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Numerical range of Toeplitz and weighted
composition operators on weighted
Bergman spaces
Anirban Sen, Subhadip Halder, Riddhick Birbonshi and Kallol Paul

Abstract. In this paperwe completely describe the numerical range of Toeplitz operators onweighted
Bergman spaces with harmonic symbol. We also characterize the numerical range of weighted com-
position operators onweighted Bergman spaces and classify some sets which are the numerical range
of composition operators. We investigate the inclusion of zero in the numerical range, and compute
the radius of circular and elliptical disk contained in the numerical range of weighted composition
operators on weighted Bergman spaces.

1 Introduction

LetB(H) be the𝐶∗-algebra of all bounded linear operators on a complex Hilbert space
H. For 𝑇 ∈ B(H), the numerical range of 𝑇, denoted by 𝑊 (𝑇), is the subset of the
complex plane C defined by

𝑊 (𝑇) = {⟨𝑇 𝑓 , 𝑓 ⟩ : 𝑓 ∈ H, ∥ 𝑓 ∥ = 1} .

It is well known that 𝑊 (𝑇) is a bounded and convex subset of C. The spectrum of
𝑇, denoted by 𝜎(𝑇), is contained in the closure of 𝑊 (𝑇). We refer to [8, 19] for the
detailed proofs of these results and other properties of the numerical range.

The numerical range of Toeplitz and composition operators have been studied over
the years. In 1972, Klein [12] completely described the numerical range of Toeplitz
operators on the Hardy-Hilbert space of the unit disk. Later, the numerical range of
Toeplitz operators on Bergman space and polydisk were studied in [6, 17, 18]. In [13],
the numerical ranges of composition operators on the Hardy-Hilbert space induced
by monomials were characterized. Bourdon and Shapiro [2, 3] studied the numer-
ical range of composition operators and the containment of the origin. Recently,
the numerical range of weighted composition operators on Hardy-Hilbert space and
weighted Bergman spaces were explored in [7, 21].

In this article, we study the numerical ranges of Toeplitz operators and weighted
composition operators on weighted Bergman spaces. The article is structured as fol-
lows. In Section 2, we introduce some notation, recall some definitions, and present
some preliminary results. In Section 3, we completely describe the numerical range of
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2 A. Sen, S. Halder, R. Birbonshi and K. Paul

Toeplitz operators on the weighted Bergman spaces with harmonic symbol. We pro-
vide an example to justify that the harmonic condition is necessary for the character-
ization given in Theorem 3.5. Then we obtain the numerical range of some particular
classes of weighted composition operators on the weighted Bergman spaces. Fur-
ther, we characterize some bounded and convex sets which are the numerical range
of weighted composition operators. Our main aim of Section 4 is to study when the
origin is contained in the numerical range of weighted composition operators act-
ing on weighted Bergman spaces. Then we derive some sufficient conditions on the
closedness of the numerical range of weighted composition operators. In Section 5,
we identify several classes of weighted composition operators whose numerical range
includes a circular disk or an elliptical disk. Furthermore, we determine the radius of
the circular disk as well as the lengths of the minor and major axes of the elliptical disk.

2 Preliminaries

Let D = {𝑧 ∈ C : |𝑧 | < 1} be the open unit disk. Let 𝐻 (D) be the space of all analytic
functions on D and 𝐻∞ be the space of all bounded analytic functions on D. We will
use the notation 𝑋, 𝜕𝑋, 𝑖𝑛𝑡 𝑋, 𝑅𝑒𝑙 𝑖𝑛𝑡 𝑋 and 𝑋∧ for the closure, boundary, interior,
relative interior and convex hull, respectively, of the set 𝑋 ⊂ C.

For 𝛼 > −1, the weighted Bergman space 𝐿2
𝑎 (𝑑𝐴𝛼) on the unit disk is defined as

𝐿2
𝑎 (𝑑𝐴𝛼) =

{
𝑓 ∈ 𝐻 (D) :

∫
D
| 𝑓 (𝑧) |2𝑑𝐴𝛼 (𝑧) < ∞

}
,

where 𝑑𝐴 denotes the normalized Lebesgue area measure on D and

𝑑𝐴𝛼 (𝑧) = (𝛼 + 1) (1 − |𝑧 |2)𝛼𝑑𝐴(𝑧).

Clearly, 𝐿2
𝑎 (𝑑𝐴𝛼) = 𝐻 (D) ∩ 𝐿2 (D, 𝑑𝐴𝛼) and when the weight parameter 𝛼 = 0,

the weighted Bergman space becomes the classical Bergman space 𝐿2
𝑎 (𝑑𝐴). Here we

note that 𝐿2
𝑎 (𝑑𝐴𝛼) is a closed subspace of 𝐿2 (D, 𝑑𝐴𝛼) and has the orthonormal basis

{𝑒𝑛}∞𝑛=0, where

𝑒𝑛 (𝑧) =

√︄
Γ(𝑛 + 𝛼 + 2)
𝑛!Γ(𝛼 + 2) 𝑧𝑛 for all 𝑛 ≥ 0.

For 𝑓 , 𝑔 ∈ 𝐿2
𝑎 (𝑑𝐴𝛼) the inner product on 𝐿2

𝑎 (𝑑𝐴𝛼) can also be expressed as

⟨ 𝑓 , 𝑔⟩ =
∞∑︁
𝑛=0

𝑛!Γ(𝛼 + 2)
Γ(𝑛 + 𝛼 + 2) 𝑓𝑛

¯̂𝑔𝑛,

where 𝑓 (𝑧) = ∑∞
𝑛=0 𝑓𝑛𝑧

𝑛 and 𝑔(𝑧) = ∑∞
𝑘=0 𝑔̂𝑛𝑧

𝑛. It is well known that the weighted
Bergman spaces are reproducing kernel Hilbert space and the reproducing kernel of
𝐿2
𝑎 (𝑑𝐴𝛼) at the point 𝑤 ∈ D is given by

𝑘𝛼
𝑤 (𝑧) =

1
(1 − 𝑤̄𝑧)𝛼+2 .
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The normalized reproducing kernel at 𝑤 ∈ D is given by

𝑘̂𝛼
𝑤 (𝑧) =

(1 − |𝑤 |2) 𝛼
2 +1

(1 − 𝑤̄𝑧)𝛼+2 .

For more details about the weighted Bergman spaces we refer to the book [20].
Let 𝑃𝛼 denote the orthogonal projection of 𝐿2 (D, 𝑑𝐴𝛼) onto 𝐿2

𝑎 (𝑑𝐴𝛼). Let
𝐿∞ (D, 𝑑𝐴𝛼) be the space of all complex measurable functions 𝜙 on D such that

∥𝜙∥∞,𝛼 = sup{𝑐 ≥ 0 : 𝐴𝛼 ({𝑧 ∈ D : |𝜙(𝑧) | > 𝑐}) > 0} < ∞.

For 𝜙 ∈ 𝐿∞ (D, 𝑑𝐴𝛼), the operator 𝑇𝜙 on 𝐿2
𝑎 (𝑑𝐴𝛼) defined by

𝑇𝜙 𝑓 = 𝑃𝛼 (𝜙 𝑓 ), 𝑓 ∈ 𝐿2
𝑎 (𝑑𝐴𝛼)

is called the Toeplitz operator on 𝐿2
𝑎 (𝑑𝐴𝛼) with symbol 𝜙. It is easy to observe that

𝑇𝜙 is a bounded linear operator on 𝐿2
𝑎 (𝑑𝐴𝛼) with ∥𝑇𝜙 ∥ ≤ ∥𝜙∥∞,𝛼 . Furthermore, if

𝜙 ∈ 𝐻∞, then 𝑇∗
𝜙
𝑘𝛼
𝑤 = 𝜙(𝑤)𝑘𝛼

𝑤 for all 𝑤 ∈ D, see [5].
Let 𝜙 : D → D be an analytic self map on D and 𝜓 ∈ 𝐻 (D). The weighted

composition operator 𝐶𝜓,𝜙 : 𝐻 (D) → 𝐻 (D) is defined by

𝐶𝜓,𝜙 𝑓 = 𝜓( 𝑓 ◦ 𝜙) for all 𝑓 ∈ 𝐻 (D).

In particular, when 𝜙 is the identity mapping on D then 𝐶𝜓,𝜙 becomes the multi-
plication operator 𝑀𝜓 and for 𝜓 = 1, 𝐶𝜓,𝜙 becomes the unweighted composition
operator 𝐶𝜙 . In this article we limit our analysis to weighted composition operators
on 𝐿2

𝑎 (𝑑𝐴𝛼).
In [4, Th. 1], Čučković et al. proved the following boundedness condition of

weighted composition operators on 𝐿2
𝑎 (𝑑𝐴𝛼) :

𝐶𝜓,𝜙 ∈ B(𝐿2
𝑎 (𝑑𝐴𝛼)) if and only if sup

𝑎∈D
𝐼𝜙,𝛼 (𝜓) (𝑎) < ∞, (2.1)

where

𝐼𝜙,𝛼 (𝜓) (𝑎) =
∫
D

(
1 − |𝑎 |2

|1 − 𝑎𝜙(𝑤) |2

)𝛼+2

|𝜓(𝑤) |2𝑑𝐴𝛼 (𝑤).

Clearly, it follows from (2.1) that if 𝜓 ∈ 𝐻∞ then 𝐶𝜓,𝜙 ∈ B(𝐿2
𝑎 (𝑑𝐴𝛼)). Next relation

follows from the reproducing property of 𝐿2
𝑎 (𝑑𝐴𝛼) that if 𝐶𝜓,𝜙 ∈ B(𝐿2

𝑎 (𝑑𝐴𝛼)) then
𝐶∗
𝜓,𝜙

𝑘𝛼
𝑤 = 𝜓(𝑤)𝑘𝛼

𝜙 (𝑤) for all 𝑤 ∈ D.

