MULTIPLIERS ON SPACES OF FUNCTIONS ON COMPACT GROUPS WITH *P*-SUMMABLE FOURIER TRANSFORMS

SANJIV KUMAR GUPTA, SHOBHA MADAN AND U.B. TEWARI

Let G be a compact abelian group with dual group Γ . For $1 \leq p < \infty$, denote by $A_p(G)$ the space of integrable functions on G whose Fourier transforms belong to $\ell_p(\Gamma)$. We investigate several problems related to multipliers from $A_p(G)$ to $A_q(G)$. In particular, we prove that $(A_p, A_p) \subsetneq \bigcap_{\substack{2 < q < p \\ p < q < p \\ c < q < p \\ c$

1. INTRODUCTION

Let G be a locally compact abelian group with dual Γ . For $1 \leq p < \infty$, the space $A_p(G)$ is defined as:

$$A_p(G) = \{f \mid f \in L^1(G), \, \widehat{f} \in L^p(\Gamma)\}$$

with the norm $||f||_{A_p} = ||f||_{L^1} + ||\widehat{f}||_{L^p}$. Then $A_p(G)$ is a commutative semi-simple Banach algebra with maximal ideal space Γ .

A function ϕ on Γ is said to be a multiplier from A_p to A_r if $\phi \hat{f} \in \hat{A}_r$ for every $f \in A_p$. The set of multipliers from A_p to A_r is denoted by (A_p, A_r) . It is well-known that a continuous linear operator $T: A_p \to A_r$ commutes with translations in G if and only if there exists a function ϕ on Γ such that $(Tf)^{\wedge} = \phi \hat{f} \forall f \in A_p$. We shall denote by $\|\phi\|$ the operator norm of T. For a discussion of (A_p, A_r) multipliers, we refer to the paper by Bloom and Bloom [1].

If G is non-compact, then $(A_p, A_p) = \widehat{M}(G)$ [4]. For a compact group G, if $1 \leq p \leq 2$, then $(A_p, A_p) = \ell_{\infty}$, since in this case $\widehat{A}_p = \ell_p(\Gamma)$. Further if $r \geq p$, then it is easy to see that $(A_p, A_p) = (A_p, A_r)$. Thus the cases of interest are when p > 2 and $1 \leq r < p$.

In [10] Tewari and Gupta proved that for $1 \leq r < p$ and 2

- (a) $(A_p, A_p) \cap C_0(\Gamma) \subsetneq (A_r, A_r) \cap C_0(\Gamma),$
- (b) $\bigcup_{r \leq p} (A_p, A_p) \subsetneq (A_r, A_r).$

Received 25 May 1992

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.

The following was stated as an open problem in [8].

If
$$2 , is $(A_p, A_p) \subsetneq \bigcap_{r < p} (A_r, A_r)$?$$

In this paper, we provide an affirmative answer to this problem (Theorem 2.1).

In general, the multiplier spaces (A_p, A_r) are not known for all values of p and r, p > 2. However it is easy to see that certain sequences spaces are contained in them (see [1]).

If $1 \leq r \leq 2$, r < p, then clearly $\ell_{(rp)/(p-r)} \subseteq (A_p, A_r)$. However, for p > 2 it is not known whether this containent is proper. In [10] it was shown that

- (i) if s > (rp)/(p-r), then $\ell_s \not\subseteq (A_p, A_r)$, $1 \leq r \leq 2 ,$
- (ii) if s > (2p)/(p-2), then $\ell_s \not\subseteq (A_p, A_r)$, $2 < r \leq p < \infty$.

Using the idea of the proof of Theorem 2.1, we improve this result in Theorem 2.3.

In the last section we study the space of permutation invariant multipliers $\Pi(A_p, A_r)$ for the circle group T. (A multiplier $\phi \in (A_p, A_r)$ is said to be permutation invariant if $\phi \circ \pi \in (A_p, A_r)$ for all permutations π of Γ). We show that if $1 \leq r \leq 2$ $then <math>\ell_{(rp)/(p-r)}$ is precisely the set of permutation invariant multipliers from A_p to A_r .

