
8 

Comparison dynamics 

The expansion of the self-force suggests that if we are willing to accept an error 
of order £ 2 , the trajectory of the charged particle is governed by an autonomous 
equation- a substantial simplification of the hitherto coupled problem. An error of 
order £ 2 in the equation does not imply an error of the same order in the solution. 
This point must be discussed, but let us proceed for a while in good faith and 
simply ignore the error in Eq. (7.22). Then we obtain the following approximate 
equation for the motion of the charge, 

q = v, 

m(v)v = e(Eex (q) + v X Bex (q)) + E(e2 /6rr) [y 4(v. v)v 

+ 3y6(v. v) 2v + 3y4 (v. v)v + y 2v]. (8.1) 

Here m(v) is the effective velocity-dependent mass. It is the sum of the bare mass 
and the mass (7.23) induced by the field, 

(8.2) 

As anticipated in section 4.1, via a distinct route, the leading contribution to 
(8.1) is derived from the effective Lagrangian 

Leff(q, qJ = T(q)- e(c/Jex(q)- q · Aex(q)), (8.3) 

or equivalently from the Hamiltonian 

Heff(q, p) = Eeff(P- eAex(q)) + ec/Jex(q). (8.4) 

For later purposes it is more convenient to work with the energy function 

H(q, v) = Es(V) + ec/Jex(q), (8.5) 

which is conserved by the solutions to (8.1) with £ = 0; compare with ( 4.14 ). 
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The term of order £ in (8.1) describes the radiation reaction. If included, the 
energy of the particle fails to be conserved and the energy balance becomes 

d d 
-H(q, v)- -£ (e2 /6rr) y 4 (v · v) = -£ (e2 /6rr) [y 4v2 + y 6 (v · v)2]. (8.6) 
dt dt 

The term -£(e2 j6n)y 4 (v · v) = Eschou(v, v) is the Schott energy. It has no def­
inite sign. The Schott energy is stored in the near field and can be reversibly ex­
changed with the mechanical energy of the charge. The right-hand side of (8.6) is 
the irreversible loss of energy through radiation; compare with section 8.4. Equa­
tion (8.6) is analogous to the balance equations in hydrodynamics and a familiar 
way to rewrite it is 

d 
ev · Eex(q) = dt (Es(V) + Eschott(V, v)) + £ (e2 /6rr) [y 4v2 + y 6(v · v)2]. 

(8.7) 

In other words, the work done by the external electric field acting on the charge is 
divided up into the change in its kinetic energy, the change of the Schott energy, 
and radiation. 

If we set G 8 = Es + Eschott, then G 8 is decreasing in time, and integrating both 
sides of (8.6) yields 

-G8 (q(t), v(t), v(t)) + G8 (q(O), v(O), v(O)) 
t 

= £ (e2 /6rr) 1 ds [y 4 v(s)2 + y 6 (v(s). v(s))2]. (8.8) 

0 

The mechanical energy is bounded from below, but the Schott energy does not 
have a definite sign. If(!) the Schott energy remains bounded in the course oftime, 
then 

which implies 

00 I dt [y4 v(t) 2 + y 6 (v(t). v(t))2] < oo, 

0 

lim v(t) = 0. 
t --+00 

(8.9) 

(8.1 0) 

The same conclusion was already reached for the Abraham model in Theorem 
5.1, with no adiabatic limit there. Instead of (8.9) we used the bounded energy 
dissipation (5.9). Since both the approximate and the true solutions have the same 
long-time asymptotics, we expect no further time scale, i.e. higher corrections to 
(8.1) should not change the qualitative behavior of solutions and merely increase 
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in precision. One important difference must be stressed, however: Theorem 5.1 
holds for every solution, whereas (8.1 0) holds only for those with bounded Schott 
energy. 