3 Shape of the numerical range

We begin with the definition of 𝛼-essential range.

Definition 3.1 For 𝜙 ∈ 𝐿∞ (D, 𝑑𝐴𝛼) the 𝛼-essential range of 𝜙 is denoted by 𝑅𝜙,𝛼

and defined as

𝑅𝜙,𝛼 = {𝑤 : 𝐴𝛼 ({𝑧 ∈ D : |𝜙(𝑧) − 𝑤 | < 𝜖}) > 0 for any 𝜖 > 0}.
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It is easy to observe that 𝑅𝜙,𝛼 is a compact subset of C and

∥𝜙∥∞,𝛼 = max{|𝑤 | : 𝑤 ∈ 𝑅𝜙,𝛼}.

Now, we prove the following lemma.

Lemma 3.1 Let 𝜙 ∈ 𝐿∞ (D, 𝑑𝐴𝛼) be such that 𝜙 is continuous on D, then 𝜙(D) = 𝑅𝜙,𝛼 .

Proof If 𝑢 ∈ 𝜙(D) then there exists 𝑧0 ∈ D such that 𝑢 = 𝜙(𝑧0). Since 𝜙 is con-
tinuous so for any 𝜖 > 0 there exists 𝛿 > 0 such that |𝜙(𝑧) − 𝑢 | < 𝜖 whenever
𝑧 ∈ 𝑆 = {𝑧 ∈ D : |𝑧 − 𝑧0 | < 𝛿}. Clearly, 𝐴𝛼 ({𝑧 ∈ D : |𝜙(𝑧) − 𝑢 | < 𝜖}) ≥ 𝐴𝛼 (𝑆).
If possible let 𝐴𝛼 (𝑆) = 0. Then we have

∫
𝑆
(𝛼 + 1) (1 − |𝑧 |2)𝛼𝑑𝐴 = 0. This implies

that (𝛼 + 1) (1 − |𝑧 |2)𝛼 = 0 almost all on 𝑧 ∈ 𝑆, which is not possible. Thus
𝐴𝛼 ({𝑧 ∈ D : |𝜙(𝑧) − 𝑢 | < 𝜖}) ≥ 𝐴𝛼 (𝑆) > 0. Therefore, 𝑢 ∈ 𝑅𝜙,𝛼 and since 𝑅𝜙,𝛼 is
closed so 𝜙(D) ⊆ 𝑅𝜙,𝛼 .

Now, if 𝑢 ∈ 𝑅𝜙,𝛼 then from the definition it follows that for any 𝜖 > 0 there exists
𝑧 ∈ D such that |𝜙(𝑧) − 𝑢 | < 𝜖. Hence 𝑢 ∈ 𝜙(D) and this completes the proof. ■

Remark 3.2 Here we note that if 𝜙 ∈ 𝐿∞ (D, 𝑑𝐴𝛼) and 𝜙 is continuous on D, then 𝜙

is bounded on D.

To prove our next result we need the following lemma which was proved in [1].

Lemma 3.3 If 𝜙 is harmonic and integrable over D then so is 𝜙 ◦ 𝜉 for every Möbius
transformation 𝜉 of D, and

∫
D (𝜙 ◦ 𝜉)𝑑𝐴 = 𝜙(𝜉 (0)).

In the following proposition we obtain the spectrum of Toeplitz operator on
𝐿2
𝑎 (𝑑𝐴𝛼) with real and harmonic symbol, which generalizes the existing result on the

Bergman space given in [14, Prop. 12].

Proposition 3.4 If 𝜙 ∈ 𝐿∞ (D, 𝑑𝐴𝛼) is real and harmonic, then 𝜎(𝑇𝜙) = [inf 𝜙, sup 𝜙] .

Proof First we have to prove 𝜎(𝑇𝜙) ⊆ [inf 𝜙, sup 𝜙] and so we have to show that
𝑇𝜙−𝜆 is invertible whenever 𝜆 ∉ [inf 𝜙, sup 𝜙] . Since 𝜆 ∉ [inf 𝜙, sup 𝜙] so either
𝜙(𝑧) − 𝜆 > 0 or 𝜙(𝑧) − 𝜆 < 0 for all 𝑧 ∈ D. For the former case we choose 𝜖 > 0 such
that

∥𝜖 (𝜙 − 𝜆) − 1∥∞,𝛼 ≤ sup
𝑧∈D

|𝜖 (𝜙(𝑧) − 𝜆) − 1| < 1

and so we have

∥𝑇𝜖 (𝜙−𝜆) − 𝐼 ∥ = ∥𝑇𝜖 (𝜙−𝜆)−1∥ ≤ ∥𝜖 (𝜙 − 𝜆) − 1∥∞,𝛼 < 1.

Thus 𝑇𝜖 (𝜙−𝜆) is invertible and so 𝑇𝜙−𝜆 is invertible. For the latter case 𝜙(𝑧) − 𝜆 < 0
for all 𝑧 ∈ D implies that −(𝜙(𝑧) − 𝜆) > 0 for all 𝑧 ∈ D. Proceeding similarly as the
former case and using the relation 𝑇𝜙−𝜆 = −𝑇−𝜙+𝜆, we get the desired result.

Next we prove the opposite inclusion. Since 𝜎(𝑇𝜙) is a closed subset of C so it
suffices to show that 𝜎(𝑇𝜙) ⊇ (inf 𝜙, sup 𝜙). As 𝜎(𝑇𝜙−𝜆) ⊇ (inf 𝜙 − 𝜆, sup 𝜙 − 𝜆)
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for any 𝜆 ∈ R, we only have to prove that 𝑇𝜙 is not invertible whenever 𝜙 takes both
positive and negative values on D. Since 𝜙 is continuous, there exists 𝑤 ∈ D such that
𝜙(𝑤) = 0. Now, to reach our main goal we only show that 𝑘𝛼

𝑤 ∉ 𝑅𝑎𝑛𝑔𝑒(𝑇𝜙). We
suppose that 𝑘𝛼

𝑤 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑇𝜙), then there exists 𝑓 ∈ 𝐿2
𝑎 (𝑑𝐴𝛼) such that 𝑇𝜙 𝑓 = 𝑘𝛼

𝑤

i.e., 𝑃𝛼 (𝜙 𝑓 ) = 𝑘𝛼
𝑤 . Since 𝜙 ∈ 𝐿∞ (D, 𝑑𝐴𝛼) so 𝜙 𝑓 ∈ 𝐿2 (D, 𝑑𝐴𝛼) = 𝐿2

𝑎 (𝑑𝐴𝛼) ⊕
𝐿2
𝑎 (𝑑𝐴𝛼)⊥ and we have 𝜓 ∈ 𝐿2

𝑎 (𝑑𝐴𝛼)⊥ such that

𝜙 𝑓 = 𝑘𝛼
𝑤 + 𝜓. (3.1)

For any 𝑔 ∈ 𝐻∞, from (3.1) we have∫
D
𝜙| 𝑓 |2𝑔̄𝑑𝐴𝛼 =

∫
D
𝑘𝛼
𝑤 𝑓 𝑔̄𝑑𝐴𝛼 +

∫
D
𝜓 𝑓 𝑔̄𝑑𝐴𝛼 . (3.2)

Since 𝜓 ∈ 𝐿2
𝑎 (𝑑𝐴𝛼)⊥ and 𝑓 𝑔 ∈ 𝐿2

𝑎 (𝑑𝐴𝛼) so∫
D
𝜓 𝑓 𝑔̄𝑑𝐴𝛼 = 0.

Now, we get∫
D
𝑘𝛼
𝑤 𝑓 𝑔̄𝑑𝐴𝛼 = ⟨𝑘𝛼

𝑤 , 𝑓 𝑔⟩ = ⟨𝑘𝛼
𝑤 , 𝑇𝑔 𝑓 ⟩ = ⟨𝑇∗

𝑔 𝑘
𝛼
𝑤 , 𝑓 ⟩ = 𝑔(𝑤)⟨𝑘𝛼

𝑤 , 𝑓 ⟩ = 𝑔(𝑤) 𝑓 (𝑤).

Therefore, from (3.2) we have∫
D
𝜙| 𝑓 |2𝑔̄𝑑𝐴𝛼 = 𝑔(𝑤) 𝑓 (𝑤). (3.3)

In particular considering 𝑔 = 1, the equality (3.3) implies that 𝑓 (𝑤) ∈ R. Thus for any
𝑔 ∈ 𝐻∞ from (3.3) we get∫

D
𝜙| 𝑓 |2𝑅𝑒𝑔𝑑𝐴𝛼 = 𝑓 (𝑤)𝑅𝑒(𝑔(𝑤)). (3.4)

Since 𝑅𝑒𝐻∞ is weak∗-dense in the bounded real harmonic functions, then there exists
a sequence {𝑔𝑛} in 𝑅𝑒𝐻∞ such that

lim
𝑛→∞

∫
D
𝜓𝑅𝑒𝑔𝑛𝑑𝐴 =

∫
D
𝜓𝜙𝑑𝐴 for all 𝜓 ∈ 𝐿1 (D, 𝑑𝐴). (3.5)

As 𝜙 is bounded and 𝑓 ∈ 𝐿2
𝑎 (𝑑𝐴𝛼) so we have (𝛼 + 1)𝜙| 𝑓 |2 (1 − |𝑧 |2)𝛼 ∈ 𝐿1 (D, 𝑑𝐴).

Thus from (3.5), we get

lim
𝑛→∞

∫
D
𝜙| 𝑓 |2𝑅𝑒𝑔𝑛𝑑𝐴𝛼 =

∫
D
𝜙2 | 𝑓 |2𝑑𝐴𝛼 .

