphi(z))} \tilde{v}(\varphi(z))|f(\varphi(z))| \leq M\|f\|_{\tilde{v}}
$$

(i) implies (iii) and (iv) implies (iii): If not, then there is a sequence (z_{n}) $\subset \mathbb{D}$, with $\tilde{w}\left(z_{n}\right)>n \tilde{v}\left(\varphi\left(z_{n}\right)\right)$ for all n. For all n, there exists $f_{n} \in B_{v}$ (which can be chosen in
B_{v}^{0}, whenever $\lim _{|=| \rightarrow 1^{-}} v(z)=0$, by τ_{p}-density of B_{v}^{0} in B_{v}) such that $\left|f_{n}\left(\varphi\left(z_{n}\right)\right)\right|>$ $\tilde{u}\left(\varphi\left(z_{n}\right)\right) / 2$. By (i) or (iv), $\left(f_{n} \circ \varphi\right)$ is bounded in $H_{w^{\prime}}^{\infty}(D)=H_{\tilde{u}}^{\infty}(D)$, so there is $C>0$ such that $\left|f_{n}(\varphi(z))\right| \tilde{w}(z) \leq C$ for all $z \in D$ and all $n \in \mathbb{N}$. On the other hand,

$$
\left|f_{n}\left(\varphi\left(z_{n}\right)\right)\right| \tilde{w}\left(z_{n}\right)=\left|f_{n}\left(\varphi\left(z_{n}\right)\right)\right| \tilde{v}\left(\varphi\left(z_{n}\right)\right) \tilde{w}\left(z_{n}\right) / \tilde{v}\left(\varphi\left(z_{n}\right)\right)>n / 2
$$

for all n, so we have a contradiction.
(iii) implies (iv): By (iii) implies (i) and Proposition 1.3, it suffices to show that $C_{\varphi}(f) \in H_{\tilde{w}}^{0}$ for each $f \in H_{\dot{v}}^{0}$.

Take $f \in H_{\dot{v}}^{0}$. Given $\varepsilon>0$, there is $\left.r_{1} \in\right] 0,1[$, such that $\tilde{v}(z)|f(z)|<\varepsilon / M$ for $|z|>r_{1}$. For $|z|>r_{1}$ we consider two cases: If $|\varphi(z)|>r_{1}$, then

$$
\tilde{w}(z)|f(\varphi(z))|=\tilde{v}(\varphi(z))|f(\varphi(z))| \frac{\tilde{w}(z)}{\tilde{v}(\varphi(z))}<\varepsilon
$$

For $|\varphi(z)| \leq r_{1}$, we have that there is $r_{2} \geq r_{1}, 0<r_{2}<1$, such that

$$
\tilde{w}(z)|f(\varphi(z))| \leq \tilde{w}(z) \sup _{|=| \leq r_{1}}|f(z)|<\varepsilon \quad \text { for } \quad|z|>r_{2} .
$$

Thus $\tilde{w}(z)|f(\varphi(z))|<\varepsilon$ for $|z|>r_{2}$.

THEOREM 2.3. Let v be a typical weight. The following assertions are equivalent:
(i) all operators $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{v}^{\infty}$ are bounded;
(ii) all operators $C_{\varphi}: H_{v}^{0} \rightarrow H_{v}^{0}$ are bounded;
(iii) the following inequality holds:

$$
\begin{equation*}
\inf _{n \in \mathbb{N}} \frac{\tilde{v}\left(1-2^{-n-1}\right)}{\tilde{v}\left(1-2^{-n}\right)}>0 \tag{5}
\end{equation*}
$$

REMARK. For example, an essential weight $v(z)=(1-|z|)^{\alpha}, \alpha>0$, satisfies the conditions of Theorem 2.3 The condition (5) was used by Lusky [L2, p. 310], when he studied the isomorphism $H_{v}^{0} \simeq c_{0}$. Also see [SW2].

Proof. By Proposition 2.1, (i) holds if and only if (ii) does.
By the Schwarz lemma, if $\varphi(0)=0$, then $|\varphi(z)| \leq|z|$ for every $z \in \mathbb{D}$ and therefore $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{v}^{\infty}$ is bounded. For $p \in \mathbb{D}$, let

$$
\alpha_{p}(z)=(p-z) /(1-\bar{p} z)
$$

that takes \mathbb{D} onto itself. If each $C_{\alpha_{p}}$ is bounded, then all C_{φ} are bounded. Indeed, each $\varphi=\alpha_{p} \circ \psi$, where $\psi=\alpha_{p} \circ \varphi, p=\varphi(0)$ and $\psi(0)=0$. We have to show that for any $p \in \mathbb{D}, C_{\alpha_{p}}$ is bounded on $H_{v}^{\infty}(\mathbb{D})$ if and only if \tilde{v} satisfies (5).
(i) implies (iii): Let us assume that all $C_{\alpha_{p}}$ are bounded. Then, by Proposition 2.1, for every $p \in \mathbb{D}$ there exist $M_{p}>0$ such that $\tilde{v}(z)<M_{p} \tilde{v}\left(\alpha_{p}(z)\right)$ for all $z \in \mathbb{D}$. Since it is easily seen that $\sup _{|=|=r}\left|\alpha_{p}(z)\right|=(|p|+r) /(1+|p| r)$, we get that $\tilde{v}(z)<$ $M_{p} \tilde{v}((|p|+r) /(1+|p| r))$ for all $|z|=r$. Let us define $l(r)=\tilde{v}(1-r), s=1-r$. Since $1-(|p|+1-s) /(1+|p|(1-s))=s(1-|p|) /(1+|p|-|p| s)$, we obtain for $s<1 / 2$ that

$$
\begin{equation*}
l\left(s \frac{1-|p|}{1+|p|}\right) \leq l\left(1-\frac{|p|+1-s}{1+|p|(1-s)}\right) \leq l\left(s \frac{(1-|p|)}{1+|p| / 2}\right) . \tag{6}
\end{equation*}
$$