Unfortunately, the energy balance (8.7) by itself does not tell the full story. As 
noticed apparently first by Dirac (1938), Eq. (8.1) has solutions which run away 
exponentially fast. This does not contradict (8.8). G 8 (t) diverges to -oo and the 
time integral diverges to +oo as t ---+ oo. The occurrence of runaway solutions can 
be seen most easily in the approximation of small velocities, setting Bex = 0, and 
linearizing ¢ex around a stable minimum, say at q = 0. Then (8.1) becomes 

q = v, mv= -mw5q +ckmv (8.11) 

with km = e2 j6n. The three components of the linear equation (8.11) decou­
ple and for each component there are three modes of the form ezt. The char­
acteristic equation is z2 = -w5 + ckz3 and to leading order the eigenvalues 
are Z± = ± iwo- c(kw5f2), Z3 = (1/ck) + 0(1). Thus in the nine-dimensional 
phase space for (8.11) there is a stable six -dimensional hyperplane, C~:. On 
C8 the motion is weakly damped, with friction coefficient 8 (kw5f2), and re­
laxes as t ---+ oo to rest at q = 0. Transversal to C8 the solution runs away as 
eUfok). 

Clearly such runaway solutions violate the stability estimate (7.15). Thus the 
full Maxwell-Newton equations do not have runaways. They somehow appear as 
an artifact of the Taylor expansion of F~elf(t) from (7.6). Dirac simply postulated 
that physical solutions must satisfy the asymptotic condition 

lim v(t) = 0. 
t-+00 

(8.12) 

In the linearized version (8.11) this means that the initial conditions have to lie 
in C8 • In Theorem 5.1 we proved the asymptotic condition to hold for the Abra­
ham model. Thus only those solutions to (8.1) satisfying the asymptotic condition 
can serve as a comparison dynamics to the true solution. We then have to under­
stand how the asymptotic condition arises, even more so the global structure of the 
solution flow to (8.1). 

We note that in (8.1) the highest derivative is multiplied by a small pre factor. 
Such equations have been studied in great detail under the header of (geometric) 
singular perturbation theory. The main conclusion is that the structure found for 
the linear equation (8.11) persists for the nonlinear equation (8.1 ). Of course the 
hyperplane C8 is now deformed into some manifold, called the critical (or center) 
manifold. We explain a standard example in the following section and then apply 
the theory to (8.1). 
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8.1 An example for singular perturbation theory 

As a purely mathematical example we consider the coupled system 

x = f(x, y), 8 y = y- h(x). (8.13) 

h and f are bounded, smooth functions. The phase space is JR2 . The question we 
address is to understand how the solutions to (8.13) behave for small 8. If we set 
8 = 0, then y = h(x) and we obtain the autonomous equation 

x = f(x, h(x)). (8.14) 

Geometrically this means that the two-dimensional phase space has been squeezed 
to the line y = h(x) and the base point, x(t), is governed by (8.14). { (x, h(x )) I x E 

lR} is the critical manifold to zeroth order in 8. 

To see some motion appear in the phase space ambient to Co we change from 
t to the fast time scale r = 8-1t. Denoting differentiation with respect to r by', 
(8.13) goes over to 

x' = 8 j(x, y), y' = y- h(x). (8.15) 

In the limit 8--+ 0 we now have x' = 0, i.e. x(r) = xo andy'= y- h(xo) with 
solution y(r) =(yo- h(xo))er + h(xo). Thus on this time scale, Co consists ex­
clusively of repelling fixed points. This is why Co is called critical. The lineariza­
tion at Co has the eigenvalue I transverse and the eigenvalue 0 tangential to Co. 
In the theory of dynamical systems zero eigenvalues in the linearization tum out 
to be linked to center manifolds, and thus Co is also called the center manifold 
(at 8 = 0). The basic result of singular perturbation theory is that for small 8 the 
critical manifold deforms smoothly into C8 ; compare with figure 8.1. Thus C8 is 
invariant under the solution flow to (8.13 ). Its linearization at (x, y) E C8 has an 
eigenvalue of 0(1) with eigenvector tangential to C~: and an eigenvalue 1/8 with 
eigenvector transverse to C~:. Thus for an initial condition slightly away from C~: 
the solution very rapidly diverges to infinity. Since Co is deformed by order 8, also 
C~: is ofthe form { (x, h~: (x)) I x E lR}. According to (8.13) the base point evolves as 

x = f(x, h8 (x)). 

