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Numerical range of Toeplitz and weighted
composition operators on weighted
Bergman spaces

Anirban Sen, Subhadip Halder, Riddhick Birbonshi and Kallol Paul

Abstract. In this paper we completely describe the numerical range of Toeplitz operators on weighted
Bergman spaces with harmonic symbol. We also characterize the numerical range of weighted com-
position operators on weighted Bergman spaces and classify some sets which are the numerical range
of composition operators. We investigate the inclusion of zero in the numerical range, and compute
the radius of circular and elliptical disk contained in the numerical range of weighted composition
operators on weighted Bergman spaces.

1 Introduction

Let B(H) be the C*-algebra of all bounded linear operators on a complex Hilbert space
H. For T € B(H), the numerical range of T', denoted by W(T'), is the subset of the
complex plane C defined by

W) ={Tf.[/):feRIfll=1}.

It is well known that W(T) is a bounded and convex subset of C. The spectrum of
T, denoted by o (T), is contained in the closure of W(T'). We refer to [8, 19] for the
detailed proofs of these results and other properties of the numerical range.

The numerical range of Toeplitz and composition operators have been studied over
the years. In 1972, Klein [12] completely described the numerical range of Toeplitz
operators on the Hardy-Hilbert space of the unit disk. Later, the numerical range of
Toeplitz operators on Bergman space and polydisk were studied in [6, 17, 18]. In [13],
the numerical ranges of composition operators on the Hardy-Hilbert space induced
by monomials were characterized. Bourdon and Shapiro [2, 3] studied the numer-
ical range of composition operators and the containment of the origin. Recently,
the numerical range of weighted composition operators on Hardy-Hilbert space and
weighted Bergman spaces were explored in [7, 21].

In this article, we study the numerical ranges of Toeplitz operators and weighted
composition operators on weighted Bergman spaces. The article is structured as fol-
lows. In Section 2, we introduce some notation, recall some definitions, and present
some preliminary results. In Section 3, we completely describe the numerical range of
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Toeplitz operators on the weighted Bergman spaces with harmonic symbol. We pro-
vide an example to justify that the harmonic condition is necessary for the character-
ization given in Theorem 3.5. Then we obtain the numerical range of some particular
classes of weighted composition operators on the weighted Bergman spaces. Fur-
ther, we characterize some bounded and convex sets which are the numerical range
of weighted composition operators. Our main aim of Section 4 is to study when the
origin is contained in the numerical range of weighted composition operators act-
ing on weighted Bergman spaces. Then we derive some sufficient conditions on the
closedness of the numerical range of weighted composition operators. In Section 5,
we identify several classes of weighted composition operators whose numerical range
includes a circular disk or an elliptical disk. Furthermore, we determine the radius of
the circular disk as well as the lengths of the minor and major axes of the elliptical disk.

2 Preliminaries

LetD = {z € C: |z] < 1} be the open unit disk. Let H(ID) be the space of all analytic
functions on D and H* be the space of all bounded analytic functions on D. We will
use the notation X, 8X, int X, Rel int X and X” for the closure, boundary, interior,
relative interior and convex hull, respectively, of the set X c C.

For a > —1, the weighted Bergman space L2 (dA ;) on the unit disk is defined as

L2(dA,) = {feH(D): / |f<z)|2dAa<z)<oo},
D

where dA denotes the normalized Lebesgue area measure on D and
dAo(2) = (@ + 1)(1 - |z])YdA(2).

Clearly, L2(dAy) = H(D) N L?*(D, dA,) and when the weight parameter @ = 0,
the weighted Bergman space becomes the classical Bergman space L2 (dA). Here we
note that L2 (dA,) is a closed subspace of L?(D, dA,) and has the orthonormal basis

{en}; o> where
'n+a+2) ,
= ,— >
en(2) W@ t2) 7" foralln > 0.

For f,g € L% (dA,) the inner product on L2 (dA ) can also be expressed as

nl(a +2)
(f.8) = ZF( a2 i

where f(z) = X7, £, 2" and 8(2) = Xpro&nz". Itis well known that the weighted
Bergman spaces are reproducing kernel Hilbert space and the reproducing kernel of
L% (dA,) at the point w € D is given by

1

ky,(z) = W
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The normalized reproducing kernel at w € D is given by

oy (I=lwP)s*!
ky(z) = W

For more details about the weighted Bergman spaces we refer to the book [20].
Let P, denote the orthogonal projection of L*(D,dA,) onto L2(dA,). Let
L* (D, dA o) be the space of all complex measurable functions ¢ on D such that

[¢llco,a = sup{c 20: Ay ({z €D [$(2)] > c}) > 0} < 0.

For ¢ € L* (D, dA,), the operator Ty on L% (dA,) defined by

T¢f = Pa(¢f), f € Li(dAa)

is called the Toeplitz operator on L2 (dA,) with symbol ¢. It is easy to observe that
Ty is a bounded linear operator on L2%(dAy) with [|Ty]l < ||¢llco, - Furthermore, if
¢ € H, then Tj k% = p(w)k forall w € D, see [5].

