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We study the two-dimensional steady-state creeping flow in a converging—diverging
channel gap formed by two immobile rollers of identical radius. For this purpose,
we analyse the Stokes equation in the streamfunction formulation, i.e. the biharmonic
equation, which has homogeneous and particular solutions in the roll-adapted bipolar
coordinate system. The analysis of existing works, investigating the particular solutions
allowing arbitrary velocities at the two rollers, is extended by an investigation of
homogeneous solutions. These can be reduced to an algebraic eigenvalue problem,
whereby the associated discrete but infinite eigenvalue spectrum generates symmetric
and asymmetric eigenfunctions with respect to the centre line between the rollers. These
represent nested viscous vortex structures, which form a counter-rotating chain of vortices
for the smallest unsymmetrical eigenvalue. With increasing eigenvalue, increasingly
complex finger-like structures with more and more layered vortices are formed, which
continuously form more free stagnation points. In the symmetrical case, all structures are
mirror-symmetrical to the centre line and with increasing eigenvalues, finger-like nested
vortex structures are also formed. As the gap height in the pressure gap decreases, the
vortex density increases, i.e. the number of vortices per unit length increases, or the length
scales of the vortices decrease. At the same time the rate of decay between subsequent
vortices increases and reaches and asymptotic limit as the gap vanishes.

Key words: low-Reynolds-number flows

1. Introduction

In this work, the Stokes equation for the flow between two immobile cylinders is
solved analytically. Such a configuration has similarities to printing processes, where
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the two rollers are rotating. The differentiation and interpretation of the solutions with
homogeneous and inhomogeneous boundary conditions are central to the present case.
The inhomogeneous boundary conditions, i.e. in particular the no-slip condition on the
impermeable surface of the rotating rollers, together with the Stokes equation, lead to an
analytical solution that describes the flow between the rollers. This case has been discussed
at length in the literature and details can be found below. However, it is interesting to
note that new and interesting solutions can be constructed for the Stokes equation that
are based solely on homogeneous boundary conditions. These describe highly complex
flow patterns, which form the core of the present work. The homogeneous solutions can
be understood as the response to a disturbance in the far field, i.e. far away from the nip
between the two rollers.

Jeffery (1922) may have been the first to transform the Stokes equation into a bipolar
coordinate system, which allows the two roller surfaces to be represented as constant
coordinate lines. He also constructed the first solutions. Another specific solution for
the problem at hand has also been published by Miiller (1942). There, inhomogeneous
solutions for the flow induced by two equally large co- and counter-rotating cylinders
are presented. By the superposition principle of linear systems, these can be combined
to obtain a solution for arbitrary rotational speeds of the cylinders. For this reason, the
discussion of these particular solutions is skipped within this work and we restrict our
focus to the solutions of the homogeneous problem.

Pitts & Greiller (1961) analysed the flow between two cylinders partially immersed in
liquid experimentally and then theoretically, neglecting the inertia term. They also found
the position of the free stagnation points for fully immersed cylinders. A further specific
solution for the Stokes flow in bipolar coordinates is also given by Wakiya (1975b) in
the second part of his three-part work. In it, he first provides a general solution for the
behaviour of the Stokes flow in the vicinity of two cylinders. He starts from the solution
of the biharmonic equation in the bipolar coordinate system given in Jeffery (1922). He
also assumes that the cylinders cannot rotate independently. A more general approach to
the problem is taken by Dorrepaal & O’Neill (1979), who solved the biharmonic equation
of the streamfunction using ‘matched asymptotic expansions’. The following papers also
consider the Stokes flow in the bipolar coordinate system, but with different boundary
conditions. In the first part of Wakiya (1975a) the ‘flow along a plane with a projection or
a depression’ is considered and in the third part (Wakiya 1978) the Stokes flow of steadily
moving, rotating cylinders and of a cylinder eccentrically rotating within another cylinder
is investigated. The latter is also investigated by Kazakova (2020). Finally, Meleshko &
Gomilko (2000) analysed the Stokes flow within a semicircle.