We shall need some results on pointwise multipliers from $\ell_p(\Gamma)$ to $\ell_r(\Gamma)$, were Γ is discrete. The space $M(\ell_p, \ell_r)$ of pointwise multipliers consists of functions ϕ on Γ such that $\phi f \in \ell_r \, \forall f \in \ell_p$. Using the reverse Hölder's inequality it is easy to see that

- (i) $M(\ell_p, \ell_r) = \ell_{\infty}$ if $p \leq r$,
- (ii) $M(\ell_p, \ell_r) = \ell_{(pr)/(p-r)}$ if p > r.

(see [1]).

2. PROPER INCLUSION IN (A_p, A_r) -SPACES

THEOREM 2.1. Let G be a compact abelian group and p > 2. Then

$$(A_p, A_p) \subsetneq \bigcap_{q < p} (A_q, A_p).$$

The proof of Theorem 2.1 depends on an interesting lemma about sequences spaces, which may be of independent interest and is suggested by the equality

$$M(\ell_{(rp)/(p-r)}, \ell_r) = \ell_p, \quad 1 \leq r$$

We also use this lemma to improve certain results about (A_p, A_r) multipliers due to Tewari and Gupta [10].

LEMMA 2.2. Let I be an infinite set. Let $1 \leq r and <math>\phi \in \ell_p(I)$ be such that $\phi \notin \ell_q(I)$ for every q < p. Then there exists $\psi \in \bigcap_{t > (rp)/(p-r)} \ell_t(I)$ such that $\phi \psi \notin \ell_r(I)$. Multipliers of $A_p(G)$

PROOF: Clearly, we may assume $|\phi| \leq 1$ on *I*. Fix a positive integer s > p/r. Let $q_j = p - 1/j$ and choose $m_0 \in \mathbb{N}$ such that $q_j > r$ for $j \geq m_0$. Now define, $\alpha_j = (rq_j)/(q_j - r), \ j \geq m_0$. Then q_j increases to p and α_j decreases to (rp)/(p - r). Let $(a_n)_{n=1}^{\infty}$ be the support of ϕ . Let $n_0 = 0$ and choose $n_1 > 1$ such that

$$\sum_{n=1}^{n_1} \left|\phi(a_n)\right|^{q_s} > 1.$$

By induction, construct an increasing sequence $(n_j)_{j=1}^{\infty}$ of integers such that

$$\sum_{n=n_{j-1}+1}^{n_j} |\phi(a_n)|^{q_{j_s}} > 1, \quad \forall j \ge 1$$

Define

$$\psi(a) = \begin{cases} |\phi(a_n)|^{p/\alpha_j} & \text{if } a = a_n, \quad n_{j-1} < n \le n_j, \quad \forall j \ge 1 \\ 0 & \text{on } I \setminus \{a_n\}_{n=1}^{\infty}. \end{cases}$$

Then if $k \ge m_0$, we have

$$\sum_{n=n_k+1}^{\infty} |\psi(a_n)|^{\alpha_k} = \sum_{j=k}^{\infty} \sum_{n=n_j+1}^{n_{j+1}} |\phi(a_n)|^{\alpha_k p/\alpha_{j+1}}$$
$$\leq \sum_{n=n_k+1}^{\infty} |\phi(a_n)|^p < \infty,$$

since α_k is decreasing and $|\phi| \leq 1$.

Therefore

$$\psi \in \bigcap_{k=m_0}^{\infty} \ell_{\alpha_k}(I) = \bigcap_{t>(rp)/(p-r)} \ell_t(I).$$

Next, to see that $\phi \psi \notin \ell_r(I)$, consider

$$\sum_{n=1}^{\infty} |\phi(a_n)|^r |\psi(a_n)|^r = \sum_{j=1}^{\infty} \sum_{n=n_{j-1}+1}^{n_j} |\phi(a_n)|^{pr/\alpha_j} |\phi(a_n)|^r$$
$$\ge \sum_{j=1}^{\infty} \sum_{n=n_{j-1}+1}^{n_j} |\phi(a_n)|^{q_{j_s}} = \infty,$$

since s > p/r, and so $r + pr/\alpha_j < q_{js} \forall j \ge 1$. This completes the proof of the lemma.