By applying (3.4) we obtain that

lim
𝑛→∞

𝑓 (𝑤)𝑅𝑒𝑔𝑛 (𝑤) =
∫
D
𝜙2 | 𝑓 |2𝑑𝐴𝛼 . (3.6)
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Let 𝑘̂𝑤 be the normalized reproducing kernel of 𝐿2
𝑎 (𝑑𝐴) at the point 𝑤. Then the

function | 𝑘̂𝑤 (𝑧) |2 ∈ 𝐿1 (D, 𝑑𝐴) and from (3.5), we get

lim
𝑛→∞

∫
D
𝑅𝑒𝑔𝑛 | 𝑘̂𝑤 (𝑧) |2𝑑𝐴 =

∫
D
𝜙| 𝑘̂𝑤 (𝑧) |2𝑑𝐴. (3.7)

Let 𝜙𝑤 be the Möbius map on D, given by 𝜙𝑤 (𝑧) = 𝑤−𝑧
1−𝑤̄𝑧

for all 𝑧 ∈ D. Since the real
Jacobian of 𝜙𝑤 is given by | 𝑘̂𝑤 (𝑧) |2, we have

lim
𝑛→∞

∫
D
𝑅𝑒𝑔𝑛 ◦ 𝜙𝑤𝑑𝐴 =

∫
D
𝜙 ◦ 𝜙𝑤𝑑𝐴. (3.8)

Now, by Lemma 3.3 and (3.8), we obtain

lim
𝑛→∞

𝑅𝑒𝑔𝑛 (𝑤) = 𝜙(𝑤). (3.9)

Therefore, combining (3.6) and (3.9) we get∫
D
𝜙2 | 𝑓 |2𝑑𝐴𝛼 = 𝑓 (𝑤)𝜙(𝑤) = 0.

This implies that 𝜙2 | 𝑓 |2 ≡ 0 on D. As 𝜙 takes positive value on D and 𝑓 is analytic
on D so we have 𝑓 = 0. This implies that 𝑇𝜙 𝑓 = 𝑘𝛼

𝑤 = 0, which is a contradiction as
𝑘𝛼
𝑤 ≠ 0. Thus, 𝑘𝛼

𝑤 ∉ 𝑅𝑎𝑛𝑔𝑒(𝑇𝜙) and this completes the proof.
■

In the next result we completely determine the numerical range of Toeplitz oper-
ators with harmonic symbol acting on 𝐿2

𝑎 (𝑑𝐴𝛼).

Theorem 3.5 If 𝜙 ∈ 𝐿∞ (D, 𝑑𝐴𝛼) is a nonconstant harmonic function onD, then𝑊 (𝑇𝜙) =
𝑅𝑒𝑙 𝑖𝑛𝑡 𝜙(D)∧.

Proof Let 𝜙 ∈ 𝐿∞ (D, 𝑑𝐴𝛼) be a nonconstant harmonic function on D. We prove
this theorem by considering the following two cases.
Case 1. 𝜙 is real-valued.
Clearly 𝑇𝜙 is self adjoint. By Proposition 3.4 we get that 𝑊 (𝑇𝜙) = 𝜎(𝑇𝜙)∧ =

[inf 𝜙, sup 𝜙] . As 𝑊 (𝑇𝜙) is convex so (inf 𝜙, sup 𝜙) ⊆ 𝑊 (𝑇𝜙). Now, we will show
that 𝑇𝜙 has no eigenvectors. As 𝑇𝜙−𝜆 = 𝑇𝜙 − 𝜆𝐼 for all 𝜆 ∈ C, we have to show that
for any 𝑓 ∈ 𝐿2

𝑎 (𝑑𝐴𝛼), 𝑇𝜙 𝑓 = 0 implies that 𝑓 = 0. If𝑇𝜙 𝑓 = 0 then 𝜙 𝑓 ∈ 𝐿2
𝑎 (𝑑𝐴𝛼)⊥.

For any 𝑔 ∈ 𝐻∞ we have 𝑓 𝑔 ∈ 𝐿2
𝑎 (𝑑𝐴𝛼). Thus we get∫

D
𝜙| 𝑓 |2𝑔̄𝑑𝐴𝛼 = ⟨𝜙 𝑓 , 𝑓 𝑔⟩ = 0.

Hence, we obtain ∫
D
𝜙| 𝑓 |2𝑅𝑒𝑔𝑑𝐴𝛼 =

∫
D
𝜙| 𝑓 |2𝑅𝑒𝑔̄𝑑𝐴𝛼 = 0.
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Now, proceeding similarly as in Proposition 3.4 we get∫
D
𝜙2 | 𝑓 |2𝑑𝐴𝛼 = 0.

This implies that 𝑓 = 0. Thus inf 𝜙, sup 𝜙 ∉ 𝑊 (𝑇𝜙) because if either inf 𝜙 or sup 𝜙 are
in 𝑊 (𝑇𝜙) then they are extreme points of 𝑇𝜙 and hence they are eigenvalues of 𝑇𝜙 .
This completes the proof for the first case.
Case 2. 𝜙 is complex-valued.
We first prove the inclusion 𝑊 (𝑇𝜙) ⊆ 𝑅𝑒𝑙 𝑖𝑛𝑡 𝜙(D)∧. Let 𝑀𝜙 be the multiplication
operator on 𝐿2 (D, 𝑑𝐴𝛼). Since 𝑀𝜙 is a normal operator and 𝜎(𝑀𝜙) = 𝑅𝜙,𝛼 (see [9,
Prob. 67]), so 𝑊 (𝑀𝜙) = 𝑅∧

𝜙,𝛼
. Therefore, from Lemma 3.1 we get

𝑊 (𝑀𝜙) = 𝜙(D)∧. (3.10)

As 𝑇𝜙 dilates to 𝑀𝜙 ,

𝑊 (𝑇𝜙) ⊆ 𝑊 (𝑀𝜙). (3.11)

Now, combining (3.10) and (3.11) we obtain

𝑊 (𝑇𝜙) ⊆ 𝜙(D)∧. (3.12)

Suppose that𝑊 (𝑇𝜙) is not contained in 𝑅𝑒𝑙 𝑖𝑛𝑡 𝜙(D)∧. Then there exists 𝜃 ∈ R, 𝛾 ∈ C
and 𝑓 ∈ 𝐿2

𝑎 (𝑑𝐴𝛼) with ∥ 𝑓 ∥ = 1 such that

⟨𝑇𝑅𝑒 (𝑒𝑖𝜃 (𝜙+𝛾) ) 𝑓 , 𝑓 ⟩ = max 𝑅𝑒(𝑒𝑖 𝜃 (𝜙 + 𝛾)) (D)
∧
= 𝛿.

This implies that

⟨𝑀𝑅𝑒 (𝑒𝑖𝜃 (𝜙+𝛾) ) 𝑓 , 𝑓 ⟩ = ⟨𝑅𝑒(𝑒𝑖 𝜃 (𝜙 + 𝛾)) 𝑓 , 𝑓 ⟩ = 𝛿.

Since 𝑀𝑅𝑒 (𝑒𝑖𝜃 (𝜙+𝛾) ) ≤ 𝛿𝐼 so we get 𝑅𝑒(𝑒𝑖 𝜃 (𝜙 + 𝛾)) 𝑓 = 𝑐 𝑓 . The analyticity of non

zero 𝑓 implies that 𝑅𝑒(𝑒𝑖 𝜃 (𝜙 + 𝛾) (𝑧)) = 𝛿 for all 𝑧 ∈ D. Therefore, (𝜙 + 𝛾) (D)∧ is
contained in a line. Repeating the above process with 𝐼𝑚(𝑒𝑖 𝜃 (𝜙 + 𝛾)) yields that 𝜙
is constant, which contradicts our assumption. Therefore, 𝑊 (𝑇𝜙) is contained in the
relative interior of 𝜙(D)∧.

Suppose they are not equal. Then there exist 𝜃 ∈ R and 𝑐 ∈ C such that 𝑊 (𝑇𝜓) ⫋
𝑅𝑒𝑙 𝑖𝑛𝑡 𝜓(D)∧, where 𝜓 = 𝑅𝑒(𝑒𝑖 𝜃 (𝜙 + 𝑐)) which is real and harmonic and this
contradicts Case 1. Thus we obtain the desired relation. ■

The following corollary follows from Theorem 3.5.

Corollary 3.6 If 𝜙 ∈ 𝐻∞ then 𝑊 (𝑀𝜙) = 𝜙(D)∧.

The next example demonstrates that the condition 𝜙 is harmonic in D is essential
in Theorem 3.5.
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Example 3.7 If we consider the function 𝜙(𝑧) = |𝑧 |2 on D then 𝜙 is continuous but
not harmonic in D. For any 𝑛, 𝑚 ≥ 0, we have

⟨𝑇𝜙𝑒𝑛, 𝑒𝑚⟩

=

√︁
Γ(𝑛 + 𝛼 + 2)Γ(𝑚 + 𝛼 + 2)

√
𝑛!𝑚!Γ(𝛼 + 2)

(𝛼 + 1)
∫
D
𝜙(𝑧)𝑧𝑛𝑧𝑚𝑑𝐴𝛼 (𝑧)

=

√︁
Γ(𝑛 + 𝛼 + 2)Γ(𝑚 + 𝛼 + 2)

𝜋
√
𝑛!𝑚!Γ(𝛼 + 1)

(∫ 1

𝑟=0
𝑟𝑛+𝑚+3 (1 − 𝑟2)𝛼𝑑𝑟

) (∫ 2𝜋

𝜃=0
𝑒𝑖 (𝑛−𝑚) 𝜃𝑑𝜃

)
=

{
𝜆𝑛 if 𝑛 = 𝑚

0 if 𝑛 ≠ 𝑚
,

where

𝜆𝑛 =
Γ(𝑛 + 𝛼 + 2)
𝑛!Γ(𝛼 + 1)

∫ 1

𝑟=0
𝑟𝑛+1 (1 − 𝑟)𝛼𝑑𝑟 = 𝑛 + 1

𝑛 + 𝛼 + 2
.