Since h~: is smooth in 8, it can be Taylor-expanded as 

m 

h8 (x) = L 8j hj(X) + 0(8111 +1). 
j=O 

By (8.13) and (8.16) we have the identity 

8 uxh~:(x) f(x, h~:(x)) = h~:(x)- h(x). 

(8.16) 

(8.17) 

(8.18) 

https://doi.org/10.1017/9781009402286.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402286.009


8.2 The critical manifold 

y 

••••••• 

X 

Figure 8.1: Repulsive center manifold C8 . The motion on C8 is slow and the 
motion away from CF is fast. 

95 

Substituting into (8.17) and comparing powers of£ one can thus determine hi (x) 

recursively. To lowest order we obtain 

ho(x) = h(x), hi (x) = h'(x) f(x, h(x)) (8.19) 

and to order £ the base point is governed by 

x = f(x, h(x)) + £ oy f(x, h(x)) h'(x) f(x, h(x)). (8.20) 

Given the geometric picture ofthe center manifold, the stable (i.e. not runaway) 
solutions to (8.13) can be determined to any required precision. 

8.2 The critical manifold 

Our task is to cast (8.1) into the canonical form used in singular perturbation the­

ory. We set (XI, x2) = x = (q, v) E IR3 x V, y = v E IR3, 

and 

j(x, y) = (X2, y) E V X lR3 (8.21) 

g(x,y, E)= y-2K(X2)- 1 ((6rr/e2) [m(x2)Y- Fex(x)] 

-£ [3y 6(X2 · y)2 X2 + 3y4 (X2 · y)y]), (8.22) 

where y = (1 - x~)- 112 as before, Fex(x) = e(Eex(XI) + X2 x Bex(xJ)), and 
K(v) is the 3 x 3 matrix K(v) = 11 + y 2 v ® v with inverse matrix K(v)- 1 = 

11- v ® v. With this notation Eq. (8.1) reads 

X=j(x,y), EJ=g(x,y,£). (8.23) 
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We set h(x) = m(xz)- 1 Fex(x). Then for s = 0 the critical manifold, Co, is 
given by 

Co= {(x, h(x))l X E .!Pi.3 XV}= {(q, v, v)l m(v)v = Fex(q, v)}' (8.24) 

which means that, for s = 0, it is spanned by the solutions of the leading 
Hamiltonian part of Eq. (8.1). Linearizing at Co the repelling eigenvalue is domi­
nated by y-2K(xz)- 1 m(xz) which tends to zero as lxzl --+ 1. Therefore Co is not 
uniformly hyperbolic, which is one of the standard assumptions of singular pertur­
bation theory. 

To overcome this difficulty we modify g to g 8 , 8 small, which agrees with g 

on .!Pi.3 x {vllvl _:::: I - 8} x .!Pi.3 and which is constantly extended to values lvl :=:: 
I - 8. Thus for lxz(t)l _:::: I - 8 the solution to x = f, sj = g 8 agrees with the 
solution to x = f, sj =g. For sufficiently small s the modified equation then 
has a critical manifold C£ with the properties discussed in the example of section 
8.1. We only have to make sure that the modification is never seen by the solution. 
Thus, for the initial condition lv(O) I _:::: v, we have to find a 8 = 8 (v) such that 
I v(t) I _:::: I - 8 for all times. To do so, one needs the energy balance (8. 7). 