Let ¢ : D — D be an analytic self map on D and ¢ € H(D). The weighted
composition operator Cy 4 : H(D) — H(D) is defined by

Cyof=¢(fog) forall f e HD).

In particular, when ¢ is the identity mapping on D then Cy,_ ¢ becomes the multi-
plication operator My, and for = 1, Cy 4 becomes the unweighted composition
operator Cg. In this article we limit our analysis to weighted composition operators
on L2(dAg).

In [4, Th. 1], Cuckovié¢ et al. proved the following boundedness condition of
weighted composition operators on L2 (dA,) :

Cy.0 € B(L%(dA,)) ifand onlyif suply o(¥)(a) < oo, 2.1)
aeD

where

—la 2 a+2
Lo = [ (m) W02 dA ().

Clearly, it follows from (2.1) that if ¢y € H® then Cy € B(L%(dA,)). Next relation
follows from the reproducing property of L% (dA,) thatif Cy 4 € B(L2(dA,)) then

C;’¢k$ = lﬁ(w)kgw) forallw € D.
3 Shape of the numerical range
We begin with the definition of a-essential range.

Definition 3.1 For ¢ € L™(D, dA,) the a-essential range of ¢ is denoted by Ry o
and defined as

Rpoa={w:Ax({z€eD:|¢(z) —w| <€}) >0 forany e > 0}.
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It is easy to observe that Ry , is a compact subset of C and
[¢lleo,0 = max{|w|:w € Ry a}.

Now, we prove the following lemma.
Lemma 3.1 Let ¢ € L*(D, dA) be such that ¢ is continuous on D, then ¢(D) = Ry 4.

Proof If u € ¢(D) then there exists zop € D such that u = ¢(zp). Since ¢ is con-
tinuous so for any € > O there exists § > 0 such that |¢(z) — u| < € whenever
z€S={z€eD:|z—-z| <6} Clearly, A,({z € D : |¢(z) —u| < €}) = Ax(S).
If possible let A, (S) = 0. Then we have fs(a + 1)(1 = |z]*)?dA = 0. This implies
that (@ + 1)(1 — |z]>)® = 0 almost all on z € S, which is not possible. Thus
Ao({z €D : |¢(z) —ul < €}) = Ap(S) > 0. Therefore, u € Ry o and since Ry o is
closed so ¢(D) C Ry o

Now, if u € Ry o then from the definition it follows that for any € > O there exists
z € D such that |¢(z) — u| < €. Hence u € ¢(D) and this completes the proof. ]

Remark 3.2 Here we note thatif ¢ € L (D, dA,) and ¢ is continuous on D, then ¢
is bounded on D.

To prove our next result we need the following lemma which was proved in [1].

Lemma 3.3 If ¢ is harmonic and integrable over D then so is ¢ o & for every Mobius

transformation & of D, and fD(¢ o0 &)dA = ¢(£(0)).

In the following proposition we obtain the spectrum of Toeplitz operator on
L?(dA ) with real and harmonic symbol, which generalizes the existing result on the
Bergman space given in [14, Prop. 12].

Proposition 3.4 If ¢ € L (DD, dA,,) is real and harmonic, then o(T) = [inf ¢, sup ¢].

Proof First we have to prove 0(Ty) C [inf ¢, sup ¢] and so we have to show that
Ty, is invertible whenever A ¢ [inf ¢, sup ¢]. Since A ¢ [inf ¢, sup ¢] so either
¢(z) =1 >0o0r¢(z) —A < 0forall z € D. For the former case we choose € > 0 such
that
lle(¢ —A) = 1o, < suple(¢(z) =) — 1] <1
zeD

and so we have

ITep-1) = Il = ITe(p-1)-11l < ll€(d =) = 1leo,0 < 1.

Thus T¢ (- a) is invertible and so T, is invertible. For the latter case ¢(z) — 1 < 0
for all z € D implies that —(¢(z) — ) > 0 for all z € D. Proceeding similarly as the
former case and using the relation Ty = —T_ 444, we get the desired result.

Next we prove the opposite inclusion. Since o (Ty) is a closed subset of C so it
suffices to show that o(Ty) 2 (inf ¢, sup ¢). As o(Ty-a) 2 (inf¢p — A, sup ¢ — A)
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for any A € R, we only have to prove that T is not invertible whenever ¢ takes both
positive and negative values on D. Since ¢ is continuous, there exists w € D such that
¢(w) = 0. Now, to reach our main goal we only show that kS ¢ Range(Ty). We
suppose that k& € Range(T,), then there exists f € L% (dAy) such that Ty f = k&
ie, Po(¢f) = k&. Since ¢ € L¥(D,dA,) so ¢f € L*(D,dA,) = L:(dA,) &
L% (dA4)* and we have ¢ € L2(dA,)* such that
¢f = ki + . (3.1)

For any g € H®, from (3.1) we have

/ ¢lfPPgdAa = / ki fedAa + / Y fedAa. (3.2)