Finally, for $p=2 / 5$, we use the second inequality in (6) to get $M>0$ and $s_{0}>0$ such that $l(s) \leq M l\left(\frac{s}{2}\right)$ for all $\left.s \in\right] 0, s_{0}[$. This immediately implies (5).
(iii) implies (i): If (5) is satisfied, then l defined as above has the property that there are $M>0$ and $\left.t_{0} \in\right] 0,1\left[\right.$ with $l(t) \leq M l(t / 2)$ for all $t>t_{0}$. Then for any $c<\infty$ we find $n \in \mathbb{N}$ such that $c<2^{n}$ and hence $l(t) \leq M^{n} l\left(\frac{t}{c}\right)$. We take $c=(1+|p|) /(1-|p|)$. Then by the first inequality in (6), for all $p \in \mathbb{D}$ there is $M_{p}>0$ with

$$
l(t) \leq M_{p} l\left(1-\frac{|p|+1-t}{1+|p|(1-t)}\right)
$$

for all $t>t_{0}$. Clearly, this implies that for all $p \in \mathbb{D}$ there exists $M_{p}>0$ such that for every $|z|=r$ we have that $\tilde{v}(z)<M_{p} \tilde{v}\left(\alpha_{p}(z)\right)$ by the argument above.

THEOREM 2.4. Let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ be an analytic map. The following statements are equivalent:
(i) for any typical weight v the map C_{φ} is bounded on H_{v}^{∞};
(ii) for every $\theta \in]-\pi, \pi], \alpha_{\theta} \circ \varphi$ fixes a point in \mathbb{D}, where $\alpha_{\theta}(z)=e^{i \theta} z$;
(iii) either φ is a rotation or for any $\theta \in]-\pi, \pi], \psi=\alpha_{\theta} \circ \varphi$ fixes an attracting point $p_{\theta} \in \mathbb{D}$, that is, $\psi\left(p_{\theta}\right)=p_{\theta}$ and $\psi_{n}(z) \rightarrow p_{\theta}$ uniformly on compact sets, where $\psi_{n}:=\psi \circ \cdots \circ \psi,(n$ times $) ;$
(iv) either φ is a rotation or $\lim \inf _{|=| \rightarrow 1^{-}}(1-|\varphi(z)|) /(1-|z|)>1$;
(v) there is an $\left.r_{0} \in\right] 0,1\left[\right.$ such that $|\varphi(z)| \leq|z|$ for every $z \in \mathbb{D}$ with $|z| \geq r_{0}$.

For the proof of Theorem 2.4 we need the following result.

LEMMA 2.5. For any two increasing sequences $r_{n} \rightarrow 1$ and $R_{n} \rightarrow 1$ such that $r_{0}<R_{0}<r_{1}<R_{1}<r_{3}<R_{3}<\cdots$ there is an analytic map $f: \mathbb{D} \rightarrow \mathbb{C}$ with

$$
\lim _{n \rightarrow \infty} \frac{M\left(f, R_{n}\right)}{M\left(f, r_{n}\right)}=\infty
$$

where $M(f, r)=\sup _{|=|=r}|f(z)|$.

Proof. We define $f_{0} \equiv 1$. Assume that we have already found polynomials $f_{1}, f_{2}, \ldots, f_{n-1}$ such that
(a) $\left.f_{k}\right|_{r_{k} \mathbb{D}}<1 / 2^{k}$,
(b) $\frac{M\left(f_{k}, R_{k}\right)}{M\left(\sum_{i=1}^{k-1} f_{i}, r_{k}\right)}>k$ for $k=1, \ldots, n-1$.

Then put $M:=M\left(\sum_{i=1}^{n-1} f_{i}, r_{n}\right)$ and $\tilde{f}_{n}(z)=A /\left((1-\varepsilon) R_{n}-z\right)$, where A, ε are chosen positive and

$$
\text { (c) } \frac{A}{(1-\varepsilon) R_{n}-r_{n}}=\frac{1}{2^{2 n}}, \quad \text { (d) } \quad \frac{A}{\varepsilon R_{n}}=2 M n .
$$

In fact, it suffices to take

$$
A=\frac{2 M n\left(R_{n}-r_{n}\right)}{\left(2^{2 n+1} M n+1\right)} \quad \text { and } \quad \varepsilon=\frac{\left(R_{n}-r_{n}\right)}{R_{n}\left(2^{2 n+1} M n+1\right)} .
$$

Clearly $\left.\tilde{f}_{n}\right|_{r_{n} \mathbb{D}}<1 / 2^{2 n}$ because of (c). Moreover, by (d), $\tilde{f}_{n}\left(R_{n}\right)=2 n M$. Now, by Runge's Theorem, we can approximate \tilde{f}_{n} on $\overline{R_{n} \mathbb{D}}$ by a polynomial f_{n} satisfying (a) and (b). We define $f=\sum_{i=1}^{\infty} f_{i}$. The series converges almost uniformly. The condition $\lim _{n} M\left(f, R_{n}\right) / M\left(f, r_{n}\right)=\infty$ follows from (b).

Proof of Theorem 2.4. (i) implies (v): Assume that there is a sequence $\left(z_{n}\right)$ in \mathbb{D} with $\left|z_{n}\right| \rightarrow 1$ such that $\left|\varphi\left(z_{n}\right)\right|>\left|z_{n}\right|$ for all n. Define $r_{n}=\left|z_{n}\right|, R_{n}=\left|\varphi\left(z_{n}\right)\right|$ and without loss of generality we may assume that $r_{0}<R_{0}<r_{1}<R_{1}<r_{2}<R_{2}<\cdots$. By Lemma 2.5, there exists $f \in H(\mathbb{D})$ such that $\lim _{n \rightarrow \infty} M\left(f, R_{n}\right) / M\left(f, r_{n}\right)=\infty$. Take $v(z)=1 / M(f,|z|)$ and assume that $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{v}^{\infty}$ is bounded. Then there is $c>0$ such that $\left\|C_{\varphi}\right\| \leq c$. Moreover, with $\alpha_{\theta}(z)=e^{i \theta} z,\left\|C_{\alpha_{\theta}}\right\|=1$ and $\|f\|_{v}=1$, so

$$
\left.\left.\left\|C_{\alpha_{g} \circ \varphi}(f)\right\|_{v} \leq c \quad \text { for all } \quad \theta \in\right]-\pi, \pi\right] .
$$