We consider the modified evolution with vector field (f, g 8) and choose the 
initial velocity such that lv(O) I _:::: iJ < I. For s small enough this dynamics has a 
critical manifold of the form v = h£(q, v) and lh8 (q, v)l _:::: CJ = CJ (8). We start 
the dynamics on C8 • According to (8.8), for all t :=:: 0, 

G 8 (q(t), v(t), h 8 (t)) _:::: G8 (0) = H(q(O), v(O))- s(e2 j6rr)(v(O) · h 8 (0)) 

_:::: Es(ii) + er/Jex (q(O)) + Eq. (8.25) 

We now choose 8 such that iJ _:::: 1 - 28. Since the initial conditions are on C8 , 

the solution will stay for a while on C£ until the first time, r, when I v( r) I = 1 - 8 
occurs. After that time the modification becomes visible. At time r we have, using 
the lower bound on the energy and (8.25), 

Es(v(r)) + e¢ _:::: H(q(r), v(r)) = G£(r) + s(e2 j6rr) y 4 (v(r) · h£(r)) 

_:::: Es(ii) + er/Jex (q(O)) + 2EC] 

and therefore 

Es(l- 8) _:::: Es(l- 28) + e (r/Jex (q(O))- ¢) + 2sq. 

Es(1 - 8) ~ 1/vfo for small8, which implies 

1 
./8 .::=:: cz + 4sq 

(8.26) 

(8.27) 

(8.28) 
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with c2 = 2e (c/Jex(q(O))- ¢).We now choose 8 so small that 1/0 > c2 + 1 and 
then t: so small that 4t:q < I. Then (8.28) is a contradiction to the assumption that 
lv(r)l =I- 8. We thus conclude that r = oo and the solution trajectory stays on 
C8 for all times. 

Equipped with this information we have for small t: the critical manifold 

v = h8 (q, v). (8.29) 

On the critical manifold the Schott energy is bounded and from the argument lead­
ing to (8.10) we conclude that Dirac's asymptotic condition holds on C~:. On the 
other hand, slightly off C~: the solution diverges with a rate of order 1 j t:. Therefore 
the asymptotic condition singles out, for given q(O), v(O), the unique v(O) on C~:. 

The motion on the critical manifold is governed by an effective equation which 
can be determined approximately following the scheme of section 8.I. We define 

h(q, v) = m(v)- 1 e(Eex(q) + V X Bex(q)). (8.30) 

Then, up to errors of order t:2, 

m(v)v = e (Eex(q) + v x Bex(q)) (8.3I) 

+ c (e2 j6rr) [y 2K(v) ( ( v · Vq )h + (h · \1 v)h + 3y 2 ( v · h)h) J . 

The physical solutions of (8.1 ), in the sense of satisfying the asymptotic condition, 
are governed by Eq. (8.31). Thus it, and not Eq. (8.1), must be regarded as the 
correct comparison dynamics to the true microscopic evolution equations (6.11). 
Note that the error accumulated in going from (8.1) to (8.31) is of the same order 
as the error made in the derivation ofEq. (8.1). 

Because of the special structure of (8.I ), on a formal level the final result (8.3I) 
can be deduced without the help of geometric perturbation theory. We regard 
m(v)v = e (Eex(q) + v x Bex(q)) as the "unperturbed" equation and substitute 
for the terms inside the square bracket, which means replacing v by h and v by 
h = (v · Vq)h + (h · Vv)h. While yielding the correct answer, one misses the geo­
metrical picture of the critical manifold and the associated motion in phase space. 

8.3 Tracking of the true solution 

From (6.11) we have the true solution q 8 (t), vE (t) with initial conditions q0 , v0 and 
correspondingly adapted field data. We face the problem of how well this solution 
is tracked by the comparison dynamics (8.I) on its critical manifold. Let us first 
disregard the radiation reaction. From our a priori estimates we know that 

(8.32) 
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which should be compared to 

r = u' m(u)it = e (Eex(r) + u X Bex(u)). (8.33) 

We switched to the variables r, u instead of q, v so as to distinguish more clearly 
between the true and comparison dynamics. 