438

PROOF OF THEOREM 2.1: Since $\bigcup_{q < q} A_q \subsetneq A_p$ [9], there exists $f \in A_p$ such that $\widehat{f} \notin \ell_q$ for every q < p. Let $\phi = \widehat{f}$. Then ϕ satisfies the conditions of Lemma 2.2 with r = 2. Hence there exists $\psi \in \bigcap_{t>(2p)/(p-2)} \ell_t$ such that $\phi \psi \notin \ell_2$. For 2 < q < p, t>(2q)/(q-2) > (2p)/(p-2), so that $\bigcap_{t>(2p)/(p-2)} \ell_t = \bigcap_{p>q>2} \ell_{(2q)/(q-2)}$. Hence $\psi \in \bigcap_{p>q>2} \ell_{(2q)/(q-2)}$.

Since $\phi \psi \notin \ell_2$, there exists a function ε on Γ whose range is contained in $\{\pm 1\}$ such that $\varepsilon \phi \psi \notin (L^1)^{\wedge}$ [2, Theorem 1.1]. Then $\varepsilon \psi$ belongs to $\bigcap_{p>q>2} \ell_{(2q)/(q-2)} \subseteq \bigcap_{p>q>2} (A_q, A_q)$, and $\varepsilon \psi \notin (A_p, A_q)$. This completes the proof of the theorem.

We now use Lemma 2.2 to improve some results of [10] mentioned in the introduction.

THEOREM 2.3. Let G be an infinite compact abelian group. Then

(a) $\bigcap_{s>(rp)/(p-r)} \ell_s \not\subseteq (A_p, A_r), 1 \leq r \leq 2$ $(b) <math display="block">\bigcap_{s>(2p)/(p-2)} \ell_s \not\subseteq (A_p, A_r), 2 < r \leq p < \infty.$

PROOF: (a) Since $\bigcup_{q < q} A_q \subsetneq A_p$, there exists $f \in A_p$ such that $\hat{f} \notin \ell_q$ for every q < p. Hence by Lemma 2.2 we get $\psi \in \bigcap_{s > (rp)/(p-r)} \ell_s$ such that $\psi \hat{f} \notin \ell_r$. Thus $\psi \notin (A_p, A_r)$.

(b) Using (a) for r = 2 we get $\phi \in \bigcap_{i>(2p)/(p-2)} \ell_i$ such that $\phi \notin (A_p, A_2)$. Hence

there exists $f \in A_p$ such that $\phi \hat{f} \notin \ell_2$. Now there exists a function ε defined on Γ with range in $\{\pm 1\}$ such that $\varepsilon \phi \hat{f} \notin (L^1)^{\wedge}$. Hence $\varepsilon \phi \notin (A_p, A_r)$ and $\varepsilon \phi \in \bigcap_{s>(2p)/(p-2)} \ell_s$.

It was mentioned in the introduction that if $1 \leq r \leq 2 then the proper containment of <math>\ell_{(rp)/(p-r)}$ in (A_p, A_r) is not known. In Theorem 2.4 below, we give a sufficient condition on a multiplier $\phi \in (A_p(T), A_r(T))$ so that $\phi \in \ell_{(rp)/(p-r)}(\mathbb{Z})$.

It is easy to see that for $r \leq 2$, $\phi \in (A_p, A_r)$ if and only if $|\phi| \in (A_p, A_r)$. Further $\phi \in (A_p, A_r)$ if and only if $\psi(\gamma) = \phi(\gamma) + \phi(-\gamma) \in (A_p, A_r)$. Therefore it is sufficient to characterise non-negative, even multipliers from A_p to A_r .

THEOREM 2.4. Let $1 \leq r \leq 2 and let <math>\phi$ be a non-negative, even sequence on \mathbb{Z} such that $\phi(n+1) \leq \phi(n)$, n > 0. Then $\phi \in (A_p(T), A_r(T))$ if and only if $\phi \in \ell_{(pr)/(p-r)}(\mathbb{Z})$.