Now,

$$
\sup _{z \in D}\left|f \circ \alpha_{\theta} \circ \varphi(z)\right| \frac{1}{M(f,|z|)} \geq\left|f \circ \alpha_{\theta} \circ \varphi\left(z_{n}\right)\right| \frac{1}{M\left(f,\left|z_{n}\right|\right)}
$$

for all n and all θ. Choosing θ_{n} in a suitable way, we get $\left|f \circ \alpha_{\theta_{n}} \circ \varphi\left(z_{n}\right)\right|=$ $M\left(f,\left|\varphi\left(z_{n}\right)\right|\right)=M\left(f, R_{n}\right)$. Thus, $\left\|C_{\alpha_{\delta_{n}} \circ \varphi}(f)\right\|_{v} \geq M\left(f, R_{n}\right) / M\left(f, r_{n}\right)$ for all n, and we have a contradiction.
(v) implies (i) is obvious.
(i) implies (ii): Let us assume firstly that φ is an automorphism. Then either φ is a rotation and (ii) is satisfied or $\varphi(z)=\alpha_{\theta}((p-z) /(1-\bar{p} z))$, where $p \neq 0$. Since $\sup _{|z|=r}|\varphi(z)|=(|p|+r) /(1+|p| r)>r$ for $r<1$, it follows that (v) is not satisfied. We have proved that if φ is an automorphism, then C_{φ} satisfies (i) only for rotations, and then (ii) is satisfied as well.

Now let φ be a non-automorphism. Then every $\alpha_{\theta} \circ \varphi$ is also a non-automorphism. Hence, by [Sh, Section 5.4], either $\alpha_{\theta} \circ \varphi$ has a fixed point or $\psi_{n}:=\psi \circ \cdots \circ \psi,(n$ times), where $\psi=\alpha_{\theta} \circ \varphi$, satisfies $\left|\psi_{n}(z)\right| \rightarrow 1$ uniformly on compact sets. Suppose that some $\alpha_{\theta} \circ \varphi$ has no fixed point. Let $K:=\left\{z:|z| \leq r_{0}\right\}$, where r_{0} is given in (v). By the Maximum Modulus Theorem, $\sup _{z \in K}|\varphi(z)|=\sup _{z \in \partial K}|\varphi(z)|$ and therefore it follows from (v) that $\sup _{=\in \partial K}\left|\psi_{n}(z)\right| \leq r_{0}$. Since $\left|\psi_{n}(z)\right| \rightarrow 1$ uniformly on compact sets, we obtain a contradiction.
(ii) implies (iii): Assume that φ is an automorphism. Hence

$$
\left.\left.\varphi(z)=e^{i \theta} \frac{p-z}{1-\bar{p} z} \quad \text { for some } \quad p \in \mathbb{D}, \theta \in\right]-\pi, \pi\right]
$$

If $p \neq 0$, then for a suitable chosen $\theta_{0},|p|=\cos \left(\theta_{0} / 2\right)$ and by [Sh, Section 0.5.4], φ is a parabolic automorphism, meaning (see [Sh, p. 5]) that φ has a single fixed point lying on the boundary of \mathbb{D}. If $p=0$, then φ is a rotation.

Now, let φ be a non-automorphism. Then every $\alpha_{\theta} \circ \varphi$ is also a non-automorphism. Hence the assumption and [Sh, Section 5.2.1], give that every $\alpha_{\theta} \circ \varphi$ fixes an attracting point in \mathbb{D}.
(iii) implies (iv): Let us assume that each $\alpha_{\theta} \circ \varphi$ has an attracting fixed point p_{θ} in \mathbb{D}. If $\lim \inf _{|=| \rightarrow 1^{-}}(1-|\varphi(z)|) /(1-|z|) \leq 1$, then there is a sequence $\left(z_{n}\right) \subset \mathbb{D},\left|z_{n}\right| \rightarrow 1$ and $\lim _{n}\left(1-\left|\varphi\left(z_{n}\right)\right|\right) /\left(1-\left|z_{n}\right|\right)=\delta \leq 1$. Without loss of generality, we may assume that $z_{n} \rightarrow w \in \partial \mathbb{D}$. Clearly, $\left|\varphi\left(z_{n}\right)\right| \rightarrow 1$, and we may assume that $\varphi\left(z_{n}\right) \rightarrow \eta \in \partial \mathbb{D}$. Choosing $\theta \in]-\pi, \pi$] suitable, we get $\alpha_{\theta} \circ \varphi\left(z_{n}\right) \rightarrow w$. Now, by Julia's theorem [Sh, p. 63],

$$
\alpha_{\theta} \circ \varphi\left(\frac{\lambda}{1+\lambda} \mathbb{D}+\frac{w}{1+\lambda}\right) \subset \frac{\lambda}{1+\lambda} \mathbb{D}+\frac{w}{1+\lambda} \quad \text { for all } \quad \lambda>0
$$

Since p_{θ} is an attracting point of $\alpha_{\theta} \circ \varphi$, it is in any disc $(\lambda /(1+\lambda)) \mathbb{D}+w /(1+\lambda)$, which gives a contradiction by taking $\lambda>0$ small enough.
(iv) implies (v): The condition is obviously satisfied for rotations. Now, if $\liminf _{|z| \rightarrow 1^{-}}(1-|\varphi(z)|) /(1-|z|)>1$, then there is $\left.r_{0} \in\right] 0,1[$ such that $(1-|\varphi(z)|) /$ $(1-|z|)>1$ for $|z|>r_{0}$. Clearly, then $|\varphi(z)|<|z|$, and we are done.

3. Compactness of C_{φ}

To deal with the compactness we need the following form of the Weak Compactness Theorem. The proof is similar to the case of H^{2}. The reader is asked to refer to [Sh , Section 2.4].

Lemma 3.1. Let X and Y be H_{v}^{∞} and H_{w}^{∞} or $H_{v^{\prime}}^{0}$ and $H_{u^{\prime}}^{0}$ respectively. A bounded operator $C_{\varphi}: X \rightarrow Y$ is compact, if and only if, given any bounded sequence $\left(f_{n}\right) \subset X$ which converges to 0 uniformly on the compact subsets of \mathbb{D}, also the sequence $\left(C_{\varphi}\left(f_{n}\right)\right.$) converges to 0 in Y.