Theorem 8.1 (Adiabatic limit, conservative tracking dynamics). For the Abra­
ham model satisfying the conditions (C), (P), and(!) let lei ::: e and s :S so be 
sufficiently small. Let r (t), u(t) be the solution to the comparison dynamics (8.33) 
with initial conditions r (0) = q0, u(O) = v0 . Then for every r > 0 there exist con­
stants c( r) such that 

(8.34) 

for 0 :S t :S r. 

ProofLet8(t) = lq 8 (t) -r(t)l + lv8 (t) -u(t)I.Convertingthedifferentialequa­
tions (8.32), (8.33) into their integral form, one obtains 

t t 

8(t) ::: 8(0) + C I ds8(s) + s I dsC(I + s(s + s)-2) 

0 0 
t 

::: 8(0) + sC(t +I)+ C I ds8(s). 

0 

(8.35) 

Since 8(0) = 0 by assumption, Gronwall's lemma yields the bound 8(t) ::: 
sCecr. D 

Theorem 8.1 states that, up to an error of orders, the true solution is well approx­
imated by the Hamiltonian dynamics (8.33). 

In the next order the comparison dynamics reads 

r =u, 

m(u)it = e (Eex(r) + u X Bex(r)) 

+ s(e2 j6n)[y4 (u · ii)u + 3y6 (u · it) 2 u + 3y4 (u · it)it + y 2ii] 
(8.36) 

restricted to its critical manifold C~:. Since the radiation reaction is proportional to 
s, the solution r(t), u(t) depends now on s, a dependence which is suppressed in 

our notation. Naively one would expect that improving the equation by a term of 
order s increases the precision to order s 2 , i.e. 

(8.37) 
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An alternative option to keeping track of the £-correction is to consider longer 
times, of the order .s - 1 r on the macroscopic time scale. Then the radiative effects 
add up to deviations of order one from the Hamiltonian trajectory. Thus 

(8.38) 

One should be somewhat careful here. In a scattering situation the charged par­
ticle reaches the force-free region after a finite macroscopic time. According to 
(8.37) the error in the velocity is then O(.s2), which builds up an error in the po­
sition of order .s over a time span .s- 1 r. Thus we cannot hope to do better than 
(8.38). On the other hand, when the motion remains bounded, as e.g. in a uniform 
external magnetic field, the charge comes to rest at some point q* in the long-time 
limit and the rest point q* is the same for the true and the comparison dynamics. At 
least, for an external electrostatic potential with a discrete set of critical points we 
have already established such behavior and presumably it holds in general. Thus 
for small .s we have q 8 (.s- 1 r) ~ q* and alsor 8 (.s- 1 r) ~ q*. Therefore, in the case 
of bounded motion, we conjecture that (8.38) holds for all times. 

Conjecture 8.2 (Adiabatic limit including friction). For the Abraham model sat­
isfying (C), (P), and (I) let q(t) be bounded, i.e. lq(t)l _:::: C for all t ::::_ 0, and 
.s _:::: .so. Then there exists (r(O), u(O), u(O)) E C8 such that 

sup lq 8 (t) -r(t)l = O(.s), 
t:;o-0 

where r (t) is the solution to (8.36) with the initial conditions given before. 

(8.39) 

In a more descriptive mode, the true solution q 8 (t) is £-shadowed for all times 
by one solution (and thus by many solutions) of the comparison dynamics. 

At present we are far from such strong results. The problem is that an error of 
order .s2 in (8.36) is generically amplified as .s2etfE:. Although such an increase 
violates the a priori bounds, it renders a proof of (8.39) difficult. We seem to be 
back to (8.34) which carries no information on the radiation reaction. Luckily the 
radiation correction in (8.36) can be seen in the energy balance. 

Theorem 8.3 (Adiabatic limit including friction). Under the assumptions of The­
orem 8.1 one has 

for t8 _:::: t _:::: r. Here (r(t), u(t)) is the solution to (8.36) with initial data r(t8 ) = 
q 8 (t~:), u(t~:) = 'lf(t~:), ziE:(t~:) = h~:(q 8 (t~:), v8 (t~:)) and t~: = .s 113. 