PROOF: If $\phi \in \ell_{(rp)/(p-r)}$, clearly $\phi \in (A_p, A_r)$. For the converse, let $\phi \in$

Multipliers of $A_p(G)$

 $(A_p(T), A_r(T))$. We may assume that $\phi(0) = 0$. Let

$$\psi_m(n) = \begin{cases} (\phi(n))^{r/(p-r)} & ext{on } [-m, m] \\ 0 & ext{otherwise.} \end{cases}$$

Then

(2.5)
$$\|\phi\psi_m\|_{\ell_r} \leq \|\phi\|\left(\|\check{\psi}_m\|_{L^1} + \|\psi_m\|_{\ell_p}\right).$$

Now by [3, 7.3.3]

(2.6)
$$\|\tilde{\psi}_{m}\|_{L^{1}} \leq C \sum_{n=1}^{m} \frac{\psi_{m}(n)}{n}$$

 $\leq C \sum_{n=1}^{m} \left(\frac{1}{n^{p'}}\right)^{1/p'} \left(\sum_{n=1}^{m} (\phi(n))^{pr/(p-r)}\right)^{1/p}$

Also,

(2.7)
$$\|\phi\psi_m\|_{\ell_r} = \left(2\sum_{n=1}^m (\phi(n))^r (\phi(n))^{r^2/(p-r)}\right)^{1/r}$$
$$= 2^{1/r} \left(\sum_{n=1}^m (\phi(n))^{pr/(p-r)}\right)^{1/r}.$$

Hence, combining (2.5)-(2.7) we get

$$2^{1/r} \left(\sum_{n=1}^{m} (\phi(n))^{pr/(p-r)} \right)^{1/r} \leq \|\phi\| \left\{ C' \left(\sum_{n=1}^{m} (\phi(n))^{pr/(p-r)} \right)^{1/p} + \left(\sum_{n=1}^{m} (\phi(n))^{pr/(p-r)} \right)^{1/p} \right\}.$$

It follows that

$$\left(\sum_{n=1}^{m} (\phi(n))^{pr/(p-r)}\right)^{1/r-1/p} \leq \|\phi\| (1+C') 2^{-1/r},$$

where the constant C' is independent of m. Hence $\phi \in \ell_{pr/(p-r)}(\mathbb{Z})$. This completes the proof of the theorem.

3. PERMUTATION INVARIANT MULTIPLIERS FROM A_p to A_r

In this section we study permutation invariant multipliers from A_p to A_r on the circle group. In general, as we have already seen, if $p \leq 2$, then $(A_p, A_r) = \ell_{rp/(p-r)}$ if r < p and $(A_p, A_r) = \ell_{\infty}$ if $r \ge p$. Therefore we assume that p > 2. The following theorem completely characterises $\Pi(A_p(T), A_r(T)), 1 \le r \le 2 .$

THEOREM 3.1. Let $1 \leq r \leq 2 , then$

$$\ell_{pr/(p-r)}(\mathbb{Z}) = \Pi(A_p(T), A_r(T)).$$

The proof of the above theorem depends on the following lemma:

LEMMA 3.2. Let $2 and <math>(a(n)) \in \ell_p(\mathbb{Z})$ be such that $a(n) \ge 0$ and $a(n) = a(-n) \forall n \in \mathbb{N}$. Then there exists a permutation π of \mathbb{Z} such that $a \circ \pi(n) \in (L^1(T))^{\wedge}$.

PROOF: Let π be a permutation of N such that $a \circ \pi$ is decreasing on N. Extend π to Z by defining $\pi(-n) = -\pi(n) \forall n \in \mathbb{N}$ and $\pi(0) = 0$. We show that $a \circ \pi \in (L^1(T))^{\wedge}$. Clearly, $a \circ \pi(n) \ge 0$, $a \circ \pi(n) = a \circ \pi(-n) \forall n \in \mathbb{N}$ and $a \circ \pi(n)$ decreases to zero on N. Also,

$$\sum_{n=1}^{\infty} \frac{a \circ \pi(n)}{n} \leqslant \left(\sum_{n=1}^{\infty} \left(a \circ \pi(n)\right)^p\right)^{1/p} \left(\sum_{n=1}^{\infty} 1/n^{p'}\right)^{1/p'} < \infty.$$

Therefore by [3, 7.3.3] $a \circ \pi \in (L^1(T))^{\wedge}$.

This completes the proof of the lemma.