Clearly, {𝜆𝑛}∞𝑛=0 is an increasing sequence with 𝜆𝑛 → 1. Thus the matrix represen-
tation of 𝑇𝜙 is a diagonal matrix with diagonal elements 𝜆𝑛, relative to the standard
ordered basis {𝑒𝑛}∞𝑛=0 of 𝐿2

𝑎 (𝑑𝐴𝛼).Hence𝑊 (𝑇𝜙) =
[ 1
𝛼+2 , 1

)
.Again 𝑅𝑒𝑙 𝑖𝑛𝑡 𝜙(D)∧ =

(0, 1).Hence in this example𝑊 (𝑇𝜙) is not equal to 𝑅𝑒𝑙 𝑖𝑛𝑡 𝜙(D)∧ furthermore𝑊 (𝑇𝜙)
is not a relatively open subset of C.

We now introduce the following definition.

Definition 3.2 For 𝑛 ≥ 2 and 𝑛 > 𝑗 ≥ 0, we define the subset 𝐿 𝑗 of 𝐿2
𝑎 (𝑑𝐴𝛼) as

𝐿 𝑗 =
{
𝑓 ∈ 𝐿2

𝑎 (𝑑𝐴𝛼) : 𝑓 (𝑧) = 𝑧 𝑗𝑔(𝑧𝑛), 𝑔 ∈ 𝐿2
𝑎 (𝑑𝐴𝛼)

}
.

Now, we prove the following lemma which will be useful when proving the next
result.

Lemma 3.8 If 𝑚 ∈ N and 𝑐 > 1 then the sequence
{
𝑥𝑛 =

𝑛!Γ (𝑛𝑚+𝑐)
(𝑛𝑚) !Γ (𝑛+𝑐)

}
is bounded.

Proof If 𝑐 is an integer then it easily follows that {𝑥𝑛} is bounded. Now, the function
𝑓 (𝑥) =

Γ (𝑚𝑛+𝑥 )
Γ (𝑛+𝑥 ) is increasing on the interval [1,∞). So, for an arbitrary 𝑐 > 1 by

choosing an integer greater than 𝑐 and using the boundedness of the sequence for the
integer case the desired result follows. ■

Next we prove the following decomposition of 𝐿2
𝑎 (𝑑𝐴𝛼),which will be an essential

tool to compute the numerical range of weighted composition operators on 𝐿2
𝑎 (𝑑𝐴𝛼).

Proposition 3.9 For each 𝑛 ≥ 2, 𝐿2
𝑎 (𝑑𝐴𝛼) can be decomposed as

𝐿2
𝑎 (𝑑𝐴𝛼) = 𝐿0 ⊕ 𝐿1 ⊕ . . . ⊕ 𝐿𝑛−1.
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Proof By applying Lemma 3.8 it follows that each element of 𝐿2
𝑎 (𝑑𝐴𝛼) of the form∑∞

𝑘=0 𝑎𝑘𝑧
𝑘𝑛+ 𝑗 lies in 𝐿 𝑗 and conversely. Then it follows easily that each 𝐿 𝑗 is a closed

subspace and for all 𝑛 ≥ 2,

𝐿2
𝑎 (𝑑𝐴𝛼) = 𝐿0 ⊕ 𝐿1 ⊕ . . . ⊕ 𝐿𝑛−1.

■

Our next result read as:

Lemma 3.10 If 𝜓 ∈ 𝐻∞ and 𝑀𝜓 (𝐿 𝑗 ) ⊆ 𝐿 𝑗 then 𝑊 (𝑀𝜓 |𝐿 𝑗
) = 𝜙(D)∧.

Proof Let 𝑝 𝑗 be the orthogonal projection from 𝐿2
𝑎 (𝑑𝐴𝛼) onto 𝐿 𝑗 . Now, for 𝑤 ∈

D \ {0} we denote 𝑘𝛼
𝑤, 𝑗

= 𝑝 𝑗 𝑘
𝛼
𝑤 . Then we have

⟨𝑀𝜓 𝑘̂
𝛼
𝑤, 𝑗 , 𝑘̂

𝛼
𝑤, 𝑗⟩ =

1
∥𝑘𝛼

𝑤, 𝑗
∥2 ⟨𝜓𝑘

𝛼
𝑤, 𝑗 , 𝑘

𝛼
𝑤, 𝑗⟩ =

1
∥𝑘𝛼

𝑤, 𝑗
∥2 𝜓(𝑤)𝑘

𝛼
𝑤, 𝑗 (𝑤) = 𝜓(𝑤).

Thus for any 𝑤 ∈ D \ {0}, 𝜓(𝑤) ∈ 𝑊 (𝑀𝜓 |𝐿 𝑗
) and 𝜓(0) ∈ 𝑊 (𝑀𝜓 |𝐿 𝑗

) by open
mapping theorem. Thus we get 𝑊 (𝑀𝜓 |𝐿 𝑗

) ⊇ 𝜙(D)∧. Now, the desired result follows
from the Corollary 3.6 and 𝑊 (𝑀𝜓 |𝐿 𝑗

) ⊆ 𝑊 (𝑀𝜓). ■

Now, we are in a position to prove the following result.

Theorem 3.11 Let 𝜙(𝑧) = 𝜆𝑧 with 𝜆 = 𝑒2𝜋𝑖/𝑛 and𝜓(𝑧) = 𝑔(𝑧𝑛) for some 𝑔 ∈ 𝐻∞. Then

𝑊 (𝐶𝜓,𝜙) = (𝜓(D) ∪ 𝜆𝜓(D) ∪ . . . ∪ 𝜆𝑛−1𝜓(D))∧.

Proof If 𝑓 ∈ 𝐿 𝑗 then 𝑓 (𝜙(𝑧)) = 𝑓 (𝜆𝑧) = 𝜆 𝑗 𝑓 (𝑧) and we have 𝐶𝜙 (𝐿 𝑗 ) ⊆ 𝐿 𝑗 . Since
𝜓(𝑧) = 𝑔(𝑧𝑛) and 𝜓 is bounded on D so 𝑀𝜓 (𝐿 𝑗 ) ⊆ 𝐿 𝑗 and so 𝐶𝜓,𝜙 (𝐿 𝑗 ) ⊆ 𝐿 𝑗 . This
implies that

𝐶𝜓,𝜙 (𝐿 𝑗 ) = 𝐶0 ⊕ 𝐶1 ⊕ . . . ⊕ 𝐶𝑛−1,

where𝐶 𝑗 = 𝐶𝜓,𝜙 |𝐿 𝑗
. For any ℎ ∈ 𝐿 𝑗 with ∥ℎ∥ = 1 we have ⟨𝐶 𝑗ℎ, ℎ⟩ = 𝜆 𝑗 ⟨𝜓ℎ, ℎ⟩ and

this implies that 𝑊 (𝐶 𝑗 ) = 𝜆 𝑗𝑊 (𝑀𝜓 |𝐿 𝑗
). Hence from Lemma 3.10 we have 𝑊 (𝐶 𝑗 ) =

𝜆 𝑗𝜙(D)∧. Thus

𝑊 (𝐶𝜓,𝜙) = (𝑊 (𝐶0) ∪𝑊 (𝐶1) ∪ . . . ∪𝑊 (𝐶𝑛−1))∧

= (𝜓(D) ∪ 𝜆𝜓(D) ∪ . . . ∪ 𝜆𝑛−1𝜓(D))∧,

as desired. ■

The following corollary follows immediately from Theorem 3.11.

Corollary 3.12 If 𝜙(𝑧) = −𝑧 then 𝑊 (𝐶𝜙) = [−1, 1] and if 𝜙(𝑧) = 𝑒2𝜋𝑖/𝑛𝑧 with 𝑛 > 2
then𝑊 (𝐶𝜙) is the closed, regular polygonal region with 𝑛 sides and inscribed in the unit circle.
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In the following, we classify some subsets of C which are the numerical ranges
of weighted composition operators acting on 𝐿2

𝑎 (𝑑𝐴𝛼). To do this we start with the
following definition.

A subset 𝑆 of C is said to have 𝑛-fold symmetry about the origin if it satisfies
𝑒2𝜋𝑖/𝑛𝑆 = 𝑆.

Theorem 3.13 Let 𝑆 be an non-empty, open, bounded and convex subset of C. If 𝑆 has 𝑛-fold
symmetry about the origin then for any 𝛼 > −1 there exists 𝐶𝜓,𝜙 ∈ B

(
𝐿2
𝑎 (𝑑𝐴𝛼)

)
such that

𝑊 (𝐶𝜓,𝜙) = 𝑆.

Proof Let 𝑓 be a Riemann map from D onto 𝑆. Consider the function 𝜓 : D → 𝑆

such that 𝜓(𝑧) = 𝑓 (𝑧𝑛) for all 𝑧 ∈ D. It is easy to verify that 𝜓(D) = 𝑓 (D) and so we
obtain 𝜓(D) = 𝑆. Let 𝜙(𝑧) = 𝜆𝑧 where 𝜆 = 𝑒2𝜋𝑖/𝑛. By applying Theorem 3.11 we get

𝑊 (𝐶𝜓,𝜙) = (𝜓(D) ∪ 𝜆𝜓(D) ∪ . . . ∪ 𝜆𝑛−1𝜓(D))∧. (3.13)

Since 𝑆 has a 𝑛-fold symmetry about the origin so 𝜆𝑘𝜓(D) = 𝑆 for all 0 ≤ 𝑘 ≤ 𝑛 − 1.
As 𝑆 is convex so from (3.13) we obtain the the desired result. ■

Corollary 3.14 Let 𝑓 ∈ 𝐻∞ be nonconstant. If 𝑛 > 1 then for any 𝛼 > −1 there exists
𝐶𝜓,𝜙 ∈ B

(
𝐿2
𝑎 (𝑑𝐴𝛼)

)
such that 𝑊 (𝐶𝜓,𝜙) is the smallest convex set with 𝑛-fold symmetry

about the origin with 𝑊 (𝐶𝜓,𝜙) ⊇ 𝑓 (D).