D D D

Since € L2(dA,)* and fg € L2(dA,) so

D
Now, we get
/DkfﬁfgdAa = (k. f8) = (k. To f) = (TkG. f) = g(W)(k. £) = g(w) f(w).
Therefore, from (3.2) we have
[ #lrPean, = gGnfon. (3.3

In particular considering g = 1, the equality (3.3) implies that f(w) € R. Thus for any
g € H® from (3.3) we get

/D 0|fPRegdAq = Fw)Re(g(w)). (3.4

Since ReH® is weak*-dense in the bounded real harmonic functions, then there exists
a sequence {g, } in ReH* such that

lim [ YReg,dA = /(//q)dA forally € L'(D, dA). (3.5)
D

n—oo Jny

As ¢ isbounded and f € L2 (dA,) so we have (a + 1)¢|f]*(1 - |z]*)® € L'(D, dA).
Thus from (3.5), we get

tim [ 011 Regadia = [ #15PdA,.
By applying (3.4) we obtain that

lim f(w)Regn(w) =/¢2|f|2dAa. (3.6)
n—oo D
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Let k,, be the normalized reproducing kernel of L2(dA) at the point w. Then the
function |k,, (z)|* € L'(D, dA) and from (3.5), we get

lim / Regalky (2)PdA = / Bl (2)2dA. (3.7)

Let ¢, be the M6bius map on D, given by ¢,,(z) = 5= forall z € D. Since the real

Jacobian of ¢,, is given by |k, (z)|2, we have

lim [ Reg,o ¢,dA = / ¢ o ¢ydA. (3.8)
D D

n—oo
Now, by Lemma 3.3 and (3.8), we obtain
lim Reg,(w) = ¢(w). (3.9)

Therefore, combining (3.6) and (3.9) we get

/D &1 PdAa = F(w)p(w) = 0.

This implies that ¢|f|> = 0 on D. As ¢ takes positive value on D and f is analytic
on D so we have f = 0. This implies that T f = k;; = 0, which is a contradiction as
kg # 0. Thus, k) ¢ Range(Ty) and this completes the proof.

]

In the next result we completely determine the numerical range of Toeplitz oper-
ators with harmonic symbol acting on L2 (dA,).

Theorem 3.5 If¢ € L*(D, dA ) is a nonconstant harmonic function on D, then W (T ) =
Rel int ¢(D)A.

Proof Let¢ € L™(D,dA,) be a nonconstant harmonic function on D. We prove
this theorem by considering the following two cases.

Case 1. ¢ is real-valued.

Clearly Ty is self adjoint. By Proposition 3.4 we get that W(Ty) = o(T4)" =
[inf ¢, sup ¢]. As W(Ty) is convex so (inf ¢, supp) € W(Ty). Now, we will show
that Ty has no eigenvectors. As Ty_4 = Ty — Al for all A € C, we have to show that
forany f € L2(dA,),Tpf = Oimplies that f = 0. If T, f = Othen ¢ f € L2 (dA,)*.
For any g € H® we have fg € L?(dA,). Thus we get

/D o1/ P5dAq = (61, f3) = 0.

Hence, we obtain

/ ¢|fI’RegdA o = / ¢|fI*RegdA, = 0.
D D
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Now, proceeding similarly as in Proposition 3.4 we get

/ &1 fPdAg = 0.
D

This implies that f = 0. Thus inf ¢, sup ¢ ¢ W(T) because if either inf ¢ or sup ¢ are
in W(T) then they are extreme points of 7 and hence they are eigenvalues of 7.
This completes the proof for the first case.

Case 2. ¢ is complex-valued.

We first prove the inclusion W(Ty) € Rel int ¢(D)A. Let M4 be the multiplication
operator on L?(ID, dA ). Since M is a normal operator and o-(My) = Ry o (see [9,

Prob. 67]), so m = R;\,’a. Therefore, from Lemma 3.1 we get

W(Mg) = p(D) . (3.10)
As Ty dilates to M 4,

W(Ty) CW(Mg). (3.11)
Now, combining (3.10) and (3.11) we obtain

W(Ty) C (D) . (3.12)

Suppose that W(T) is not contained in Rel int zf)(D)A. Then thereexists§ e R,y € C
and f € L2(dA,) with || f|| = 1 such that

(TRe(ei9(¢+y))f’ f> = max R€(€i9(¢ + 7))(D) =4.

This implies that
<MRe(e[9(¢+y))f’ f> = <R6(6i0(¢ + 7))f, f> =4.

Since Mo (eio (p+y)) < 01 so we get Re(e'?(¢ +v))f = cf. The analyticity of non

zero f implies that Re(e'?(¢ + y)(z)) = 6 for all z € D. Therefore, (¢ + y) (D)A is
contained in a line. Repeating the above process with Im(e'?(¢ + y)) yields that ¢
is constant, which contradicts our assumption. Therefore, W(T) is contained in the

relative interior of ¢(D)A.
Suppose they are not equal. Then there exist € R and ¢ € C such that W(T,,) &

Rel int zp(D)A, where ¥ = Re(e!?(¢ + c)) which is real and harmonic and this
contradicts Case 1. Thus we obtain the desired relation. [ ]

The following corollary follows from Theorem 3.5.
Corollary 3.6 If p € H® then W(My) = ¢(D)".