COROLLARY 3.2. Let v and w be weights. If there exists an $r, 0<r<1$, such that $|\varphi(z)| \leq r$ for all $z \in \mathbb{D}$, then $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{u}^{\infty}$ is compact.

THEOREM 3.3. Let v and w be weights. The following assertions are equivalent:
(i) the operator $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{w}^{\infty}$ is compact;
(ii) $\lim _{r \rightarrow 1^{-}} \sup _{|\varphi(-)|>r} w(z) / \tilde{v}(\varphi(z))=0 \operatorname{or} \overline{\varphi(\mathbb{D})} \subseteq \mathbb{D}$.

If v and w satisfy $\lim _{|z| \rightarrow 1^{-}} v(z)=\lim _{|=| \rightarrow 1^{-}} w(z)=0$, then the above conditions are also equivalent to the following ones:
(iii) the operator $C_{\varphi}: H_{v}^{0} \rightarrow H_{w}^{0}$ is compact;
(iv) $\lim _{|:| \rightarrow 1^{-}} w(z) / \tilde{v}(\varphi(z))=0$,
(v) $\lim _{|z| \rightarrow 1^{-}} \tilde{w}(z) / \tilde{v}(\varphi(z))=0$.

REMARKS. (1) It is not difficult to show that if $H_{v}^{\infty}=H^{\infty}$, then $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{u}^{\infty}$ is compact for any weight w tending to zero at the boundary. On the other hand, if $H_{w}^{\infty}=H^{\infty}$, then $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{u}^{\infty}$ is compact if and only if $\varphi(\mathbb{D}) \subseteq \mathbb{D}$ (compare the remark after Proposition 2.1).
(2) If for a fixed typical weight $v, C_{\varphi}: H_{v}^{\infty} \rightarrow H_{v}^{\infty}$ is compact, then there is $r<1$ such that $|\varphi(z)|<|z|$ for $|z|>r$. Thus $C_{\varphi}: H_{u}^{\infty} \rightarrow H_{u}^{\infty}$ is bounded for any typical weight w.
(3) If for some weights v, w tending to zero at the boundary, $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{u}^{\infty}$ is compact, then it is weakly compact and $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{w}^{0}$.

Proof. We assume first that v and w satisfy $\lim _{|=| \rightarrow 1^{-}} v(z)=\lim _{|=| \rightarrow 1^{-}} w(z)=0$. (v) implies (iv) is obvious.
(iv) implies (i): By Proposition 2.1, C_{φ} is bounded. We shall use Lemma 3.1. Take a bounded sequence $\left(f_{n}\right) \subset B_{v}$ and assume that $f_{n} \rightarrow 0$ in the $\tau_{c o}$-topology. For given $\varepsilon>0$ there is $\left.r_{0} \in\right] 0,1\left[\right.$ with $w(z)<\varepsilon \tilde{v}(\varphi(z)) / 2$ for all $|z|>r_{0}$. Put
$C^{\prime}:=\sup _{z \in \mathbb{D}} w(z)<\infty$. For n big enough, we have that $\sup _{|=| \leq s_{0}}\left|f_{n}(\varphi(z))\right| C^{\prime}<\varepsilon / 2$ and thus

$$
\begin{aligned}
\left\|C_{\varphi}\left(f_{n}\right)\right\|_{w} & \leq \sup _{| | \leq \leq_{0} 0}\left|f_{n}(\varphi(z))\right| w(z)+\sup _{\left|| |>r_{0}\right.}\left|f_{n}(\varphi(z))\right| w(z) \\
& \leq \frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon\left\|f_{n}\right\|_{\bar{v}} \leq \varepsilon,
\end{aligned}
$$

so (i) follows.
(i) implies (v): If not, then there are $c>0$ and a sequence $\left(z_{n}\right) \subset \mathbb{D},\left|z_{n}\right| \rightarrow 1$, with $\tilde{w}\left(z_{n}\right)>c \tilde{v}\left(\varphi\left(z_{n}\right)\right)$ for all n. For all n, there exists $f_{n} \in B_{v}$ such that $\left|f_{n}\left(\varphi\left(z_{n}\right)\right)\right|=$ $\tilde{u}\left(\varphi\left(z_{n}\right)\right)$. By going to a subsequence we can assume that $\varphi\left(z_{n}\right) \rightarrow z_{0}$ for some $z_{0} \in \overline{\mathbb{D}}$, when $n \rightarrow \infty$. If $\left|z_{0}\right| \neq 1$, then by assumption,

$$
0=\lim _{n} \tilde{w}\left(z_{n}\right) \geq c \lim _{n} \tilde{v}\left(\varphi\left(z_{n}\right)\right)=c \tilde{v}\left(z_{0}\right)>0,
$$

which is a contradiction. Thus $\left|z_{0}\right|=1$. Now, since $\left|\varphi\left(z_{n}\right)\right| \rightarrow 1$, there exist natural numbers $\alpha(n)$ with $\lim _{n} \alpha(n)=\infty$ and such that $\left|\varphi\left(z_{n}\right)\right|^{\alpha(n)} \geq 1 / 2$ for all n. We define the analytic functions $g_{n}(z):=z^{\alpha(n)} f_{n}(z)$ for all n. Clearly $\left(g_{n}\right)$ is a bounded sequence in H_{v}. It converges pointwise to 0 because of the factor $z^{\alpha(n)}$. Hence, supposing that C_{φ} is compact, Lemma 3.1 implies that $\left\|C_{\varphi}\left(g_{n}\right)\right\|_{w} \rightarrow 0$ as $n \rightarrow \infty$. On the other hand, we get for all n,

$$
\begin{aligned}
\left\|C_{\varphi}\left(g_{n}\right)\right\|_{\tilde{w}} & \geq\left|g_{n}\left(\varphi\left(z_{n}\right)\right)\right| \tilde{w}\left(z_{n}\right)=\left|\varphi\left(z_{n}\right)\right|^{\alpha(n)}\left|f_{n}\left(\varphi\left(z_{n}\right)\right)\right| \tilde{w}\left(z_{n}\right) \\
& \geq \frac{1}{2}\left|f_{n}\left(\varphi\left(z_{n}\right)\right)\right| c \tilde{v}\left(\varphi\left(z_{n}\right)\right) \geq \frac{1}{2} c,
\end{aligned}
$$

which is a contradiction.
(i) if and only if (iii): By Proposition 2.1, if one of the considered operators is compact, then both are bounded and $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{w}^{\infty}$ is the bi-adjoint of $C_{\varphi}: H_{v}^{0} \rightarrow H_{w}^{0}$ (see Section 1). Apply the Schauder Theorem.