Proof Let us define 𝜓 : D → C such that 𝜓(𝑧) = 𝑓 (𝑧𝑛) for all 𝑧 ∈ D. Then 𝜓(D) =
𝑓 (D). Let 𝜙(𝑧) = 𝜆𝑧 where 𝜆 = 𝑒2𝜋𝑖/𝑛. From Theorem 3.11 we get

𝑊 (𝐶𝜓,𝜙) = ( 𝑓 (D) ∪ 𝜆 𝑓 (D) ∪ . . . ∪ 𝜆𝑛−1 𝑓 (D))∧. (3.14)

As 𝜆𝑊 (𝐶𝜓,𝜙) = 𝑊 (𝐶𝜓,𝜙) so𝑊 (𝐶𝜓,𝜙) has a 𝑛-fold symmetry about the origin and it
is a convex set. If 𝑀 is a convex set and has a 𝑛-fold symmetry about the origin with
𝑀 ⊇ 𝑓 (D) then 𝑀 ⊇ 𝜆𝑘 𝑓 (D) for all 0 ≤ 𝑘 ≤ 𝑛 − 1. Thus from (3.14) it follows that
𝑀 ⊇ 𝑊 (𝐶𝜓,𝜙). Therefore, 𝑊 (𝐶𝜓,𝜙) is the smallest convex set with 𝑛-fold symmetry
about the origin with 𝑊 (𝐶𝜓,𝜙) ⊇ 𝑓 (D). ■

We conclude this section by asking which non-empty, bounded, and convex sub-
sets of C can be the numerical range of weighted composition operators acting on
𝐿2
𝑎 (𝑑𝐴𝛼).

4 Containment of zero in the numerical range

Our main focus in this section is to investigate the containment of the origin in the
interior of the numerical range of weighted composition operators on 𝐿2

𝑎 (𝑑𝐴𝛼). We
study the case when the origin is contained in the numerical range as well as in its
closure for the sum of two weighted composition operators. To do so we recall the
definition of radial limit.

A function 𝑓 ∈ 𝐻 (D) is said to have a radial limit if lim𝑟→1 𝑓 (𝑟𝑒𝑖 𝜃 ) exists almost
everywhere in 𝜕D. It is proved in [16, Th. 11.32] that for every 𝑓 ∈ 𝐻∞ there
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corresponds a function 𝑓 ∗ ∈ 𝐿∞ (𝜕D), defined almost everywhere by

𝑓 ∗ (𝑒𝑖 𝜃 ) = lim
𝑟→1

𝑓 (𝑟𝑒𝑖 𝜃 ).

Moreover, if 𝑓 ∗ (𝑒𝑖 𝜃 ) = 0 for almost all 𝑒𝑖 𝜃 on some arc 𝐼 ⊆ 𝜕D, then 𝑓 (𝑧) = 0 for
all 𝑧 ∈ D.

Now, we are in a position to prove the first result of this section.

Theorem 4.1 Let 𝜙1 and 𝜙2 be two holomorphic self maps on D and 𝜓1, 𝜓2 ∈ 𝐻 (D) be
such that 𝐶𝜓1 ,𝜙1 , 𝐶𝜓2 ,𝜙2 ∈ B

(
𝐿2
𝑎 (𝑑𝐴𝛼)

)
.

(𝑖) If 𝜙1 and 𝜙2 are identity maps on D, and 𝜙1, 𝜙2 have a common zero in D,

then 0 ∈ 𝑊 (𝐶𝜓1 ,𝜙1 + 𝐶𝜓2 ,𝜙2 ).
(𝑖𝑖) If 𝜙1, 𝜙2 are not identity maps on D and 𝜓1, 𝜓2 ∈ 𝐻∞, then 0 ∈ 𝑊 (𝐶𝜓1 ,𝜙1 + 𝐶𝜓2 ,𝜙2 ).

Proof For any 𝑤 ∈ D, we have

⟨(𝐶𝜓1 ,𝜙1 + 𝐶𝜓2 ,𝜙2 ) 𝑘̂𝛼
𝑤 , 𝑘̂

𝛼
𝑤⟩

=
1

∥𝑘𝛼
𝑤 ∥2 ⟨𝑘

𝛼
𝑤 , (𝐶𝜓1 ,𝜙1 + 𝐶𝜓2 ,𝜙2 )∗𝑘𝛼

𝑤⟩

=
1

∥𝑘𝛼
𝑤 ∥2

(
⟨𝑘𝛼

𝑤 , 𝜓1 (𝑤)𝑘𝛼
𝜙1 (𝑤)⟩ + ⟨𝑘𝛼

𝑤 , 𝜓2 (𝑤)𝑘𝛼
𝜙2 (𝑤)⟩

)
=

𝜓1 (𝑤)
∥𝑘𝛼

𝑤 ∥2 𝑘
𝛼
𝑤 (𝜙1 (𝑤)) +

𝜓2 (𝑤)
∥𝑘𝛼

𝑤 ∥2 𝑘
𝛼
𝑤 (𝜙2 (𝑤))

=
𝜓1 (𝑤) (1 − |𝑤 |2)𝛼+2

(1 − 𝑤̄𝜙1 (𝑤))𝛼+2 + 𝜓2 (𝑤) (1 − |𝑤 |2)𝛼+2

(1 − 𝑤̄𝜙2 (𝑤))𝛼+2 . (4.1)

(𝑖) Since 𝜙1 and 𝜙2 are identity maps on D then from (4.1) we have

⟨(𝐶𝜓1 ,𝜙1 + 𝐶𝜓2 ,𝜙2 ) 𝑘̂𝛼
𝑤 , 𝑘̂

𝛼
𝑤⟩ = 𝜓1 (𝑤) + 𝜓2 (𝑤).

If 𝜓1 (𝑤0) = 𝜓2 (𝑤0) = 0 for 𝑤0 ∈ D then we get

⟨(𝐶𝜓1 ,𝜙1 + 𝐶𝜓2 ,𝜙2 ) 𝑘̂𝛼
𝑤0
, 𝑘̂𝛼

𝑤0
⟩ = 0,

as desired.
(𝑖𝑖) As 𝜙1, 𝜙2 are not identity maps then the sets {𝑒𝑖 𝜃 : 𝜙∗1 (𝑒𝑖 𝜃 ) = 𝑒𝑖 𝜃 } and {𝑒𝑖 𝜃 :
𝜙∗2 (𝑒𝑖 𝜃 ) = 𝑒𝑖 𝜃 } have measure zero on 𝜕D. So there exists a 𝑤0 ∈ 𝜕D such that𝜓∗

𝑖
(𝑤0)

exists and 𝜙∗
𝑖
(𝑤0) ≠ 𝑤0 for 𝑖 = 1, 2. Hence from (4.1) we have

lim
𝑤→𝑤0

⟨(𝐶𝜓1 ,𝜙1 + 𝐶𝜓2 ,𝜙2 ) 𝑘̂𝛼
𝑤 , 𝑘̂

𝛼
𝑤⟩ = 0.

Therefore, 0 ∈ 𝑊 (𝐶𝜓1 ,𝜙1 + 𝐶𝜓2 ,𝜙2 ) and this completes the proof. ■

Next, we completely characterize the numerical range of the bounded weighted
composition operators induced by constant composition maps.
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Proposition 4.2 Let 𝐶𝜓,𝜙 ∈ B
(
𝐿2
𝑎 (𝑑𝐴𝛼)

)
be such that 𝜙 ≡ 𝑤 with |𝑤 | < 1.

(𝑖) If 𝑘𝛼
𝑤 = 𝜇𝜓 for some 𝜇 ≠ 0 then 𝑊 (𝐶𝜓,𝜙) = [0, 𝜇̄∥𝜓∥2] .

(𝑖𝑖) If 𝑘𝛼
𝑤 ⊥ 𝜓 then 𝑊 (𝐶𝜓,𝜙) is the closed disk centred at the origin and radius ∥𝜓∥

2(1−|𝑤 |2 )
𝛼
2 +1 .

(𝑖𝑖𝑖) Otherwise 𝑊 (𝐶𝜓,𝜙) is a closed elliptical disk with foci at 0 and 𝜓(𝑤).

Proof Since 𝐶𝜓,𝜙 ∈ B
(
𝐿2
𝑎 (𝑑𝐴𝛼)

)
and 𝜙 is a constant function so for any 𝑓 ∈

𝐿2
𝑎 (𝑑𝐴𝛼)

𝐶𝜓,𝜙 𝑓 = 𝜓 𝑓 (𝑤) = ⟨ 𝑓 , 𝑘𝛼
𝑤⟩𝜓.

Thus𝐶𝜓,𝜙 is a rank one operator and the desired result follows from [2, Prop. 2.5]. ■

Now, we state the following lemma which follows from [11, Th. 2.6].

Lemma 4.3 Let 𝐶𝜓,𝜙 ∈ B
(
𝐿2
𝑎 (𝑑𝐴𝛼)

)
, 𝜙 be a nonconstant analytic self map on D and 𝜓

be non-zero. If either 𝜓 has a zero on D or 𝜙 is not one-to-one, then 0 ∈ 𝑖𝑛𝑡 𝑊 (𝐶𝜓,𝜙).