The next example demonstrates that the condition ¢ is harmonic in D is essential
in Theorem 3.5.
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Example 3.7 1f we consider the function ¢(z) = |z|? on D then ¢ is continuous but
not harmonic in D. For any n, m > 0, we have
<T¢en, em)
B VL (n+a+2)T(m+a+2)
Volm!I'(a + 2)
1 2n
_ VL (n+a+2)T(m+a +2) (/ P (] _ r2)adr) (/ ei(n—mwdg)
avalm\T(a + 1) r=0 6=0
3 {/ln ifn=m

(a + 1)‘/D¢(z)z"ZmdAa(z)

0 ifn#m

where

Fn+a+2) [!
An = Tnta+2) 1 - r)%dr =
n'F((Y + 1) r=0

n+1
n+a+2

Clearly, {1,,},_, is an increasing sequence with A, — 1. Thus the matrix represen-
tation of T is a diagonal matrix with diagonal elements A, relative to the standard

ordered basis {e, },_, of L% (dA,). Hence W(Ty) = [L 1) .AgainRelintd}(D)A =

a+2’
(0, 1). Hence in this example W (T ) is not equal to Rel int qﬁ(D)A furthermore W(T)
is not a relatively open subset of C.

We now introduce the following definition.
Definition 3.2 Forn > 2andn > j > 0, we define the subset L; of L2 (dAg) as
Lj={f € Li(dAq): f(2) =2/3(2"). g € Lg(dAa)} .

Now, we prove the following lemma which will be useful when proving the next
result.

Lemma 3.8 Ifm € Nand c > 1 then the sequence {xn = %} is bounded.

Proof If cisaninteger then it easily follows that {x, } is bounded. Now, the function

f(x) = Flf’(?lrj:;) is increasing on the interval [1, ). So, for an arbitrary ¢ > 1 by

choosing an integer greater than ¢ and using the boundedness of the sequence for the
integer case the desired result follows. [

Next we prove the following decomposition of L2 (dA ), which will be an essential
tool to compute the numerical range of weighted composition operators on L2 (dA ).

Proposition 3.9  For each n > 2, L2 (dA ) can be decomposed as

L2(dAy) =Lo® L1 ®...® L, ;.
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Proof By applying Lemma 3.8 it follows that each element of L2 (dA ) of the form
y applying a

Yoo akz¥™*/ lies in L ; and conversely. Then it follows easily that each L is a closed

subspace and for alln > 2,

L2(dAg) =Lo® L1 ®...® L, ;.

Our next result read as:
Lemma 3.10 Ifyr € H® and My (L;) C L; then W(My|r,;) = ¢(D)".

Proof Let p; be the orthogonal projection from L2(dA,) onto L ;. Now, for w €
D\ {0} we denote k:ﬁ’j = p,k;. Then we have

. A 1 1
a @ — a X a N = a X —
<M¢kw,j’kw,j - ||k$,j||2<wkw,1’kw71 “kgv’j“z‘p(w)kw,J(W) ¥ (w).

Thus for any w € D \ {0}, y(w) € W(My|L,) and ¢(0) € W(My|L,) by open

mapping theorem. Thus we get W(My ;) 2 ¢(D)". Now, the desired result follows
from the Corollary 3.6 and W(My|r,) € W(My). [ |

Now, we are in a position to prove the following result.

Theorem 3.11  Let ¢(z) = Azwith A = e*™ /" and y(z) = g(z") for some g € H®. Then
W(Cy,p) = (D)UY (D) U...U"" "y (D))"

Proof If f € L;then f(¢(z)) = f(Az) = A7 f(z) and we have Cy(L;) € Lj. Since
Y(z) = g(z") and ¢ is bounded on D so My (L) € L;j andso Cy (L;) € L;. This
implies that

C¢’¢(Lj) =CodCi1®...0C,_1,

where Cj = Cy ¢|1;.Forany h € L; with||h|| = 1wehave(C;h, h) = AJ{yh, h) and
this implies that W(C;) = /le(M¢ |;). Hence from Lemma 3.10 we have W(C;) =
A p(D). Thus

W(Cy.s) = (W(Co) UW(CP) U...UW(Cpy))®
= (WD) UD)U...u2" gy (D))",

as desired. ]
The following corollary follows immediately from Theorem 3.11.

Corollary 3.12  If ¢(z) = —zthen W(Cy) = [-1,1] and if ¢(z) = e2min g withn > 2
then W(C ) is the closed, regular polygonal region with n sides and inscribed in the unit circle.
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In the following, we classify some subsets of C which are the numerical ranges
of weighted composition operators acting on L2 (dA,). To do this we start with the
following definition.

A subset S of C is said to have n-fold symmetry about the origin if it satisfies
e?ming = §.