Now, in the general case, (i) implies (ii) is similar to (i) \Rightarrow (v) and (ii) implies (i) is similar to (iv) implies (i).

Corollary 3.4. Let v and w be essential weights and assume that $\lim _{|=| \rightarrow 1} w(z)=$ 0 . Then $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{w}^{\infty}$ is compact (or, equivalently, $C_{\varphi}: H_{v}^{0} \rightarrow H_{w}^{0}$ is compact), if and only if

$$
\begin{equation*}
\lim _{|z| \rightarrow 1^{-}} \frac{w(z)}{v(\varphi(z))}=0 . \tag{7}
\end{equation*}
$$

We see below that for general weights our simple characterization of compactness in 3.4 fails. Of course, in that case v is no more essential and this fact gives another motivation for the concept of an essential weight.

EXAMPLE 3.5. There exist a typical weight w and a compact composition operator $C_{\varphi}: H_{w}^{\infty} \rightarrow H_{w}^{\infty}$ which does not satisfy (7).

CONSTRUCTION. Let us define increasing sequences $\left(r_{n}\right),\left(p_{n}\right)$ tending to 1 as follows:

$$
r_{0}=\frac{1}{2}, \quad r_{n+1}=\frac{2 r_{n}}{1+r_{n}}, \quad p_{0}=0, \quad p_{n}<r_{n}<p_{n+1} \quad \text { for } n \in \mathbb{N} .
$$

Choose an increasing sequence $\left(a_{n}\right)$ of natural numbers such that

$$
\begin{equation*}
a_{n}\left(\log r_{n+1}-\log r_{n}\right) \geq n \tag{8}
\end{equation*}
$$

We define three non-decreasing, unbounded and continuous functions $\eta, \theta, \tilde{\theta}: \mathbb{R}_{-} \rightarrow$ \mathbb{R}_{+}as follows:
(i) $\eta \equiv 0$ on $\left(-\infty, \log r_{0}\right]$ and for each $n \in \mathbb{N}$ the function η is affine on $\left[\log r_{n}, \log r_{n+1}\right]$ with the derivative $\equiv a_{n}$;
(ii) for n even $\theta \equiv \tilde{\theta} \equiv \eta$ on $\left[\log p_{n}, \log p_{n+1}\right]$;
(iii) for n odd $\tilde{\theta}$ is affine on $\left[\log p_{n}, \log p_{n+1}\right]$;
(iv) for n odd θ is affine on $\left[\log p_{n}, \log r_{n}\right]$ and constant on $\left[\log r_{n}, \log p_{n+1}\right]$.

We could choose $\left(p_{n}\right)$ in such a way that:
(v) $\left|\eta\left(\log p_{n}\right)-\eta\left(\log r_{n}\right)\right| \leq 1$ and $|\tilde{\theta}(s)-\eta(s)| \leq 1$ for all $s \in \mathbb{R}_{-}$.

Now, we can define our typical weights:

$$
v(z):=e^{-\eta(\log |z|)}, \quad w(z):=e^{-\theta(\log |z|)}
$$

Clearly, our assumptions imply that $\theta(s) \geq \tilde{\theta}(s) \geq \eta(s)$ for $s \in \mathbb{R}_{-}$. By the Hadamard Three Circle Theorem and (v),

$$
\tilde{w}(z) \geq e^{-\tilde{\theta}(\log |z|)} \geq e^{-1} v(z)
$$

On the other hand, on the annulus $\left\{z: r_{n} \leq|z| \leq r_{n+1}\right\}$, we have $v(z)=b_{n}|z|^{-a_{n}}$ with a_{n} natural. Moreover, $1 / v(z)$ is a supremum of a sequence $M\left(b_{n}^{-1} z^{a_{n}},|z|\right)$, which means that $v=\tilde{v}$. Taking the above into account, we obtain that \tilde{w} is equivalent to $v=\tilde{v}$.

We will show that $C_{\varphi}: H_{v}^{\infty}=H_{w}^{\infty} \rightarrow H_{w}^{\infty}=H_{v}^{\infty}$ is compact for $\varphi(z):=z /(2-z)$ but still $\lim _{|z| \rightarrow 1^{-}} w(z) / w(\varphi(z)) \neq 0$.

Observe, that $|\varphi(z)| \leq \varphi(|z|)=|z| /(2-|z|)$, thus if $|z| \in\left(r_{n}, r_{n+1}\right)$, then $|\varphi(z)| \leq$ $\varphi(|z|) \in\left(r_{n-1}, r_{n}\right)$. Hence

$$
\frac{v(z)}{v(\varphi(z))} \leq \frac{v(z)}{v(\varphi(|z|))}=C \frac{(2-|z|)^{a_{n-1}}}{|z|^{a_{n+1}-a_{n}}}
$$

and the function on the right hand side is decreasing with respect to $|z|$. Summarizing, by (8) for $|z| \in\left(r_{n}, r_{n+1}\right)$,

$$
\frac{v(z)}{v(\varphi(z))} \leq \frac{v\left(r_{n}\right)}{v\left(\varphi\left(r_{n}\right)\right)}=\frac{v\left(r_{n}\right)}{v\left(r_{n-1}\right)} \leq e^{-(n-1)} .
$$