PROOF OF THEOREM 3.1: It is clear that $\ell_{pr/(p-r)}(\mathbb{Z}) \subseteq II(A_p(T), A_r(T))$. Conversely, suppose $(a(n)) \notin \ell_{pr/(p-r)}(\mathbb{Z}) = M(\ell_p(\mathbb{Z}), \ell_r(\mathbb{Z}))$, then there exists a sequence $(b(n)) \in \ell_p(\mathbb{Z})$ such that (a(n)b(n)) does not belong to $\ell_r(\mathbb{Z})$.

Define

$$c(n) = \max\left(\frac{1}{|n|} + |b(n)|, \frac{1}{|n|} + |b(-n)|\right).$$

Then $(c(n)) \in \ell_p(\mathbb{Z})$, and $(a(n)c(n)) \notin \ell_r(\mathbb{Z})$. Also (c(n)) satisfies the conditions of Lemma 3.2, hence there exists a permutation π of \mathbb{Z} such that $(c \circ \pi(n)) \in (L^1(T))^{\wedge}$. Therefore $(c \circ \pi(n)) \in \widehat{A}_p(T)$. It follows that $a \circ \pi \notin (A_p(T), A_r(T))$ as $(a \circ \pi(n) c \circ \pi(n)) \notin \ell_r(\mathbb{Z})$.

This completes the proof of the theorem.

In the case $2 < r \leq p < \infty$ we are not able to characterise $\Pi(A_p(T), A_r(T))$. Observe that if p > 2, then $\ell_{2p/(p-2)} \subsetneq \Pi(A_p, A_p)$ since the constant function 1 on Γ belongs to $\Pi(A_p, A_p)$. We prove the following theorem, characterising a subclass of $\Pi(A_p(T), A_r(T))$.

[6]

THEOREM 3.3. Let $2 < r \leq p < \infty$. If (a(n)) is a sequence on \mathbb{Z} such that $(a(n)\varepsilon(n)) \in \Pi(A_p(T), A_r(T))$ for every sequence $(\varepsilon(n))_{n \in \mathbb{Z}}$, $\varepsilon(n) = \pm 1$, then $(a(n)) \in \ell_{2p/(p-2)}(\mathbb{Z})$.

PROOF: If on the contrary $(a(n)) \notin \ell_{2p/(p-2)}(\mathbb{Z}) = M(\ell_p(\mathbb{Z}), \ell_2(\mathbb{Z}))$, then there exists a sequence $(d(n)) \in \ell_p(\mathbb{Z})$ such that $d(n) \ge 0$, d(n) = d(-n), $d(n) \ne 0 \forall n \in \mathbb{N}$ and $(a(n)d(n)) \notin \ell_2(\mathbb{N})$. By Lemma 3.2, there exists a permutation π of \mathbb{Z} such that $(d \circ \pi(n)) \in \widehat{A}_p(T)$. Since $(a \circ \pi(n) d \circ \pi(n)) \notin \ell_2(\mathbb{Z})$, therefore there exists a sequence $(\varepsilon(n))_{n \in \mathbb{Z}}, \varepsilon(n) = \pm 1$, such that $(\varepsilon(n)a \circ \pi(n)d \circ \pi(n)) \notin (L^1(T))^{\wedge}$. Hence $(a(n)\varepsilon(n)) \notin \Pi(A_p(T), A_r(T))$, a contradiction.

This completes the proof of the theorem.

REMARK 3.4. Lemma 3.2 can be viewed as an intermediate result between the following:

(i) (Helgason [5]): Let G be a compact abelian group and ϕ a function on Γ . Then $\phi \in \ell_2$ if and only if $\phi \circ \pi \in \widehat{L}^1$ for every permutation π of Γ .

(ii) (Kahane [7]): There exists a sequence $\phi \in C_0(\mathbb{Z})$ such that $\phi \circ \pi \notin (L^1(T))^{\wedge}$ for any permutation π of \mathbb{Z} .

The proof of Helgason's result gives the following result about (A_p, A_p) -multipliers:

THEOREM 3.5. (a) Let p > 2 and $\phi \in \Pi(A_p, A_p) \cap C_0$. Then there exists a permutation π of Γ such that $\phi \circ \pi \in (A_p, A_2)$.