Theorem 3.13  Let S be an non-empty, open, bounded and convex subset of C. If S has n-fold
symmetry about the origin then for any @ > —1 there exists Cy, 4 € B (L% (dAq)) such that
W(Cy.4) =S.

Proof Let f be a Riemann map from D onto S. Consider the functiony : D — S
such that Y (z) = f(z") for all z € D. It is easy to verify that (D) = f(D) and so we
obtain /(D) = S. Let ¢(z) = Az where A = 2™/, By applying Theorem 3.11 we get

W(Cy.g) = W (D) UAYD)U... ULy (D))" (3.13)

Since S has a n-fold symmetry about the origin so A%y(D) = S forall0 < k <n — 1.
As S is convex so from (3.13) we obtain the the desired result. [ |

Corollary 3.14 Let f € H® be nonconstant. If n > 1 then for any @ > —1 there exists
Cyp€B (Lz (dAq)) such that W(Cy, ) is the smallest convex set with n-fold symmetry
about the origin with W(Cy 4) 2 f(D).

Proof Let us define yy : D — C such that ¢(z) = f(z") for all z € D. Then ¢ (D) =
f(D). Let ¢(z) = Az where A = >/ From Theorem 3.11 we get

W(Cy.p) = (f(D)UAfD)U...u"F(D)". (3.14)

As AW(Cy 4) = W(Cy.g) so W(Cy 4) has a n-fold symmetry about the origin and it
is a convex set. If M is a convex set and has a n-fold symmetry about the origin with
M D f(D) then M D A¥ f(D) forall 0 < k < n — 1. Thus from (3.14) it follows that
M 2 W(Cy,e). Therefore, W(Cy, o) is the smallest convex set with n-fold symmetry
about the origin with W(Cy, 4) 2 f(D). [ ]

We conclude this section by asking which non-empty, bounded, and convex sub-
sets of C can be the numerical range of weighted composition operators acting on
L2(dA.).

4 Containment of zero in the numerical range

Our main focus in this section is to investigate the containment of the origin in the
interior of the numerical range of weighted composition operators on L2 (dA,). We
study the case when the origin is contained in the numerical range as well as in its
closure for the sum of two weighted composition operators. To do so we recall the
definition of radial limit.

A function f € H(D) is said to have a radial limit if lim, _,; f(re’?) exists almost
everywhere in dD. It is proved in [16, Th. 11.32] that for every f € H® there
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corresponds a function f* € L*(9D), defined almost everywhere by
f7(e) = lim f(re’®).
r—

Moreover, if f*(e'?) = 0 for almost all ¢/? on some arc I C 9D, then f(z) = 0 for
allz € D.
Now, we are in a position to prove the first result of this section.

Theorem 4.1 Let ¢ and ¢, be two holomorphic self maps on D and 1,y € H(D) be
such that Cl/’l-(l’l’ Cw2,¢2 eB (Li(dAa)) .

(i) If ¢1 and ¢, are identity maps on D, and ¢y, ¢, have a common zero in D,
then 0 € W(Cdfl,(bl + Cw2,¢2).

(i) If ¢1, ¢ are not identity maps on D and 1, € H®, then 0 € W(Cy, ¢, + Cy,.0,)-

Proof Foranyw € D, we have
((Cyy.gy + Cupp)k3 k2

1 *k
= —”k(l”Z(kg’(C%’(pl +C¢2,¢2) kva‘,)
w

(k7 TONIEG, ) + (K TR, )

_ e D) g
= ke ki (d1(w)) + ||k$||2kw(¢2(w))

_ ) = wP)er? 210 O w|?)*+?
(1 =wer(w))o+? (I =war(w))a*+?

() Since ¢1 and ¢, are identity maps on D then from (4.1) we have
<(C¢/1,¢1 + Clllz,¢2)]%$v kg) = WI(W) + WZ(W)~

If 1 (wo) = 2(wo) = 0 for wyp € D then we get

[

(4.1)

<(C'ﬁ1»¢1 + Cl//z,d?z)]%a kg, ) =0,

Wo? "Wo
as desired.
(ii) As ¢1, ¢ are not identity maps then the sets {e?? : ¢*1‘(e“9) = ¢/%) and {€%? :
@ (e'?) = ¢'?} have measure zero on dD. So there exists awo € dD such that v (wo)
exists and ¢ (wg) # wo fori = 1, 2. Hence from (4.1) we have

: La pay _
Jm ((Cyygy + C.) kg ki) = 0.

Therefore, 0 € W(Cy, ¢, + Cy,.s,) and this completes the proof. ]

Next, we completely characterize the numerical range of the bounded weighted
composition operators induced by constant composition maps.
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Proposition 4.2 Let Cy, 4 € B (L2(dAq)) be such that ¢ = w with |w| < 1.

(D) If kS = uyp for some p # 0 then W(Cy 4) = [0, allwl?].
(i) If kS L o then W(Cly,g) is the closed disk centred at the origin and radius %
—|w

(iii) Otherwise W(Cy, ) is a closed elliptical disk with foci at 0 and  (w).