By Corollary $3.4, C_{\varphi}$ is compact.
On the other hand, for n even

$$
\frac{w\left(r_{n}\right)}{w\left(\varphi\left(r_{n}\right)\right)}=\frac{w\left(r_{n}\right)}{w\left(r_{n-1}\right)}=\frac{v\left(r_{n}\right)}{v\left(p_{n}\right)} \geq e^{-1} .
$$

This completes the proof.
Theorem 3.3 yields a direct method to deduce the compactness of C_{φ} in some weighted spaces once we know the compactness with respect to other weights. Precisely, assume that v is essential and that $C_{\varphi}: H_{\nu}^{\infty} \rightarrow H_{w}^{\infty}$ is compact. If the weights ν and ω on \mathbb{D} satisfy

$$
\begin{equation*}
\frac{\omega}{v \circ \varphi} \leq C \frac{w}{v \circ \varphi} \tag{9}
\end{equation*}
$$

for some constant $C>0$, then $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{\omega}^{\infty}$ is compact. Namely, the assumptions imply that (ii) of Theorem 3.3 is satisfied for v and w, hence, by (9), it is satisfied by ν and ω as well. We especially have the following corollary.

Corollary 3.6. Assume that v and w are typical weights, v is essential, v / w is increasing as $|z| \rightarrow 1, \varphi(0)=0$ and that $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{v}^{\infty}$ is compact. Then also $C_{\varphi}: H_{w}^{\infty} \rightarrow H_{w}^{\infty}$ is compact.

Proof. In this case (9) is equivalent to

$$
\frac{w}{w \circ \varphi} \leq C \frac{v}{v \circ \varphi}, \quad \text { or to } \quad \frac{v}{w} \circ \varphi \leq C \frac{v}{w} .
$$

But this holds with $C=1$ by the Schwarz lemma, since $v(z) / w(z)$ is radial and increasing as $|z| \rightarrow 1$.

Theorem 3.7. Let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ be an analytic map such that $\partial \varphi(\mathbb{D}) \cap \partial \mathbb{D} \neq \emptyset$. Then there exists an essential typical weight v such that $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{v}^{\infty}$ is bounded but not compact.

Corollary 3.8. Let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ be an analytic map. The following assertions are equivalent:
(i) $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{v}^{\infty}$ is compact for any (typical) weight v;
(ii) $C_{\varphi}: H_{v}^{0} \rightarrow H_{v}^{0}$ is compact for any weight v tending to zero at the boundary;
(iii) $C_{\varphi}: H^{\infty} \rightarrow H^{\infty}$ is compact;
(iv) $\varphi(\mathbb{D}) \subseteq r \mathbb{D}$ for some $r<1$.

Proof of Theorem 3.7. The weight $w(z)=(1-|z|)$ is typical and essential and $C_{\varphi}: H_{w}^{\infty} \rightarrow H_{w}^{\infty}$ is always bounded by Theorem 2.3. Let us assume that C_{φ} is compact in that case.

By Theorem 3.3, there is $r_{0}<1$ such that for any $r>r_{0}$:

$$
1-|z|<\frac{1}{2}(1-|\varphi(z)|) \text { for } \quad|z|=r
$$

Let us define $M(r):=\sup _{|z|=r}|\varphi(z)|$, then we have

$$
\begin{equation*}
1-r<\frac{1}{2}(1-M(r)) \quad \text { for } \quad r>r_{0} \tag{10}
\end{equation*}
$$

The function $M(r)$ is non-decreasing, tends to 1 as $r \rightarrow 1^{-}$and, by the Hadamard Three Circle Theorem, it is logarithmically convex. In particular, $\log M(r) / \log r$ is non-decreasing as $r \rightarrow 1^{-}$. By (10), there is $\delta>1$ such that for $r \geq r_{0}$ we have $\log M(r) / \log r>\delta$. We define inductively a sequence $\left(r_{n}\right)_{n \in \mathbb{N}}$ such that $r_{n-1}=M\left(r_{n}\right)$. Obviously,

$$
\begin{equation*}
r_{n-1}<r_{n}^{\delta} \quad \text { for } \quad n \in \mathbb{N} \tag{11}
\end{equation*}
$$

and $\lim _{n \rightarrow \infty} r_{n}=1$. We define an increasing function $u:[0,1) \rightarrow \mathbb{R}_{+}$which is equal to 1 on $\left[0, r_{0}\right], u\left(r_{n}\right)=2^{n}$ and it is affine on each interval $\left[r_{n-1}, r_{n}\right]$. The weight we are looking for is defined as $v(z)=1 / u(|z|)$.

Firstly, we show that v is essential. By [BBT, Proposition 3.4], it suffices to prove the so-called condition (U) for v, that is, to find $\alpha>0$ and $C>0$ such that

$$
\begin{equation*}
u(y)(1-y)^{\alpha} \leq C u(x)(1-x)^{\alpha} \quad \text { for all } \quad 0 \leq x<y<1 \tag{12}
\end{equation*}
$$

We take $C=4$ and arbitrary α such that $\left(\left(1-r_{0}\right) /\left(1-r_{0}^{1 / \delta}\right)\right)^{\alpha}>2$. Indeed, for any x, y either $u(y) \leq 2 u(x)$ or we find $n \leq k$ such that

$$
r_{n} \leq y, u(y) \leq 2 u\left(r_{n}\right) \quad \text { and } \quad x \leq r_{k}, u\left(r_{k}\right) \leq 2 u(x)
$$

Thus

$$
\begin{equation*}
\frac{u(y)}{u(x)} \leq 4 \frac{u\left(r_{n}\right)}{u\left(r_{k}\right)}<4\left(\frac{1-r_{0}}{1-r_{0}^{1 / \delta}}\right)^{\alpha(n-k)} \tag{13}
\end{equation*}
$$