(b) $\Pi(L^1, L^1) \cap C_0 = \ell_2$.

PROOF: (a) Let $E = \{\gamma \in \Gamma \mid \phi(\gamma) \neq 0\}$. Since $\phi \in C_0$, E is countable. If E is finite then $\phi \circ \pi \in (A_p, A_2)$ for every permutation π of Γ . So we assume that E is infinite. Let E_1 be an infinite subset of E such that

(3.7)
$$\sum_{\gamma \in E_1} |\phi(\gamma)|^{2p/(p-2)} < \infty.$$

Let $E_2 = E \setminus E_1$. If E_2 is finite then for every permutation π of $\Gamma \phi \circ \pi \in \ell_{2p/(p-2)} \subseteq (A_p, A_2)$. So we assume that E_2 is infinite. Choose a countably infinite Λ_2 subset F_1 of Γ [6] and define $F_2 = \Gamma \setminus F_1$. Let π be a permutation of Γ mapping F_1 onto E_2 . We claim that $\phi \circ \pi \in (A_p, A_2)$. Let $f \in A_p$. Since $\phi \circ \pi \in (A_p, A_p)$, $\widehat{g} = (\phi \circ \pi) \widehat{f} \in \widehat{A}_p$. Using Hölder's inequality and (3.7), we get

$$\sum_{\gamma \in F_2} \left| \phi \circ \pi(\gamma) \right|^2 \left| \widehat{f}(\gamma) \right|^2 < \infty,$$

since for $\gamma \in F_2$ $\phi(\pi(\gamma)) \neq 0$ only if $\pi(\gamma) \in E_1$. Hence there exists an $h \in L^2$ such that

$$\widehat{h}(\gamma) = \left\{egin{array}{cc} \phi \circ \pi(\gamma) \widehat{f}(\gamma), & \gamma \in F_2 \ 0, & ext{otherwise.} \end{array}
ight.$$

[8]

Now $g - h \in L^1_{F_1}$. Since F_1 is a Λ_2 set, we have $g - h \in L^2$ [6]. Therefore, $g \in L^2$. (b) In this case we choose the set $F_1 \subset F$ such that

(b) In this case we choose the set $E_1 \subset E$ such that

$$\sum_{\gamma \in E_1} |\phi(\gamma)|^2 < \infty.$$

Then proceeding as above we see that $\phi \circ \pi \in (L^1, L^2) = \ell_2$ [6]. Hence $\phi \in \ell_2$.

References

- L.M. Bloom and W.R. Bloom, 'Multipliers on spaces of functions with p-summable Fourier transforms', in *Lecture Notes in Mathematics* 1359 (Springer-Verlag, Berlin, Heidelberg, New York, 1987), pp. 100-112.
- [2] R.E. Edwards, 'Changing signs of Fourier coefficients', Pacific J. Math. 15 (1965), 463-475.
- [3] R.E. Edwards, Fourier Series: A modern introduction I (Holt, Rinehart and Winston, 1979).
- [4] A. Figa-Talamanca and G.I. Gaudry, 'Multipliers and sets of uniqueness of L^p', Michigan Math. J. 17 (1970), 179–191.
- [5] S. Helgason, 'Lacunary Fourier series on noncommutative groups', Proc. Amer. Math. Soc. 9 (1958), 782-790.
- [6] E. Hewitt and K.A. Ross, Abstract harmonic analysis, Grundlehren der Math. Wiss., Band 152, Vol. II (Springer-Verlag, Berlin, Heidelberg, New York, 1970).
- J.P. Kahane, 'Sur les rearrangements des suites de coefficients de Fourier-Lebesgue', C.R. Acad. Sci. Paris 265A (1967), 310-312.
- [8] U.B. Tewari, 'The multiplier problem', The Mathematics Student 51 (1983), 206-214.
- [9] U.B. Tewari and A.K. Gupta, 'Algebras of functions with Fourier transform in a given function space', Bull. Austral. Math. Soc. 9 (1973), 73-82.
- U.B. Tewari and A.K. Gupta, 'Multipliers between some function spaces on groups', Bull. Austral. Math. Soc. 18 (1978), 1-11.

Department of Mathematics Indian Inst. of Technology, Kanput Kanpur 2080 India