To achieve a precision of order .s2 , the initial slip in (7 .15) does not allow one to 
match the true and comparison dynamics at t = 0. One needs l·q·~:(t)l uniformly 
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bounded, which is ensured only for t :::: C £ 1/ 3, i.e. t :::: to with the arbitrary choice 
C=l. 

Proof Let us use the estimate (7.22) on the self-force and denote the error term 
by F(t). Then IF(t)l::::; C£2 for to::::; t. As in (8.7), 

d 
dt Gs (q 8 , V 8 , il) = / 8 (t) · V 8 - £ (e2 j6rr)[y4 (il)2 + y 6 (v8 • il)2 ] (8.41) 

and therefore 

(8.42) 
t +I ds(IF · vF;I + E(e2 j6rr)ly(vF;)4(il)2 

fE 

Since lvol, lui remain bounded away from 1, the y-factors are uniformly 
bounded, and it suffices to estimate the difference on the Hamiltonian level 
of precision. From Theorem 8.1 one has the bound I V 0 (t) - u (t) I ::::; c( r )£. 
Inserting (8.34) into (8.32) and (8.33), we obtain the same bound for the first 
derivative, lil(t)- u(t)l ::: c(r)£. Moreover It: ds IF(s)l::: Ct£2. Working out 
the differences in (8.42), one concludes 

IH(q 8 (t), v 8 (t))- H(r(t), u(t))l::::; C(t + c(t))£2 , (8.43) 

as claimed. D 

8.4 Electromagnetic fields in the adiabatic limit 

So far we have concentrated on the Lorentz force with retarded fields and have 
obtained approximate evolution equations for the charged particle. Such an ap­
proximate solution can be reinserted into the inhomogeneous Maxwell-Lorentz 
equations in order to obtain the electromagnetic fields in the adiabatic limit. 

As before, let (q 8 (t), v 8 (t)), t:::: 0, be the true solution. We extend it to q 8 (t) = 
q 0 + v0 t, vE(t) = v0 fort::::; 0. According to (4.31), (4.32) and using the scaled 
fields as in (6.8), one has 

t 

~ E(t) = - I ds(Y'Gt-s * Po(s) + atGt-s * j F;(s)) (8.44) 

-00 
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with p8 (x, t) = ecp8 (x- q 8 (t)), j 8 (x, t) = ecp8 (x- q 8 (t))'lf(t). Inserting from 
(2.I5) and by partial integration, 

t 

~E(x, t) =- f ds f d3 y 1 o(lx- yl- (t- s))V' p8 (y, s) 
...;8 4rr(t-s) 

-()() 

t 

-fdsfd3y I 2 o(lx-yl-(t-s)) 
4rr(t-s) 

-()() 

x[(y-x)· V'jF:(y,s)+jF:(y,s)] 

=-efd3y( I Y'cpF;(y-q 8 (t-lx-yl))v8 (t-lx-yl) 
4rrlx- Yl 

I + 2 vF;(t -lx- Yl)(l + (y -x) · V') 
4rrlx- Yl 

CfJE:(y - qF; (t- lx- y I))) . (8.45) 

In the same fashion 

I f I r;:B(x, t) = -e d3y V 8 (t- lx- Yl) x Y'cpF;(y- q 8 (t- lx- Yl)) . 
...;8 4rrlx- Yl 

(8.46) 

In the limit 8---+ 0 one has cp8 (x)---+ o(x) and, by Theorem 8.I, qF;(t)---+ r(t), 
vF;(t)---+ u(t), wherer(t) = q 0 + v0 t,u(t) = v0 fort :s 0. Wesubstitutey' = y­

qF;(t -lx- yl) with volume element det(dyjdy') = [1- 'lf(t -lx- yl) · (x­
y)flx- ylr 1• Then o(y') leads to the constraint 0 = y- r(t- lx- yl) which 
has the unique solution y = r Ctret); compare with (2.22). In particular the volume 
element det(dy jdy') becomes [1- ii · uCtret)r 1 in the limit, with ii = ii(x, t) = 
(x - r Ctred) / lx - r Ctred 1. 