The solution of the problem with homogeneous boundary conditions leads to an
eigenvalue problem for the sought-after streamfunction, which can only be solved
numerically. The resulting eigenvalues generate various associated flow patterns, which
are characterised by vortices rotating alternately in opposite directions. Several results
showing such viscous vortices are collected in the monograph by Shankar (2007),
including also the works on inhomogeneous boundary conditions of Jeffery (1922) and
Dorrepaal & O’Neill (1979). A very well-known phenomenon of viscous vortex formation,
and related to the present flow, is that in a corner with a moving wall, which was described
by Moffatt (1964). Moffatt shows that a cascade of increasingly smaller counter-rotating
vortices forms between two rigid walls at an opening angle of less than 146° within the
corner. We will see later that the leading mode for the present flows is comparable to
the Moffatt modes. Similar to Moffatt’s approach the emergence of viscous vortices in
the cusp between two touching cylinders was investigated in Schubert (1967). The recent
work of Dormy & Moffatt (2024) utilised the same approach to solve the flow in this cusp
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Figure 1. Coordinate lines of the BCS for an arbitrary c. The blue and red lines represent constant n and &
lines respectively. The red crosses at (x, y) = (0, ££¢) mark the focal points, where all constant & lines meet. In
black, constant 1 curves are shown that correspond to two equal sized rollers of radius R, separated by a gap of
2h and whose midpoints are marked by black crosses.

when the cylinders are rotating. These works differ from the present work in the utilised
coordinate system, where we are not able to investigate the limiting case of touching
cylinders directly and the coordinate transform of Schubert (1967) and Dormy & Moffatt
(2024) is restricted to this case.

As mentioned above, in this work we employ the stationary Stokes equation via the
biharmonic equation of the streamfunction in bipolar coordinates, which map the surfaces
of the rollers to constant coordinate lines. By means of a further transformation, see
e.g. Bluman & Gregory (1985), the streamfunction is converted into a linear differential
equation with constant coefficients in the bipolar coordinate system. The general solution
of this differential equation is derived in the Appendix A. When solving the two-roller
printing problem, we distinguish, as indicated above, between an inhomogeneous and a
homogeneous boundary value problem. For the inhomogeneous boundary conditions, the
speeds at the two roller surfaces are specified independently of each other, as results for
this case were already derived by Jeffery (1922) and Miiller (1942), it is not repeated
here. For the problem with homogeneous boundary conditions the rollers are virtually at
rest, that is, immobile and impermeable. In § 3, the homogeneous problem is converted
to an algebraic eigenvalue problem using the general solution from the Appendix A. The
algebraic eigenvalue problem is solved numerically. The flow problem with homogeneous
boundary conditions is then analysed and illustrated in detail in §§ 3.2 and 3.3, e.g. by
plotting streamlines and by investigating three different types of stagnation points, so that
the behaviour for varying eigenvalues and variable gap height becomes apparent. The
analysis of the vortex spacing and decay of their relative intensity is conducted in § 3.4
Finally, the results are discussed in §4 and classified in relation to the aforementioned
works.

2. Formulation of the Stokes equation using bipolar coordinates

For the problem at hand, the use of a bipolar coordinate system (BCS), as shown in
figure 1, is appropriate, since here the surfaces of the rollers are described by constant
coordinate lines of the 1 coordinate. This simplifies the prescription of arbitrary boundary
conditions (in our case homogeneous boundary conditions) on the roller surfaces and
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allows an exact solution to be found. Two different solution branches with respect to the
& coordinate can be identified. These display a flow that either decays from left to right,
i.e. in the positive £-direction, denoted with subindex /, or from right to left, denoted with
subindex r. Through superposition of solutions, other combinations can be constructed, for
example streamfunctions that are even (e) or odd (o) in & with respect to the nip at £ = 7,
this form is also included in Appendix A table 3 but not further discussed in this work.
The latter procedure can also be used for the n coordinate. These solution branches are
labelled as symmetric (s), with an odd streamfunction with respect to 1, and asymmetric
(a). This results in a total of four solution types, which in principle can be superposed due
to the linearity of the problem. In this section, the bipolar coordinates are first defined and
then the Stokes equation is transformed into the BCS. Finally, the boundary conditions for
the homogeneous solution are defined.