In the following results we investigate the inclusion of the origin in the interior of
numerical range of weighted composition operators on 𝐿2

𝑎 (𝑑𝐴𝛼).

Theorem 4.4 Let 𝐶𝜓,𝜙 ∈ B
(
𝐿2
𝑎 (𝑑𝐴𝛼)

)
and 𝜙(0) = 0. If 𝜙 is not of the form 𝜙(𝑧) = 𝑡𝑧

where 𝑡 ∈ D, then 0 ∈ 𝑖𝑛𝑡 𝑊 (𝐶𝜓,𝜙).

Proof If 𝜙′ (0) = 0 then 𝜙 is not one-to-one and by Lemma 4.3 we have 0 ∈ 𝑖𝑛𝑡

𝑊 (𝐶𝜓,𝜙). We now consider the case 𝜙′ (0) = 𝜆 ≠ 0. As 𝜙 is not of the form 𝜙(𝑧) = 𝑡𝑧

where 𝑡 ∈ D, 𝜙 can be written as

𝜙(𝑧) = 𝜆𝑧 (1 + 𝑏𝑧𝑚 (1 + ℎ(𝑧))) ,

where 𝑚 is a positive integer, 𝑏 ≠ 0 and ℎ ∈ 𝐻 (D) with ℎ(0) = 0. Therefore, for any
𝑛 ≥ 1

𝜙𝑛 (𝑧) = 𝜆𝑛𝑧𝑛 + 𝑛𝑏𝜆𝑛𝑧𝑛+𝑚 + higher order terms in 𝑧. (4.2)

The matrix of𝐶𝜓,𝜙 with respect to the orthonormal basis {𝑒𝑛}∞𝑛=0 has its 𝑛-th column

given by the sequence of coefficients of the power series expansion of
√︃

Γ (𝑛+𝛼+2)
𝑛!Γ (𝛼+2) 𝜓𝜙

𝑛.

Let 𝑀𝑛 be the subspace of 𝐿2
𝑎 (𝑑𝐴𝛼) spanned by 𝑒𝑛 and 𝑒𝑛+𝑚. Clearly, 𝑀𝑛 is a two

dimensional subspace of 𝐿2
𝑎 (𝑑𝐴𝛼). Let

∑∞
𝑘=0 𝜓̂𝑘𝑧

𝑘 be the power series expansion of
𝜓. Then the matrix representation of𝐶𝜓,𝜙 on 𝑀𝑛 with respect to the basis {𝑒𝑛, 𝑒𝑛+𝑚}
is given by (

𝜓̂0𝜆
𝑛 0√︃

(𝑚+𝑛) !Γ (𝑛+𝛼+2)
𝑛!Γ (𝑚+𝑛+𝛼+2) 𝜆𝑛 (𝑛𝑏𝜓̂0 + 𝜓̂𝑚) 𝜓̂0𝜆

𝑚+𝑛

)
= 𝜆𝑛𝐶𝑛,
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where

𝐶𝑛 =

(
𝜓̂0 0√︃

(𝑚+𝑛) !Γ (𝑛+𝛼+2)
𝑛!Γ (𝑚+𝑛+𝛼+2) (𝑛𝑏𝜓̂0 + 𝜓̂𝑚) 𝜓̂0𝜆

𝑚

)
.

Since the numerical range of compression is contained in the numerical range of the
operator (see [19, Prop. 1.4]), it is sufficient to show that 0 ∈ 𝑖𝑛𝑡 𝑊 (𝐶𝑛) for some
𝑛. If 𝜓̂0 = 0 then it follows from Lemma 4.3 that 0 ∈ 𝑖𝑛𝑡 𝑊 (𝐶𝑛). If 𝜓̂0 ≠ 0 then
𝑊 (𝐶𝑛) is an elliptical disk with foci 𝜓̂0 and 𝜓̂0𝜆

𝑚 with the length of the minor axis√︃
(𝑚+𝑛) !Γ (𝑛+𝛼+2)
𝑛!Γ (𝑚+𝑛+𝛼+2) |𝑛𝑏𝜓̂0 + 𝜓̂𝑚 |, see [8, Example 3]. A simple computation shows that

lim
𝑛→∞

(𝑚 + 𝑛)!Γ(𝑛 + 𝛼 + 2)
𝑛!Γ(𝑚 + 𝑛 + 𝛼 + 2) = 1.

Thus if we choose 𝑛 large enough then the length of the minor axis of 𝑊 (𝐶𝑛) will be
larger than the modulus of its centre. Hence there exits 𝑛 for which 0 ∈ 𝑖𝑛𝑡 𝑊 (𝐶𝑛), as
desired. ■

Theorem 4.5 Let 𝐶𝜓,𝜙 ∈ B
(
𝐿2
𝑎 (𝑑𝐴𝛼)

)
and 𝜓 be nonconstant. If 𝜙(𝑧) = 𝑡𝑧 where −1 ≤

𝑡 ≤ 0, then 0 ∈ 𝑖𝑛𝑡 𝑊 (𝐶𝜓,𝜙).

Proof First we prove this result for 𝜓(0) = 0. For −1 ≤ 𝑡 < 0 the result follows
from Lemma 4.3 and for 𝑡 = 0 the Proposition 4.2 implies that 0 ∈ 𝑖𝑛𝑡 𝑊 (𝐶𝜓,𝜙).

To prove the result for 𝜓(0) ≠ 0 it is enough to show this for 𝜓(0) = 1. So,
𝜓(𝑧) = 1 + 𝜂(𝑧), where 𝜂 is a nonconstant analytic function with 𝜂(0) = 0. Now, for
any 𝑓 ∈ 𝐿2

𝑎 (𝑑𝐴𝛼) with ∥ 𝑓 ∥ = 1, we get

⟨𝐶𝜓,𝜙 𝑓 , 𝑓 ⟩ = ⟨𝐶𝜙 𝑓 , 𝑓 ⟩ + ⟨𝐶𝜂,𝜙 𝑓 , 𝑓 ⟩.

For 𝑡 = 0 the result follows from Proposition 4.2. Since 𝜂(0) = 0, for −1 ≤ 𝑡 < 0, it
follows from Lemma 4.3 that 𝑊 (𝐶𝜂,𝜙) contains a disk of positive radius and centred
at the origin. So there exists 𝑓1 ∈ 𝐿2

𝑎 (𝑑𝐴𝛼) with ∥ 𝑓1∥ = 1 such that 𝐼𝑚⟨𝐶𝜂,𝜙 𝑓1, 𝑓1⟩ >
0. As ⟨𝐶𝜙 𝑓1, 𝑓1⟩ is real, 𝑝1 = ⟨𝐶𝜓,𝜙 𝑓1, 𝑓1⟩ is in the upper half plane. Similarly, we
get another point 𝑝2 in the lower half plane. Again we have ⟨𝐶𝜓,𝜙𝑒1, 𝑒1⟩ = 𝑡 and
⟨𝐶𝜓,𝜙𝑒0, 𝑒0⟩ = 1. Thus 0 ∈ 𝑖𝑛𝑡 {𝑝1, 𝑝2, 𝑡, 1}∧ ⊆ 𝑖𝑛𝑡 𝑊 (𝐶𝜓,𝜙), as desired. ■

Remark 4.6 (𝑖) If 𝜓 is constant and 𝜙(𝑧) = 𝑡𝑧 where −1 ≤ 𝑡 < 1, then 𝑊 (𝐶𝜓,𝜙) is a
line segment of C and thus 0 ∉ 𝑖𝑛𝑡 𝑊 (𝐶𝜓,𝜙).
(𝑖𝑖) If𝜓 is nonconstant with𝜓(0) = 0 and 𝜙(𝑧) = 𝑡𝑧 where 0 < 𝑡 < 1, then by Lemma
4.3 we have 0 ∈ 𝑖𝑛𝑡 𝑊 (𝐶𝜓,𝜙).
(𝑖𝑖𝑖) If 𝜓 is nonconstant with 𝜓(0) ≠ 0 and 𝜙(𝑧) = 𝑡𝑧 where 0 < 𝑡 < 1, then the
following two cases are possible.
(𝑎) Let 𝜓 be such that 𝜓(0) ≠ 0 but 𝜓(𝑤0) = 0 for some 𝑤0 ∈ D. Then by applying
Lemma 4.3 we conclude that 0 ∈ 𝑖𝑛𝑡 𝑊 (𝐶𝜓,𝜙).
(𝑏) Now, we consider 𝜙(𝑧) = 𝑧/2 and𝜓(𝑧) = 1+𝑧/4. Let 𝑓 ∈ 𝐿2

𝑎 (𝑑𝐴𝛼) with ∥ 𝑓 ∥ = 1
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and 𝑓 (𝑧) = ∑∞
𝑘=0 𝑓𝑘𝑧

𝑘 be the power series expansion. Then we have

⟨𝐶𝜓,𝜙 𝑓 , 𝑓 ⟩ =
∞∑︁
𝑘=0

𝑘 !Γ(𝛼 + 2)
2𝑘Γ(𝑘 + 𝛼 + 2)

| 𝑓𝑘 |2 +
1
4

∞∑︁
𝑘=0

(𝑘 + 1)!Γ(𝛼 + 2)
2𝑘Γ(𝑘 + 𝛼 + 3)

𝑓𝑘
¯̂
𝑓𝑘+1

= 𝛾 + 1
4
𝛿,

where 𝛾 =
∑∞

𝑘=0
𝑘!Γ (𝛼+2)

2𝑘Γ (𝑘+𝛼+2) | 𝑓𝑘 |
2 and 𝛿 =

∑∞
𝑘=0

(𝑘+1) !Γ (𝛼+2)
2𝑘Γ (𝑘+𝛼+3) 𝑓𝑘

¯̂
𝑓𝑘+1.