Proof Since Cy 4 € B(L2(dA,)) and ¢ is a constant function so for any f €
L;(dAq)

Cy.pf =0 f(w) = (f. k5.

Thus Cy, 4 is arank one operator and the desired result follows from [2, Prop.2.5]. m
Now, we state the following lemma which follows from [11, Th. 2.6].

Lemma 43 LetCy 4 €B (Li(dAa)) , ¢ be a nonconstant analytic self map on D and
be non-zero. If either Y has a zero on D or ¢ is not one-to-one, then 0 € int W(Cy 4).

In the following results we investigate the inclusion of the origin in the interior of
numerical range of weighted composition operators on L2 (dA,).

Theorem 4.4 Let Cy 5 € B (L2(dA,)) and ¢(0) = 0. If ¢ is not of the form ¢(z) = tz
where t € D, then 0 € int W(Cy,s).

Proof If ¢’(0) = O then ¢ is not one-to-one and by Lemma 4.3 we have 0 € int
W(Cy,s). We now consider the case ¢’ (0) = A # 0. As ¢ is not of the form ¢(z) = 1z
where t € ﬁ, ¢ can be written as

¢(2) = Az (1 + 52" (1 + h(2))),

where m is a positive integer, b # 0 and h € H(D) with 4(0) = 0. Therefore, for any
n>1

¢"(z) = 1"7" + nbA" "™ + higher order terms in z. (4.2)

[oe]

The matrix of Cy 4 with respect to the orthonormal basis {e, } . has its n-th column

given by the sequence of coefficients of the power series expansion of +/ %t[/(ﬁ".

Let M,, be the subspace of Lg (dA o) spanned by e, and e,,4,,. Clearly, M,, is a two
dimensional subspace of LZ(dAq). Let X5, Y z* be the power series expansion of
. Then the matrix representation of Cy ¢ on M,, with respect to the basis {e,,, €4/ }
is given by

( Yo" 0

. . . =A1"C
T 2 5
e 2 2 (nbio + fim) W"“") "
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where

Yo 0
Cn =\ [(men)T(nra+2) .

nIT (m+n+a+2) (nbljlo + lﬁm) J’O/lm

Since the numerical range of compression is contained in the numerical range of the
operator (see [19, Prop. 1.4]), it is sufficient to show that 0 € int W(C,,) for some
n. If Yo = O then it follows from Lemma 4.3 that 0 € int W(C,). If yyo # O then
W(C,) is an elliptical disk with foci /o and yoA™ with the length of the minor axis

A/ % |nblﬁo + lﬁml, see [8, Example 3]. A simple computation shows that

(m+n)T(n+a+2)
n—oo pll(m+n+a+2)

Thus if we choose n large enough then the length of the minor axis of W(C,,) will be
larger than the modulus of its centre. Hence there exits n for which 0 € int W(Cp,), as
desired. [

Theorem 4.5 Let Cy 4 € B (L% (dA,)) and  be nonconstant. If ¢(z) = tz where —1 <
t <0,then0 € int W(C¢’¢).

Proof First we prove this result for ¢/(0) = 0. For —1 < ¢t < 0 the result follows
from Lemma 4.3 and for ¢ = 0 the Proposition 4.2 implies that 0 € int W(Cy 4).

To prove the result for ¢/(0) # O it is enough to show this for (0) = 1. So,
¥ (z) = 1+ n(z), where n7 is a nonconstant analytic function with 7(0) = 0. Now, for
any f € L2(dA,) with || f|| = 1, we get

(Cyof ) =(Cof. /) +{Cpof.[)

For t = 0 the result follows from Proposition 4.2. Since (0) = 0, for -1 <t < 0, it
follows from Lemma 4.3 that W(C,, 4) contains a disk of positive radius and centred
at the origin. So there exists f; € L2(dA,) with || fi]| = 1 such that Im(Cy, ¢ f1, f1) >
0. As (Cg f1, f1) is real, p1 = (Cy, 4 f1, f1) is in the upper half plane. Similarly, we
get another point p; in the lower half plane. Again we have (Cy ge1,e1) = t and
(Cy,pe0,e0) = 1. Thus O € int {p1, p2,1,1}" Cint W(Cy_4), as desired. [ |

Remark 4.6 (i) If  is constant and ¢(z) = tz where =1 <t < 1, then W(Cy ¢) is a
line segment of C and thus 0 ¢ int W(Cy 4).

(if) If ¥ is nonconstant with 4/ (0) = O and ¢(z) = tz where O < ¢ < 1, then by Lemma
4.3 wehave 0 € int W(Cy 4).

(iii) If  is nonconstant with ¥ (0) # 0 and ¢(z) = tz where 0 < t < 1, then the
following two cases are possible.

(a) Let ¢ be such that ¢/(0) # 0 but ¢ (wo) = 0 for some wy € D. Then by applying
Lemma 4.3 we conclude that 0 € int W(Cy ).