2.1. Bipolar coordinates

In this work, the BCS is rotated 90° anti-clockwise compared with the usual definition, see
Happel & Brenner (1981, p. 498) or Moon & Spencer (1971, p. 89), in order to comply with
the usual convention of the flow direction from left to right. This results in the following
definition in complex representation:

X +1y = —c cot (%(S + in)) , 2.1)

where c is defined below. Here, z = x + iy represent the Cartesian coordinates and ¢ =
& + in denote the bipolar coordinates. The limits for the coordinates are —0o <1 < 00
and 0 <& <2m. At (x, y) = (0, ¢) and (x, y) = (0, —c) all constant £ lines meet, at the
same time these two coordinate points represent the positions 1 = oo in the upper half and
n = —oo in the lower half. Equation (2.1) can be used to find explicit expressions for the
Cartesian coordinates as a function of the bipolar coordinates
yo_—csing o csihn 2.2)
coshn —cos & coshn —cos &
The Jacobian determinant J (see Bluman & Gregory 1985) plays an important role in
the further course of this paper and is therefore already presented here

_dz
=%

Half the gap width 4 and the radius of the rollers R serve as the specified length scales,
see figure 1. The centre of the rollers is yrc =/ + R and the surfaces of the two rollers
are each constant n coordinate lines, where 7g stands for the upper roller and 7 for the
lower roller. This also defines the boundary conditions on constant n coordinate lines,
which allows a comparatively simple construction of the solution. According to Happel &
Brenner (1981, p. 498), the centre point and the roller radius of a constant 1 coordinate
line are

C

J (2.3)

~ cosh7y —cos&’

yrc =ccoth(n) =h + R, 2.4)
and
R=— "% 2.5)
| sinh(n)|’ '

From (2.4) and (2.5) the constant 41 for the surfaces of the rollers with same diameter
can be determined as a function of the dimensionless gap ratio h/R, as well as the
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dimensionless focal point ¢/R
L h
no = cosh z +1]). (2.6)

2.2. Transformation of the stokes streamfunction equation to bipolar coordinates

The stationary Stokes equation in dimensionless variables reads
Vp=Au, 2.7)

and can be represented by the biharmonic equation of the streamfunction (see Happel &
Brenner 1981, p. 60), whose curl determines the velocities. The connection between the
velocity components and streamfunction in the two-dimensional BCS is
10 10
=, L0 2.8)
J an J o0&
The biharmonic equation
A%y =0. (2.9)

is obtained by taking the curl of (2.7) to eliminate the pressure. In order to represent the
biharmonic equation of the streamfunction, see (2.9), in the BCS as a linear differential
equation with constant coefficients, it is first represented as the product of the Jacobian
determinant, see (2.3), and a modified streamfunction @ (&, n) (see Bluman & Gregory
(1985)

vE . m=JPE, n). (2.10)

The biharmonic equation in terms of the modified streamfunction @ (&, n) is then
obtained by substituting (2.10) into (2.9) and expanding the biharmonic operator in the
BCS

5 1 [a2 a2y 22 92
A === |l=—=+-— 2| — — — 1D, n)=0. 2.11
YE =1 (a§2+an2) + (agl an2>+ & ) @.11)
The general product ansatz solutions for the above (2.11) are listed in Appendix A.

2.3. Formulation of boundary conditions

In order to be able to determine the constants present in the general solution (see
Appendix A), the following homogeneous boundary conditions are used as a basis. The
kinematic boundary condition of the impermeable wall applies

un(, n=mno) =un&, n=-no) =0, (2.12)
as well as a no-slip condition with zero velocities
ug(§, n=mno) =ug (&, n=-no) =0. (2.13)

To determine the behaviour of the solution in & and since the BCS is 2w -periodic,
periodic boundary conditions could be used. However, as the focus is currently on the
nip, we will not pursue this further here.