We conclude that 

I - I -
lim r;: E(x, t) = E(x, t), lim r;: B(x, t) = B(x, t), (8.47) 
8-+0 v 8 8-+0 v 8 

where E, B are the Lienard-Wiechert fields (2.24), (2.25) generated by a point 
charge moving along the trajectory t r-+ r(t). The convergence in (8.47) is point­
wise, except for the Coulomb singularity at x = r ( t). 

8.5 Larmor's formula 

We want to determine the energy per unit time radiated to infinity and consider, for 
this purpose, a ball of radius R centered at qF; (t). At timet + R the energy in this 
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ball is 

1 
ER,qE(t) (t + R) = E(O) - 2 f 

[lx-q"(t)I:>:R} 

(8.48) 

using conservation of total energy. The radiation emitted from the charge at time t 
reaches the surface of the ball at time t + R, and the energy loss per unit time is 
given by 

d 
1R,£(t) = dt ER,q"(t) 

= J d3x 8(1x- q 8 (t)l- R) (~(n(x) · v~:(t)) (E(x, t + R)2 

+B(x, t + R)2) + E(x, t + R) · (n(x) x B(x, t + R))) 

= ~ R 2 f d2w ((w · v~:(t))(E(q~:(t) + Rw, t + R) 2 

+ B(q 8 (t) + Rw, t + R) 2) + 2E(q 8 (t) + Rw, t + R) 

· (w x B(q 8 (t) + Rw, t + R))) , (8.49) 

where n(x) is the outer normal of the ball and !WI= 1, with d2w the integra­
tion over the unit sphere. Equation (8.49) holds for sufficiently large R, since we 
used {xl lx- q~:(t)l ::::_ R} n {xl lx- q~:(t + R)l :S c:Rrp} = 0, which is the case 
for (1- v)R ::::_ c:Rrp. 

Equation (8.49) still contains the reversible energy transport between the con­
sidered ball and its complement. To isolate that part of the energy which is irre­
versibly lost one has to take the limit R --+ oo. For this purpose we first partially 
integrate in (8.45), (8.46) by using the identity 

y-x ( (y-x)·if)-l 
Vcp = Vycp- 1 + (v~: · Vy)cp 

IY -xl IY -xl 
(8.50) 

at the argument y - q 8 (t - IY - x 1). For large R the fields in (8.49) then become 

RE(q~:(t) + Rw, t + R) ~ .;£ J d3y 4: CfJ~:(y- q~:)[- (1- w. v~:)- 1 il 

(1 ~ 8)-2(~ . 8)( 8 ~)J I 
- -W·V W·V V -W t+w·(y-q"(t))' 

(8.51) 
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RB(q~:(t) + Rw, t + R) ~ ~ f d3y 4: CfJ~:(y- q~:)[- (1- w · v~:)- 1 (w x il) 

-(1 - w. V 0 )-2 (w. il)(w X V 8 )] I -
t+w·(y-q"(t)) 

= w x RE(q 8 (t) + Rw, t + R), (8.52) 

where we used the property that t + R- lq 8 (t) + Rw- yl = t + w · 
(y- q 8 (t)) + 0(1/ R) for largeR. Inserting in (8.49) yields 

lim lR.~:(t) = l~:(t) 
R--+oo 

=- lim J d2w(I- w. v8 (t))(RE(q 8 (t) + Rw, t + R)) 2 (8.53) 
R--+oo 

= -8 J d2w(I - w · v8 (t)) 

X ([ 4: f d3 ycp~:(Y- q 8 )(1- w · v8 )-2 (w · il) r 
- [4: J d3ycp~:(y- qs)(l - w. vs)-Iil 

+ (1- w · v~:)-2 (w · il)v~:] 2) I _ . (8.54) 
t+w·(y-qE(t)) 

[ 8 (t) is the energy radiated per unit time at 8 fixed. As argued before, it is indeed 
of order 8. From the expression (8.53) it can be seen that l 8 (t) :S 0. 