(b) Now, we consider ¢(z) = z/2and ¢ (z) = 1+z/4.Let f € L2(dA,) with || f|| = 1
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and f(z) = 210 fxz* be the power series expansion. Then we have

kT (a +2) F (k+ DI +2) ,
Cont =3, i e 52 St e
=')/+Z(S,

_ Yo kIC(a+2) | £ 12 _ v (k+DIT(a+2) 2 2
wherey = 217, m|fk| and 6 = 2, mfkfhy

Since |fkfk+1| < % (|fk|2 + |fk+1 |2) and a by simple computation we have

3
[6] < 3y asY > 0.
Therefore y + ié # 0 and this implies that 0 ¢ W(Cy_¢).

Finally, we introduce some sufficient condition for the closedness of numerical
range of compact weighted composition operators. The results follow from the pre-
vious results of this section and the well known result that if the numerical range of a
compact operator contains 0 then it is closed, see [9, p. 115].

Corollary 4.7  Let Cy, 4 be a compact operator on L% (dAq). Then W(Cy 4) is closed if
one of the following condition holds:

(i) @ is the identity map on D and Y has a zero in D.

(ii) Y # 0 and either Y has a zero in D or ¢ is not one-to-one.

(iii) ¢(0) = 0and ¢ is not of the form ¢(z) = tz fort € D.

(iv) W is nonconstant and ¢(z) = tz, -1 <t < 0.

Example 48  1f we consider the example ¢/(z) = 72 and ¢(z) = az? with |a| < 1 then
¢ is not of the form ¢(z) = tz fort € D, and ¢(0) = 0. Again from [15, Cor. 1] it
follows that Cy 4 is compact on L% (dA,). Thus for this example W(Cy 4) is closed.

5 Containment of circular disk or elliptical disk in the
numerical range

In the previous section we studied the containment of the origin in the interior of
numerical range. Our next focus is to investigate the weighted composition oper-
ators for which the numerical range contains a circular disk or elliptical disk and
accordingly we find the radius of the disk or lengths of the major and minor axis.

Theorem 5.1  Let C,/,,(P € B (L%(dAq)) be such that ¢(0) = 0 and y has a zero of order

m > 0 at the origin. If Y., denotes the m-th Taylor coefficient of , then W(Cy, ) contains
m!l'(a+2)
a+2)+m!T (a+2)

the disk of radius T (1, centred at the origin.

Proof Let us consider f(z) = \/ Limta+2) (A + z™) for all z € D with

I'(m+a+2)+m!I'(a@+2)

[A] = 1. Then f € L2(dA,) with ||f]| = 1. Let 230, ¢xz* and 352, wizk be the
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Taylor series of ¢ and y, respectively. Then

3 I'im+a+2) o km
F(9@@) = \/F(m +a+2)+ml(a+2) (/l * (kz_; iz ) )

I'(m+a+2) . . .
= A+ ¢7'Z™ + high dert .
\/F(m+a/+2) +m!T(a +2) (1+ o1 igher order terms in z)

Thus we have

<Cl//,¢f’ f>
= W (2)f(¢(2)). f(2))
r 2 o A
= T + a(:l;)- _(: ;llr)(a T2 <(,;n wkzk) (4 + 7'z + higher order terms in z) , A +
m!I'(a + 2)

- IF'(m+a+2)+m(a+2) Am-

Since A is an arbitrary complex number with || = 1 so W(Cy 4) contains the disk of
m!l'(a+2)
a+2)+m!T' (a+2)

radius o |t/ | and centre at the origin. [

Theorem 5.2 Let Cy 4 € B (L2Z(dAg)) be such that ¢(z) = Az with A # 0
and ¥ (2) = Xy Wz*. Then forall m > 2, W(Cy 4) contains the disk of radius

1 m!l'(a+3)

3\ Tomtasd) | AW -1 and centre at the origin.

Proof Form > 2 let M,, be the subspace of L2 (dA,) spanned by e; and e,,,. Now,
we have

C¢,¢€1(Z) =AVa +2 (Z lﬁkzkﬂ)
k=1

g [Dmrar2) (S0,
Cy.pem(z) = A (@1 2) (;tﬁkz )

Thus the compression of Cy, 4 to M, has the matrix representation

0 0
T'(a+3) ; .
/1\/ lzrzm+[zyx+2) Ym-10

Therefore, the numerical range of the compression of Cy_ 4 to M,,, is a closed disk cen-

tred at the origin and radius % il (a+3) | A 1], see [8, Example 3). Thus W(Cy,4)

I'(m+a+2)

contains the disk of radius %1 / 17}’;&—‘:;32)) | A —1| and centre at the origin. [

and
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Remark 5.3 Here we remark that the case m = 0 cannot be included in Theorem 5.1
and Theorem 5.2. If we consider ¥ (z) = 1 + ez and ¢(z) = —z/2 with € > 0 then it is
easy to observe that the radius of the largest circular disk at the origin and contained
in W(Cy,g) is at most €.