3. Solution of the homogeneous Stokes problem, eigenvalues and vortex solutions
Solutions to the Stokes problem with non-vanishing velocities of the rollers, i.e. a
non-vanishing right-hand side in (2.13) can be superimposed with solutions of the
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homogeneous problem, which are presented within this section. The so-constructed
patterns can be seen as the response of the flow to a disturbance in the far field, i.e. far
away from the nip between the rollers. For this purpose, the solution path /I from table 3
of Appendix A is selected: it can be shown that the general solutions of the solution
paths I and /I coincide. Furthermore, the general solutions of the solution paths /II and
IV only provide the trivial solution based on the given homogeneous boundary (2.13).
Accordingly, the following streamfunction is used with f/. and g4/ as defined in table 3
in Appendix A:

vE ) =JED[fiE )+ fr&a)][gan @) + g (n; @)]. (3.1)

For the eigenvalues still to be determined « € C \ {—i, —1, 0, 1, i} applies. The excluded
values are required to construct the particulate solutions, which correspond to a non-zero
rotation of the rollers.

3.1. Determination of the eigenvalues

Inserting the homogeneous boundary conditions from (2.13) into the streamfunction from
(3.1) and rearranging leads to the following four equations:

0=A(x+ 1) sinh(( 4+ 1)ng) + C(x — 1) sinh((@ — 1)ng), (3.2a)
0= B(x+ 1) cosh((a + 1)ng) + D(a — 1) cosh((ox — 1)n9), (3.2b)
0= A cosh((@ 4+ 1)n9) + C cosh((a — 1)no), (3.2¢)
0= B sinh((« + 1)no) + D sinh((o — 1)no). (3.2d)

It is immediately visible that this system of four equations can be decoupled into two
two-equation systems, leading to two independent solutions. Equations (3.2a) and (3.2¢)
result in a relation between integration constants A and C and an equation to determine
the discrete eigenvalues as

_cosh((a + Dno)
cosh((a — 1)no)
0 = sinh(2ang) + « sinh(2n9). (3.3b)

A, (3.3a)

The streamfunction of this solution branch (contribution g, in (3.1)) is even in the 5
coordinate and leads to an asymmetrical flow. Therefore, it is labelled with the index a.
On the other hand, the second solution branch, specified by (3.2b), (3.2d), result in

_ sinh((a 4 1)1n9)

sinh((a — 1)n9)
0 =sinh(2ang) — a sinh(2ng). (3.4b)

B, (3.4a)

For this solution the streamfunction (contribution gg in (3.1)) is odd in 7 and leads to
symmetrical flow patterns. Therefore, it is labelled with the index s. These two solutions
lead to different eigenvalues and either of the branches can be superposed with any
solution (in particular the trivial solution, i.e. B=D =0 or A= C =0) for the other
branch.

The eigenvalues o = o, 4+ ie; are determined numerically by first splitting (3.3b) (or
(3.4b)) into its real and imaginary parts (for the determination of the a eigenvalues the
sign of the first term is positive, for the s eigenvalues it is negative)

=+ sinh(2, o) cos(2a;ng) + o sinh(2n9) =0, (3.5a)

+ cosh(2a,10) sin(2ano) + @ sinh(2n0) = 0, (3.5b)
1020 A19-6


https://doi.org/10.1017/jfm.2025.10644

https://doi.org/10.1017/jfm.2025.10644 Published online by Cambridge University Press

Journal of Fluid Mechanics

h/R=0.01 h/R =0.005 h/R =0.0025

asym. (a) o 8.0152 4 14.8961 11.294 + 21.064i 15.944 + 29.788i
oy 11.028 4+ 37.902i 15.556 4 53.582i 21.971 + 75.763i
a3 12,6134+ 60.411i  17.796 + 85.41  25.139 + 120.75i

sym. (s) oy 9.8456426.5251 13.884 + 3751  19.606 + 53.0251
ay 11.909 + 491811 16.802 + 69.526i 23.733 + 98.306i
a3 13.199 +71.6111  18.625 4 101.23i  26.309 + 143.14i

Table 1. Numerically calculated eigenvalues.

which can be reshaped to

sinh(2nq)
Y — L 3.6
cos(2ejno) = Far sinh(2et,10) (3.6a)
inh(2
sin(2a;ng) = Fa; M. (3.6b)
cosh(2a;19)