Since | 𝑓𝑘 ¯̂
𝑓𝑘+1 | ≤ 1

2

(
| 𝑓𝑘 |2 + | 𝑓𝑘+1 |2

)
and a by simple computation we have

|𝛿 | ≤ 3
2
𝛾 as 𝛾 > 0.

Therefore 𝛾 + 1
4𝛿 ≠ 0 and this implies that 0 ∉ 𝑊 (𝐶𝜓,𝜙).

Finally, we introduce some sufficient condition for the closedness of numerical
range of compact weighted composition operators. The results follow from the pre-
vious results of this section and the well known result that if the numerical range of a
compact operator contains 0 then it is closed, see [9, p. 115].

Corollary 4.7 Let 𝐶𝜓,𝜙 be a compact operator on 𝐿2
𝑎 (𝑑𝐴𝛼). Then 𝑊 (𝐶𝜓,𝜙) is closed if

one of the following condition holds:
(i) 𝜙 is the identity map on D and 𝜓 has a zero in D.
(ii) 𝜓 ≠ 0 and either 𝜓 has a zero in D or 𝜙 is not one-to-one.
(iii) 𝜙(0) = 0 and 𝜙 is not of the form 𝜙(𝑧) = 𝑡𝑧 for 𝑡 ∈ D.
(iv) 𝜓 is nonconstant and 𝜙(𝑧) = 𝑡𝑧, −1 ≤ 𝑡 ≤ 0.

Example 4.8 If we consider the example 𝜓(𝑧) = 𝑧2 and 𝜙(𝑧) = 𝑎𝑧2 with |𝑎 | < 1 then
𝜙 is not of the form 𝜙(𝑧) = 𝑡𝑧 for 𝑡 ∈ D, and 𝜙(0) = 0. Again from [15, Cor. 1] it
follows that 𝐶𝜓,𝜙 is compact on 𝐿2

𝑎 (𝑑𝐴𝛼). Thus for this example 𝑊 (𝐶𝜓,𝜙) is closed.

5 Containment of circular disk or elliptical disk in the
numerical range

In the previous section we studied the containment of the origin in the interior of
numerical range. Our next focus is to investigate the weighted composition oper-
ators for which the numerical range contains a circular disk or elliptical disk and
accordingly we find the radius of the disk or lengths of the major and minor axis.

Theorem 5.1 Let 𝐶𝜓,𝜙 ∈ B
(
𝐿2
𝑎 (𝑑𝐴𝛼)

)
be such that 𝜙(0) = 0 and 𝜓 has a zero of order

𝑚 > 0 at the origin. If 𝜓̂𝑚 denotes the 𝑚-th Taylor coefficient of 𝜓, then 𝑊 (𝐶𝜓,𝜙) contains
the disk of radius 𝑚!Γ (𝛼+2)

Γ (𝑚+𝛼+2)+𝑚!Γ (𝛼+2) |𝜓̂𝑚 |, centred at the origin.

Proof Let us consider 𝑓 (𝑧) =

√︃
Γ (𝑚+𝛼+2)

Γ (𝑚+𝛼+2)+𝑚!Γ (𝛼+2) (𝜆 + 𝑧𝑚) for all 𝑧 ∈ D with
|𝜆 | = 1. Then 𝑓 ∈ 𝐿2

𝑎 (𝑑𝐴𝛼) with ∥ 𝑓 ∥ = 1. Let
∑∞

𝑘=1 𝜙𝑘𝑧
𝑘 and

∑∞
𝑘=𝑚 𝜓̂𝑘𝑧

𝑘 be the
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Taylor series of 𝜙 and 𝜓, respectively. Then

𝑓 (𝜙(𝑧)) =

√︄
Γ(𝑚 + 𝛼 + 2)

Γ(𝑚 + 𝛼 + 2) + 𝑚!Γ(𝛼 + 2)

(
𝜆 +

( ∞∑︁
𝑘=1

𝜙𝑘𝑧
𝑘

)𝑚)
=

√︄
Γ(𝑚 + 𝛼 + 2)

Γ(𝑚 + 𝛼 + 2) + 𝑚!Γ(𝛼 + 2)
(
𝜆 + 𝜙𝑚

1 𝑧𝑚 + higher order terms in 𝑧
)
.

Thus we have

⟨𝐶𝜓,𝜙 𝑓 , 𝑓 ⟩
= ⟨𝜓(𝑧) 𝑓 (𝜙(𝑧)), 𝑓 (𝑧)⟩

=
Γ(𝑚 + 𝛼 + 2)

Γ(𝑚 + 𝛼 + 2) + 𝑚!Γ(𝛼 + 2)

〈( ∞∑︁
𝑘=𝑚

𝜓̂𝑘𝑧
𝑘

) (
𝜆 + 𝜙𝑚

1 𝑧𝑚 + higher order terms in 𝑧
)
, 𝜆 + 𝑧𝑚

〉
=

𝑚!Γ(𝛼 + 2)
Γ(𝑚 + 𝛼 + 2) + 𝑚!Γ(𝛼 + 2)𝜆𝜓̂𝑚.

Since 𝜆 is an arbitrary complex number with |𝜆 | = 1 so𝑊 (𝐶𝜓,𝜙) contains the disk of
radius 𝑚!Γ (𝛼+2)

Γ (𝑚+𝛼+2)+𝑚!Γ (𝛼+2) |𝜓̂𝑚 | and centre at the origin. ■

Theorem 5.2 Let 𝐶𝜓,𝜙 ∈ B
(
𝐿2
𝑎 (𝑑𝐴𝛼)

)
be such that 𝜙(𝑧) = 𝜆𝑧 with 𝜆 ≠ 0

and 𝜓(𝑧) =
∑∞

𝑘=1 𝜓̂𝑘𝑧
𝑘 . Then for all 𝑚 ≥ 2, 𝑊 (𝐶𝜓,𝜙) contains the disk of radius

1
2

√︃
𝑚!Γ (𝛼+3)
Γ (𝑚+𝛼+2) |𝜆𝜓̂𝑚−1 | and centre at the origin.

Proof For 𝑚 ≥ 2 let 𝑀𝑚 be the subspace of 𝐿2
𝑎 (𝑑𝐴𝛼) spanned by 𝑒1 and 𝑒𝑚. Now,

we have

𝐶𝜓,𝜙𝑒1 (𝑧) = 𝜆
√
𝛼 + 2

( ∞∑︁
𝑘=1

𝜓̂𝑘𝑧
𝑘+1

)
and

𝐶𝜓,𝜙𝑒𝑚 (𝑧) = 𝜆𝑚

√︄
Γ(𝑚 + 𝛼 + 2)
𝑚!Γ(𝛼 + 2)

( ∞∑︁
𝑘=1

𝜓̂𝑘𝑧
𝑘+𝑚

)
.

Thus the compression of 𝐶𝜓,𝜙 to 𝑀𝑚 has the matrix representation(
0 0

𝜆

√︃
𝑚!Γ (𝛼+3)
Γ (𝑚+𝛼+2) 𝜓̂𝑚−1 0

)
.

Therefore, the numerical range of the compression of𝐶𝜓,𝜙 to 𝑀𝑚 is a closed disk cen-

tred at the origin and radius 1
2

√︃
𝑚!Γ (𝛼+3)
Γ (𝑚+𝛼+2) |𝜆𝜓̂𝑚−1 |, see [8, Example 3]. Thus𝑊 (𝐶𝜓,𝜙)

contains the disk of radius 1
2

√︃
𝑚!Γ (𝛼+3)
Γ (𝑚+𝛼+2) |𝜆𝜓̂𝑚−1 | and centre at the origin. ■
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Remark 5.3 Here we remark that the case 𝑚 = 0 cannot be included in Theorem 5.1
and Theorem 5.2. If we consider 𝜓(𝑧) = 1 + 𝜖𝑧 and 𝜙(𝑧) = −𝑧/2 with 𝜖 > 0 then it is
easy to observe that the radius of the largest circular disk at the origin and contained
in 𝑊 (𝐶𝜓,𝜙) is at most 𝜖 .

Theorem 5.4 Let 𝐶𝜓,𝜙 ∈ B
(
𝐿2
𝑎 (𝑑𝐴𝛼)

)
be such that 𝜙(𝑧) = 𝑒2𝜋𝑖/𝑛𝑧 and 𝜓(𝑧) =∑∞

𝑘=0 𝜓̂𝑘𝑧
𝑘 . If 𝑚1, 𝑚2 are two positive integers with 𝑚2 > 𝑚1 and 𝜓̂𝑛𝑚1 𝜓̂𝑛𝑚2 𝜓̂𝑛(𝑚1−𝑚2 ) =

0 but all of the three terms 𝜓̂𝑛𝑚1 , 𝜓̂𝑛𝑚2 and 𝜓̂𝑛(𝑚1−𝑚2 ) are not equal to zero. Then𝑊 (𝐶𝜓,𝜙)
contains the circular disk centred at 𝜓̂0 with radius

1
2

√︄
(𝑛𝑚2)!Γ(𝛼 + 2)
Γ(𝑛𝑚2 + 𝛼 + 2)

(
𝑐 |𝜓̂𝑛𝑚1 |2 + |𝜓̂𝑛(𝑚1−𝑚2 ) |2 +

1
𝑐
|𝜓̂𝑛𝑚2 |2

)
,

where 𝑐 =
(𝑛𝑚1 ) !Γ (𝑛𝑚2+𝛼+2)
(𝑛𝑚2 ) !Γ (𝑛𝑚1+𝛼+2) .