Equation (8.54) is not yet Larmor's formula. To obtain it we have to go to 
the adiabatic limit 8---+ 0. Then q 8 (t)---+ r(t). Since cp8 (x)---+ o(x), we have 
y ~ q 8 (t) ~ r(t) in (8.54). From the d3 y volume element we get an additional 
factor of (1- w ·lf)- 1. Thus 

lim 8-I l~:(t) = l(t) = -e2 J d2w(I- w · u(t))(4rr(1 - w · u(t))-3) 2 
~:--+0 

x ( (w. u(t))2 - [(1 - w. u(t))u(t) + (w. u(t))u(t)]2) 

= -(e2 /6rr)[y4u(t)2 + y 6(u(t). u(t))2 ] 

(8.55) 

which is the standard textbook formula of Larmor. Note that the same energy loss 
per unit time was obtained already in (8.6) using only the energy balance for the 
comparison dynamics. 
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Starting from (8.49) one could alternatively first take the limit s- 1 /R,~:(t)---+ 
IR,o(t), which is the change of energy in a ball of radius R centered at the particle's 
positionr(t) in the adiabatic limit As before the irreversible energy loss is isolated 
through 

lim IR o(t) = I(t). 
R---+oo ' 

(8.56) 

The energy loss does not depend on the order of limits, as it should be. 
We recall that in Larmor's treatment the trajectory of the charge, taken as a 

point charge, is prescribed. In our case the charged particle is guided by external 
fields and interacts with its own Maxwell field, which is physically somewhat more 
realistic. Since the charge distribution is extended, by necessity, Larmor's formula 
holds only in the adiabatic approximation. 

Notes and references 

Section 8 

The radiation damped harmonic oscillator is discussed in Jackson (1999) with a 
variety of physical applications. The asymptotic condition was first stated in Dirac 
(1938). It has been reemphasized by Haag (1955) in analogy to a similar condition 
in quantum field theory. 

Section 8.1 

Singular, or geometric, perturbation theory is a standard tool in the theory of dy­
namical systems. Sakamoto (1990) presents the theory at the level of generality 
needed here. We refer to Jones (1995) for a review with many applications. In the 
context of synergetics (Haken 1983) one talks of slow and fast variables and the 
slaving principle, which means that fast variables are enslaved by the slow ones. 
Within our context this would correspond to an attractive critical manifold. The 
renormalization group flows in critical phenomena have a structure similar to that 
discovered here: the critical surface corresponds to critical couplings which then 
flow to some fixed point governing the universal critical behavior. The critical sur­
face is repelling, and slightly away from that surface the trajectory moves towards 
either the high- or low-temperature fixed points. 

Section 8.2 

Particular cases have been studied before, most extensively the one-dimensional 
potential step of finite width and with linear interpolation (Haag 1955; Baylis and 
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Huschilt 1976; Carati and Galgani 1993; Carati et al. 1995; Blanco 1995; Ruf and 
Srikanth 2000), head-on collision in the two-body problem (Huschilt and Baylis 
1976), the motion in a uniform magnetic field (Endres 1993), and motion in an 
attractive Coulomb potential (Marino 2003). These authors emphasize that there 
can be several solutions to the asymptotic condition. From the point of view of 
singular perturbation theory such behavior is generic. If 8 is increased, then the 
critical manifold is strongly deformed and is no longer given as a graph of a func­
tion. For specified q (0), v(O) there are then several v(O) on C8 , which means that 
the solution to the asymptotic condition is not unique. However, these authors fail 
to emphasize that the nonuniqueness in the examples occurs only at such high 
field strengths that a classical theory has long lost its empirical validity. At mod­
erate field strengths the worked-out examples confirm our findings. The general 
applicability of singular perturbation theory was first recognized in Spohn (1998). 

Sections 8.3, 8.4, and 8.5 

The discussion is adapted from Kunze and Spohn (2000a, 2000b). 
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