Theorem 5.4 Let Cy 4 € B (L%(dAg)) be such that ¢(z) = €*™/"z and y(z)

Zk -0 lﬁkz Ifmy, my are twop051t1ve mtegers with my > my and wmm zpnmzzﬁn(ml —my) =
0 but all of the three terms anl , wnnp and wn(m] —my) are not equal to zero. Then W(Cy, 4)
contains the circular disk centred at Yo with radius

1 \/ (nmy)T(a +2)

I'(nmy + a +2)

. . 1 .
(C|lﬁnm1 |2 + |¢’n(m1—m2)|2 + ;|‘//nm2|2 s

(nmy)!I'(nmy+a+2)

where ¢ = (nmy) T (nmy+a+2) *

Proof Let M be the subspace of lel(dA(,) spanned by eq, e,,, and e,,,. Then we
have

Cy,pe0(2) = Z vk,
=0

F(nm1 +a+2) —
(nm)'T(a +2) Z‘!’ ¢

3 I'(nmy + @+ 2) ——
Cunpenm () =[G M +2) Z‘” ©

Thus the compression of Cy, 4 to M has the matrix representation
l@o 0 0
(nm)IT'(a+2) ; .
V F(nin1+(z+2) Ynm, Yo 0

T (a+2 VI (nmy+a+2)T(a+2) (nmy)! » A
N Fomgrara nm, e ) W0

\/(nml)!l"(nm2+a+2)

Cy,penm, (2) =

and

It follows from [10, Th. 4.1] that the numerical range of the compression of Cy, 4 to
M is the circular disk centred at /o with radius

1 \/ (nmy)T(a +2)

I'(nm, + a + 2)

. R 1 .
(Cll//nmllz + |‘7bn(m1—mz)|2 + ;|¢’nm2|2 >

_ (nm)T(nmy+a+2) . . . . .
where ¢ = i) +a42) As the numerical range of compression is contained in

the numerical range of the operator, this proves the desired result. ]

Theorem 5.5 Let Cy 5 € B (L2(dAg)) be such that ¢(z) = Az with A = e2mim and
v(z) = 2o Uz with lj/np+j # 0 for some 0 < j < n. Then W(Cy,¢4) contains the
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elliptical disk foci Yy and AP+, with major axis

)|
\/Ilﬁolzll _ zmijinp2 4 P F DIT(a +2)

2
F(np+j+a+2)| npt]

and minor axis

F(np+j+a'+2)| np+l-

\/(np + HT(a+2), -«

Proof Let M be the subspace of L2 (dA,) spanned by eo and enp+j. We have

Cy,pe0(2) = Z gk
k=0

and

S e = )
Thus the compression of Cy, 4 to M has the matrix representation

l//Ao 0
Since 0 < j < nso A" # 1 and hence the the pumerical range
of the compression of Cy 4 to M is the elliptical disk foci Yo and A"P*/y,,

and with major axis \/ll//0|2|1 — e2mij/n|2 4 MW/M,HP and minor axis

T'(np+j+a+2)

,/%W" p+jl, see [8, Example 3]. The desired result follows from the fact
that the numerical range of compression is contained in the numerical range of the

operator. u

Theorefn 56 Let Cyy € B(L2(dAy)) be such that ¢(z) = e*™ Oz and y(z) =
Dieo iz, where 6 is irrational. If n > 0 and m > O then W(Cy, ) contains the elliptical
disk with foci at €270 and 2™ ("*™0 and with major axis

|e2rind _ g2mi(nem) 6|2 4 (m+m)T'(n+a+ 2)| o2
m
nl(n+m+a+2)

(n+m)!T"(n+a+2) |(j/ |
ml-

and minor axis m

Proof Let M be the subspace of Lfl (dA o) spanned by e,, and ¢,,1,,,. Then we have

; I'n+a+2)
C — ,2min® k+n
v.pen(2) = e \/ (@ +2) § %

2025/10/16  20:40

https://doi.org/10.4153/50008439525101355 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439525101355

18 A. Sen, S. Halder, R. Birbonshi and K. Paul

and

: F(n +m+a+2)
C — p2mi(n+m)6 k+n+m
¢,¢en+m(z) e (n T m),r(a T 2) Zlﬂ

Thus the compression of Cy, 4 to M has the matrix representation
27rin9 0
plmi(n+m)@ /(n+m)'F(n+a+2) W plmi(ntm)@
n!l' (n+m+a+2)

Therefore, the numerical range of the compression of Cy, 4 to M is the elliptical disk
with foci €27 and 27 (n+m) € and with major axis

|e2min® — p2mi(n+m)6|2 4 (n+m)'F(n+a+2)| Uml®
nlC(n+m+a+2)

(n+m)!I'(n+a+2)
n'I'(n+m+a+2)
as the numerical range of compression is contained in the numerical range of the

operator. u

and minor axis [t |, see [8, Example 3]. The desired result follows

We end with the conclusion that the results of this section may be useful to esti-
mate the lower bounds of numerical radius of some classes of weighted composition
operators acting on L2 (dA,).
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