Proof Let 𝑀 be the subspace of 𝐿2
𝑎 (𝑑𝐴𝛼) spanned by 𝑒0, 𝑒𝑛𝑚1 and 𝑒𝑛𝑚2 . Then we

have

𝐶𝜓,𝜙𝑒0 (𝑧) =
∞∑︁
𝑘=0

𝜓̂𝑘𝑧
𝑘 ,

𝐶𝜓,𝜙𝑒𝑛𝑚1 (𝑧) =

√︄
Γ(𝑛𝑚1 + 𝛼 + 2)
(𝑛𝑚1)!Γ(𝛼 + 2)

∞∑︁
𝑘=0

𝜓̂𝑘𝑧
𝑛𝑚1+𝑘

and

𝐶𝜓,𝜙𝑒𝑛𝑚2 (𝑧) =

√︄
Γ(𝑛𝑚2 + 𝛼 + 2)
(𝑛𝑚2)!Γ(𝛼 + 2)

∞∑︁
𝑘=0

𝜓̂𝑘𝑧
𝑛𝑚2+𝑘 .

Thus the compression of 𝐶𝜓,𝜙 to 𝑀 has the matrix representation

©­­­­«
𝜓̂0 0 0√︃

(𝑛𝑚1 ) !Γ (𝛼+2)
Γ (𝑛𝑚1+𝛼+2) 𝜓̂𝑛𝑚1 𝜓̂0 0√︃
(𝑛𝑚2 ) !Γ (𝛼+2)
Γ (𝑛𝑚2+𝛼+2) 𝜓̂𝑛𝑚2

√
Γ (𝑛𝑚1+𝛼+2)Γ (𝛼+2) (𝑛𝑚2 ) !√

(𝑛𝑚1 ) !Γ (𝑛𝑚2+𝛼+2)
𝜓̂𝑛(𝑚1−𝑚2 ) 𝜓̂0

ª®®®®¬
.

It follows from [10, Th. 4.1] that the numerical range of the compression of 𝐶𝜓,𝜙 to
𝑀 is the circular disk centred at 𝜓̂0 with radius

1
2

√︄
(𝑛𝑚2)!Γ(𝛼 + 2)
Γ(𝑛𝑚2 + 𝛼 + 2)

(
𝑐 |𝜓̂𝑛𝑚1 |2 + |𝜓̂𝑛(𝑚1−𝑚2 ) |2 +

1
𝑐
|𝜓̂𝑛𝑚2 |2

)
,

where 𝑐 =
(𝑛𝑚1 ) !Γ (𝑛𝑚2+𝛼+2)
(𝑛𝑚2 ) !Γ (𝑛𝑚1+𝛼+2) . As the numerical range of compression is contained in

the numerical range of the operator, this proves the desired result. ■

Theorem 5.5 Let 𝐶𝜓,𝜙 ∈ B
(
𝐿2
𝑎 (𝑑𝐴𝛼)

)
be such that 𝜙(𝑧) = 𝜆𝑧 with 𝜆 = 𝑒2𝜋𝑖/𝑛 and

𝜓(𝑧) =
∑∞

𝑘=0 𝜓̂𝑘𝑧
𝑘 with 𝜓̂𝑛𝑝+ 𝑗 ≠ 0 for some 0 < 𝑗 < 𝑛. Then 𝑊 (𝐶𝜓,𝜙) contains the
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elliptical disk foci 𝜓0 and 𝜆𝑛𝑝+ 𝑗𝜓0, with major axis√︄
|𝜓0 |2 |1 − 𝑒2𝜋𝑖 𝑗/𝑛 |2 + (𝑛𝑝 + 𝑗)!Γ(𝛼 + 2)

Γ(𝑛𝑝 + 𝑗 + 𝛼 + 2) |𝜓̂𝑛𝑝+ 𝑗 |2

and minor axis √︄
(𝑛𝑝 + 𝑗)!Γ(𝛼 + 2)
Γ(𝑛𝑝 + 𝑗 + 𝛼 + 2) |𝜓̂𝑛𝑝+ 𝑗 |.

Proof Let 𝑀 be the subspace of 𝐿2
𝑎 (𝑑𝐴𝛼) spanned by 𝑒0 and 𝑒𝑛𝑝+ 𝑗 . We have

𝐶𝜓,𝜙𝑒0 (𝑧) =
∞∑︁
𝑘=0

𝜓̂𝑘𝑧
𝑘

and

𝐶𝜓,𝜙𝑒𝑛𝑝+ 𝑗 (𝑧) = 𝜆𝑛𝑝+ 𝑗

√︄
Γ(𝑛𝑝 + 𝑗 + 𝛼 + 2)
(𝑛𝑝 + 𝑗)!Γ(𝛼 + 2)

( ∞∑︁
𝑘=0

𝜓̂𝑘𝑧
𝑛𝑝+ 𝑗+𝑘

)
.

Thus the compression of 𝐶𝜓,𝜙 to 𝑀 has the matrix representation(
𝜓0 0√︃

(𝑛𝑝+ 𝑗 ) !Γ (𝛼+2)
Γ (𝑛𝑝+ 𝑗+𝛼+2) 𝜓̂𝑛𝑝+ 𝑗 𝜆

𝑛𝑝+ 𝑗𝜓0

)
.

Since 0 < 𝑗 < 𝑛 so 𝜆𝑛𝑝+ 𝑗 ≠ 1 and hence the the numerical range
of the compression of 𝐶𝜓,𝜙 to 𝑀 is the elliptical disk foci 𝜓0 and 𝜆𝑛𝑝+ 𝑗𝜓0,

and with major axis
√︃
|𝜓0 |2 |1 − 𝑒2𝜋𝑖 𝑗/𝑛 |2 + (𝑛𝑝+ 𝑗 ) !Γ (𝛼+2)

Γ (𝑛𝑝+ 𝑗+𝛼+2) |𝜓̂𝑛𝑝+ 𝑗 |2 and minor axis√︃
(𝑛𝑝+ 𝑗 ) !Γ (𝛼+2)
Γ (𝑛𝑝+ 𝑗+𝛼+2) |𝜓̂𝑛𝑝+ 𝑗 |, see [8, Example 3]. The desired result follows from the fact

that the numerical range of compression is contained in the numerical range of the
operator. ■

Theorem 5.6 Let 𝐶𝜓,𝜙 ∈ B
(
𝐿2
𝑎 (𝑑𝐴𝛼)

)
be such that 𝜙(𝑧) = 𝑒2𝜋𝑖𝜃 𝑧 and 𝜓(𝑧) =∑∞

𝑘=0 𝜓̂𝑘𝑧
𝑘 , where 𝜃 is irrational. If 𝑛 ≥ 0 and 𝑚 > 0 then 𝑊 (𝐶𝜓,𝜙) contains the elliptical

disk with foci at 𝑒2𝜋𝑖𝑛𝜃 and 𝑒2𝜋𝑖 (𝑛+𝑚) 𝜃 , and with major axis√︄
|𝑒2𝜋𝑖𝑛𝜃 − 𝑒2𝜋𝑖 (𝑛+𝑚) 𝜃 |2 + (𝑛 + 𝑚)!Γ(𝑛 + 𝛼 + 2)

𝑛!Γ(𝑛 + 𝑚 + 𝛼 + 2) |𝜓̂𝑚 |2

and minor axis
√︃

(𝑛+𝑚) !Γ (𝑛+𝛼+2)
𝑛!Γ (𝑛+𝑚+𝛼+2) |𝜓̂𝑚 |.

Proof Let 𝑀 be the subspace of 𝐿2
𝑎 (𝑑𝐴𝛼) spanned by 𝑒𝑛 and 𝑒𝑛+𝑚. Then we have

𝐶𝜓,𝜙𝑒𝑛 (𝑧) = 𝑒2𝜋𝑖𝑛𝜃

√︄
Γ(𝑛 + 𝛼 + 2)
𝑛!Γ(𝛼 + 2)

∞∑︁
𝑘=0

𝜓̂𝑘𝑧
𝑘+𝑛
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and

𝐶𝜓,𝜙𝑒𝑛+𝑚 (𝑧) = 𝑒2𝜋𝑖 (𝑛+𝑚) 𝜃

√︄
Γ(𝑛 + 𝑚 + 𝛼 + 2)
(𝑛 + 𝑚)!Γ(𝛼 + 2)

∞∑︁
𝑘=0

𝜓̂𝑘𝑧
𝑘+𝑛+𝑚.

Thus the compression of 𝐶𝜓,𝜙 to 𝑀 has the matrix representation(
𝑒2𝜋𝑖𝑛𝜃 0

𝑒2𝜋𝑖 (𝑛+𝑚) 𝜃
√︃

(𝑛+𝑚) !Γ (𝑛+𝛼+2)
𝑛!Γ (𝑛+𝑚+𝛼+2) 𝜓̂𝑚 𝑒2𝜋𝑖 (𝑛+𝑚) 𝜃

)
.

Therefore, the numerical range of the compression of 𝐶𝜓,𝜙 to 𝑀 is the elliptical disk
with foci 𝑒2𝜋𝑖𝑛𝜃 and 𝑒2𝜋𝑖 (𝑛+𝑚) 𝜃 , and with major axis√︄

|𝑒2𝜋𝑖𝑛𝜃 − 𝑒2𝜋𝑖 (𝑛+𝑚) 𝜃 |2 + (𝑛 + 𝑚)!Γ(𝑛 + 𝛼 + 2)
𝑛!Γ(𝑛 + 𝑚 + 𝛼 + 2) |𝜓̂𝑚 |2

and minor axis
√︃

(𝑛+𝑚) !Γ (𝑛+𝛼+2)
𝑛!Γ (𝑛+𝑚+𝛼+2) |𝜓̂𝑚 |, see [8, Example 3]. The desired result follows

as the numerical range of compression is contained in the numerical range of the
operator. ■

We end with the conclusion that the results of this section may be useful to esti-
mate the lower bounds of numerical radius of some classes of weighted composition
operators acting on 𝐿2

𝑎 (𝑑𝐴𝛼).
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