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Position averaged convergent beam electron diffraction (PACBED) can accurately measure local 
specimen thickness with nanometer resolution, which is critical in quantitative scanning transmission 
electron microscopy (STEM) [1]. These thickness measurements are conducted by pattern matching 
experiment to simulations, either by least squares fitting (LSF) or by eye. This process, however, can be 
slow and inaccurate, since only slight contrast feature changes are used be distinguish patterns that are 
within a few nm.  In recent years, convolutional neural networks (CNN) have shown excellent 
performance in tasks such as self-driving cars, face detection, and text recognition. With multiple 
convolutional layers in deep, CNN can automatically extract the local features from the images without 
any feature engineering procedures. The above advantage suggests the promising CNN application in 
determining thickness from PACBED with different image contrast and patterns.  
 
In this study, we seek a deep convolutional neural network approach to determine the local specimen 
thickness from PACBED with 1 nm resolution from 1 nm to 120 nm. Starting from a pre-trained 
AlexNet network[2], we transfer its network architecture to learn this new task[3]. Specifically, we keep 
the weights of convolutional and first two fully connected layers from the original AlexNet and replace 
the last fully-connected and softmax layer for 120 categories as illustrated in Figure 1. The weights in 
the network are fine-tuned in subsequent training by continuing the backpropagation with a 10 times 
faster learning rate in the last fully-connected layer. The total training process is conducted using about 
5.8 million images, which are random affine transformed, brightness adjusted, rotated, and noise added 
from the simulated PACBED patterns in different thickness. To reduce the overfitting, dropout is 
applied in the fully connected layers with a ratio of 0.5[4]. The trained network shows 99.1% accuracy 
from the testing data (based on simulated PACBED patterns). The approach achieves an overall 85% 
accuracy when comparing experimentally acquired PACBED patterns, where the thickness 
determination error is within 1-2 nm, suggesting a good generalization of the neural network for real-
world applications. 
 
Figure 2a shows the experimental PACBED pattern of a <100> orientated SrTiO3 crystal. The local 
bright/dark patterns and contours from the PACBED are activated in the fine-tuned CNN in the 
convolutional layers, indicating the success of the CNN to subtract regional features from PACBED 
patterns. The thickness determined from this PACBED by the CNN is 51 nm, compared to 51-52 nm by 
visual inspection. For a more faithful comparison, the thickness is further determined from least square 
fitting (LSF), which searches the PACBED pattern for minimum intensity deviation between simulation 
and experiment. Consistent results are found among these methods. For wider thickness range, CNN can 
provide reliable measurements as demonstrated in Figure 2b. In particular, it can accurately determine 
the thickness when the sample is less than 6-8 nm thick, where the LSF method becomes inaccurate. We 
also notice a larger deviation from experimental and simulated PACBED patterns at thick regions above 
70 nm due to the diffuse electron scattering, which also degrades LSF accuracy. A uniform background 
substation on the PACBED image is made to improve the reliability of both the LSF and CNN analysis. 
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Moreover, after training the CNN approach is very fast, with average identification achieved within 
0.001s per image, which largely outperforms the LSF. These speeds open the possibility to efficiently 
determining local thickness or structural changes during STEM imaging [5]. 
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Figure 1.  Illustration of the convolutional neural network architecture in this work. 

 

Figure 2.  Example of experimental PACBEDs and their thickness identification by human, least square 
fitting (LSF) and convolutional neural network (CNN). Selected network activations in the first, second 
and fifth convolutional layers after ReLU are illustrated in (a).  
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