Since $g(t):=(1-t) /\left(1-t^{1 / \delta}\right)$ is an increasing function,

$$
\frac{1-r_{0}}{1-r_{0}^{1 / \delta}} \leq \frac{1-r_{i}}{1-r_{i}^{1 / \delta}} \quad \text { for any } \quad i \geq 0
$$

and, by (11), we get

$$
\frac{1-r_{0}}{1-r_{0}^{1 / \delta}} \leq \frac{1-r_{i}}{1-r_{i+1}}
$$

Combining with (13), we get

$$
\frac{u(y)}{u(x)} \leq 4 \prod_{i=k}^{n-1}\left(\frac{1-r_{i}}{1-r_{i+1}}\right)^{\alpha}=4\left(\frac{1-r_{k}}{1-r_{n}}\right)^{\alpha} \leq 4\left(\frac{1-x}{1-y}\right)^{\alpha}
$$

which gives (12) and v is essential.
Now, for $|z|>r_{0}$ we find $n \in \mathbb{N}$ such that $r_{n} \leq|z|<r_{n+1}$, then

$$
\frac{v(z)}{v(\varphi(z))} \leq \frac{u(M(|z|))}{u(|z|)} \leq \frac{u\left(M\left(r_{n+1}\right)\right)}{u\left(r_{n}\right)}=1,
$$

by the definition of $\left(r_{n}\right)$. Thus $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{v}^{\infty}$ is bounded by Proposition 2.1.
On the other hand, for any $n \in \mathbb{N}$ there is $z_{n},\left|z_{n}\right|=r_{n}$ such that $\left|\varphi\left(z_{n}\right)\right|=r_{n-1}$. Clearly,

$$
\frac{v\left(z_{n}\right)}{v\left(\varphi\left(z_{n}\right)\right)}=\frac{u\left(r_{n-1}\right)}{u\left(r_{n}\right)}=\frac{1}{2}
$$

and (since $\left|z_{n}\right| \rightarrow 1$ as $\left.n \rightarrow \infty\right) C_{\varphi}: H_{v}^{\infty} \rightarrow H_{v}^{\infty}$ is not compact by Corollary 3.4.

4. Integral operators C_{φ}

Unfortunately we are not able to give a characterization of nuclear, integral or absolutely summing composition operators for general weights. It is, however, not too complicated to find sufficient conditions for example as follows.

Proposition 4.1. Let $1 \leq p<\infty, 1 / p+1 / q=1$, let v and w be radial weights and let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ be analytic. The operator $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{w}^{\infty}$ is p-integral, if

$$
\begin{equation*}
\sup _{=\in \mathbb{\mathbb { D }}} \int_{\xi \in \mathbb{D}} \frac{w(z)^{q}}{v \circ \varphi(\xi)^{q}|1-z \bar{\xi}|^{2 q}\left|\varphi^{\prime}(\xi)\right|^{2 q / p}} d A(\xi)<\infty \tag{14}
\end{equation*}
$$

In the case $p=1$ the integral is replaced by a supremum in the usual way.
Proof. Since the identity operator $H_{v}^{\infty} \rightarrow A_{v}^{p} \subset L^{p}(v(z) d A(z))$ is order bounded, it is enough to show that $C_{\varphi}: H_{v}^{\infty} \rightarrow H_{w}^{\infty}$ factorizes through the above defined map; see [DJT, Propositions 5.18 and 5.5]. To this end it suffices to prove that
$C_{\varphi}: A_{v}^{p} \rightarrow H_{w}^{\infty}$ is bounded. Indeed, using the Bergman reproducing kernel ([Z, Section 4.1]) and the dominated convergence theorem,

$$
\begin{aligned}
\sup _{z \in \mathbb{D}} \mid f & \left.\circ \varphi(z)\left|w(z)=\sup _{z \in \mathbb{D}}\right| \int_{\mathbb{D}} \frac{f \circ \varphi(\xi)}{(1-z \bar{\xi})^{2}} d A(\xi) \right\rvert\, w(z) \\
\leq & \sup _{z \in \mathbb{D}}\left(\int_{\xi \in \mathbb{D}} \frac{w(z)^{q}}{v \circ \varphi(\xi)^{q}|1-z \bar{\xi}|^{2 q}}\left|J_{\varphi}(\xi)\right|^{-q / p} d A(\xi)\right)^{1 / q} \\
& \times\left(\int_{\mathbb{D}}|f \circ \varphi(\xi)|^{p} v \circ \varphi(\xi)^{p}\left|J_{\varphi}(\xi)\right| d A(\xi)\right)^{1 / p}
\end{aligned}
$$

where $\left|J_{\varphi}\right|$ is the 2-dimensional Jacobian determinant of φ. The identity $\left|J_{\varphi}\right|=\left|\varphi^{\prime}\right|^{2}$ and (14) permit us to conclude.

EXAMPLE 4.2. An example of integral composition operators.

CONSTRUCTION. Let $v(z):=(1-|z|)^{\alpha}$ and $w(z):=(1-|z|)^{\beta}$, where $\alpha, \beta>0$. Let $\Omega \subset \mathbb{D}$ be an open subset such that $\partial \Omega \cap \partial \mathbb{D}=\{1\}$. We also assume that $\partial \Omega$ is Dini-smooth ([Po, Theorem 3.5]) except at the point 1 where it has a Dini-smooth corner of opening $\gamma \pi$, where $\gamma<1$, in the sense of [Po, p. 51]; we make the technical assumption that for some $c>0$ the inequality

$$
\begin{equation*}
|\operatorname{Im}(z)| \leq c(1-\operatorname{Re}(z)) \tag{15}
\end{equation*}
$$

is satisfied for every $z \in \Omega$. Let φ be a Riemann conformal mapping $\mathbb{D} \rightarrow \Omega$ such that $\lim _{z \rightarrow 1} \varphi(z)=1, \varphi(0)=0\left(\left[\mathrm{Po}\right.\right.$, Theorem 2.6]); for example $\varphi(z):=1-a(1-z)^{r}$ for a suitable $a \in \mathbb{C}$.

We show that (14) is satisfied for $p=1$ and the operator C_{φ} is thus 1 -integral, if
(a) $\beta \geq 2 \geq(\alpha+2) \gamma$, or
(b) $\beta \geq(\alpha+2) \gamma \geq 2$.

By [Po, Theorem 3.9], there exists a neighbourhood U of 1 such that for some constants $c, C>0$,

$$
\begin{align*}
& c<\left|\frac{1-\varphi(z)}{(1-z)^{\gamma}}\right|<C \quad \text { for } z \in U, \text { and } \tag{16}\\
& c<\left|\frac{\varphi^{\prime}(z)}{(1-z)^{\gamma-1}}\right|<C \quad \text { for } z \in U, \tag{17}
\end{align*}
$$

and the same estimates also hold for numbers z outside U, because of $\overline{\varphi(\mathbb{D} \backslash U)} \subset \mathbb{D}$ and the Dini-smoothness assumption on $\partial \Omega$. From (17) we deduce that $\left|J_{\varphi}\right|=\left|\varphi^{\prime}\right|^{2}$ is bounded from below and above by a positive constant times $|1-z|^{2(\gamma-1)}$. Moreover, (15) implies that there exists a $C^{\prime}>0$ such that $|1-\xi| \leq C^{\prime}(1-|\xi|)$ for $\xi \in \Omega$; this and (16) imply that for $c^{\prime}>0,1-|\varphi(z)| \geq c^{\prime}|1-z|^{\gamma}$ for $z \in \mathbb{D}$. Hence, for $c^{\prime \prime}>0$

$$
\begin{equation*}
v \circ \varphi(z)=(1-|\varphi(z)|)^{\alpha} \geq c^{\prime \prime}|1-z|^{\gamma \alpha} . \tag{18}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\sup _{z, \xi \in \mathbb{D}} \frac{w(z)}{v \circ \varphi(\xi)|1-z \bar{\xi}|^{2}\left|\varphi^{\prime}(\xi)\right|} \leq C \sup _{z, \xi \in \mathbb{D}} \frac{(1-|z|)^{\beta}}{|1-\xi|^{(\alpha+2) \gamma-2}|1-z \bar{\xi}|^{2}} . \tag{19}
\end{equation*}
$$

We now distinguish between the two cases (a) and (b) mentioned above. If (a) holds, (19) is not larger than

$$
C \sup _{z, \xi \in \mathbb{D}} \frac{(1-|z|)^{\beta}}{|1-z \bar{\xi}|^{2}} \leq C \sup _{z \in \mathbb{D}} \frac{(1-|z|)^{\beta}}{(1-|z|)^{2}}<\infty .
$$

In the case (b) (19) can be estimated by

$$
C \sup _{: . \xi \in \mathbb{D}} \frac{(1-|z|)^{\beta}}{(1-|\xi|)^{(\alpha+2) \gamma-2}|1-z \bar{\xi}|^{2}} .
$$

Clearly we can here take the sup only over the values $0<z, \xi<1$. The partial derivative of

$$
\begin{equation*}
\frac{(1-z)^{\beta}}{(1-\xi)^{(\alpha+2) y-2}(1-z \xi)^{2}}, \quad 0<z, \xi<1, \tag{20}
\end{equation*}
$$

with respect to ξ vanishes at the point $\xi=(((\alpha+2) \gamma-2+2 z) /((\alpha+2) \gamma z))^{\beta}$, and at this point (20) becomes equal to a constant times $(1-z)^{\beta-(\alpha+2) \gamma} z^{(\alpha+2) \gamma-2}$. This expression is also finite, if the condition (b) is satisfied.

References

[BBT] K. D. Bierstedt, J. Bonet and J. Taskinen, 'Spaces of holomorphic functions with growth conditions and associated weights', Studia Math. (to appear).
[BS] K. D. Bierstedt and W. H. Summers, 'Biduals of weighted Banach spaces of analytic functions', J. Austral. Math. Soc. (Series A) 54 (1993), 70-79.
[C] J. Conway, Functions of one complex variable (Springer, Berlin, 1978).
[CM] C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions (CRC Press, Boca Raton, 1995).
[DJT] J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics 43 (Cambrige University Press, Cambridge, 1995).
[J] H. Jarchow, 'Some functional analytic properties of composition operators', Quaestiones Math. 18 (1995), 229-256.
[L1] W. Lusky, 'On the structure of $H v_{0}(D)$ and $h v_{0}(D)$ ', Math. Nachr. 159 (1992), 279-289.
[L2] -_, 'On weighted spaces of harmonic and holomorphic functions', J. London Math. Soc. 51 (1995), 309-320.
[Po] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss. 299 (Springer, Berlin, 1992).
[RS] L. A. Rubel, A. L. Shields, 'The second duals of certain spaces of analytic functions', J. Austral. Math. Soc. 11 (1970), 276-280.
[Sh] J. H. Shapiro, Composition operators and classical function theory (Springer, Berlin, 1993).
[SWI] A. L. Shields, D. L. Williams, 'Bounded projections, duality, and multipliers in spaces of harmonic functions', J. Reine Angew. Math. 299/300 (1978), 256-279.
[SW2] -, 'Bounded projections and the growth of harmonic conjugates in the disk', Michigan Math. J. 29 (1982), 3-25.
[SS] R. K. Singh and W. H. Summers, 'Composition operators on weighted spaces of continuous functions', J. Austral. Math. Soc. (Series A) 45 (1988), 303-319.
[T] J. Taskinen, Compact composition operators on general weighted spaces, Department of Mathematics, Univ. Helsinki Preprint 121, 1996.
[Z] K. Zhu, Operator theory in function spaces (Dekker, New York, 1995).

Dept. Matemática Aplicada
Univ. Politécnica de Valencia
E-46071 Valencia
Spain
e-mail: jbonet@pleiades.upv.es

Department of Mathematics
Åbo Akademi University, FIN-20500
Åbo
Finland
e-mail: mlindstr@ra.abo.fi

Faculty of Matematics and Comp. Sci. A. Mickiewicz University, ul.

Matejki 48/49
60-769 Poznań
Poland
e-mail: domanski@math.amu.edu.pl

Department of Mathematics
P. O. Box 4, FIN-00014

University of Helsinki
Finland
e-mail: taskinen@cc.helsinki.fi

[^0]: The research of the first named author was partially supported by DGICYT, grant. no. PB94-0541. The research of the second named author was mainly done while he visited Universidad Politécnica de Valencia, Spain, supported by DGICYT (Spain), grant no. SAB 95-0092 in the academic year 1995/96. (c) 1998 Australian Mathematical Society $0263-6115 / 98 \$ \mathrm{~A} 2.00+0.00$