Solving (3.6a)*+ (3.6b)> =1 reveals the same relation between the imaginary and real
parts of the eigenvalue, valid for both solution branches and all modes n € N \ {0}, namely

o ::I:—COSh(zar’nm)) I —sinh(2n0) ’ 3.7
i sinh(2n0) " sinhaty.m0) ) '

However, for the numerical determination of the nth eigenvalue it proved to be more
suitable to compute the relation between its imaginary and real part solely from (3.5a),
resulting in

1 inh(2
a: o, =— +cos™! M +2m—mw+m ), (3.8a)
' 2770 smh(277005r,n)
1 _1 [ &, sinh(2n9)
dia=— (£ 22 ) 42 . 3.8b
55 2no( €0 (sinhanoar,n>>+ "”) (380)

This relation is then inserted into (3.5b), which has exactly one root if the sign in front

of cos™! is chosen as + in (3.8a) or (3.8h) respectively, and solved numerically for
or. For any eigenvalue «, the conjugate and negative values —oy,, @,, —@, are also
valid eigenvalues. It can be shown that, in reference to the eigenvalue with Re(«;,) > 0,
Im(e;;) > 0, these combinations lead to phase shifts, scalings and transformations from
one solution branch to another. It is therefore sufficient to investigate only those
eigenvalues positioned in the first quadrant. In table 1 the first three eigenvalues for both
the asymmetric and symmetric solution branches are displayed for three different ratios of
gap width to roller radius /#/ R, whose relation to ng is given by (2.6).

3.2. Solutions for the four flow patterns

After one specific eigenvalue is determined and thereby the behaviour of the correspondlng
eigenmode in 1 as well, we still need to specified how to choose the constants E and F
occurring in (3.1). Notice how f; decays exponentially for Im(«) > 0, while & is passing
from O to 2. Therefore, f; and f; control the behaviour of the eigenmode to either decay
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from left to right (index I), in which case F= 0, or to decay from right to left (index r),

in which case E = 0. Their contribution to the solution is based on the location of the
disturbance inducing the flow. Combining all multiplicative constants in a single complex
value s the final form of the streamfunction is obtained as

v, n; a)l/r,a/s =sJ(§, n)Fl/r@; @)Gqs(n; @), (3.9

which allows for four distinct solution branches, depending on which behaviour in & or n
is displayed

Fi(&; o) =&, (3.10a)

FrE o) =e 6, (3.10b)

Galn: @) = cosh((x + 1)n) B cosh((ax — 1)n) ’ (3.100)
cosh(( 4+ 1)ng)  cosh((a — 1)ng)

G o) = sinh((o + 1)7) _ sinh((a — 1)n) (3.10d)

sinh((a + 1)ngg)  sinh((a — 1)ng)

In the following sections further investigations of the solutions are carried out for
Re (Y, 4) and Re(y; ) and restricted to eigenvalues from the first quadrant. The obtained
conclusions can be transferred to the r solution branches by reflection & =2m — &.

3.3. Characteristic flow patterns

Figure 2 shows the constant streamlines of vy , for the first three asymmetric eigenvalues
at a ratio h/R =0.01. The zero iso-contours are shown in black, and blue and red
curves denote negative and positive iso-contours, respectively. For the first eigenvalue in
figure 2(a), vortices with alternating directions of rotation form, which occupy the full
channel width. The magnitude of the streamfunction decreases from left to right; the decay
factor is investigated in § 3.4. Stagnation points only form on the walls.

For the second eigenvalue in figure 2(b), two vortices of the same rotation direction
form, which are stretched finger-like towards the right side of the channel and protrude
into the neighbouring vortex structure. In addition, the vortex density, i.e. the number of
vortices per unit length, increases compared with the first eigenvalue.

The third eigenvalue in figure 2(c) shows that the tendency towards a ‘finger-like’ flow
continues. As with the second eigenvalue, strongly elongated vortices are formed in the
same direction at the rollers. Towards the right side of the gap between the rollers, these
vortices are deformed in a ‘stepped’ manner and push under the next vortex. Again, this
results in ‘finger-like’ flow structures. The number of these steps remains constant along
the horizontal axis. The vortex density continues to increase with increasing eigenvalue.

To provide a better understanding of how fast the intensity of these vortices decreases,
the absolute value of the streamfunction v , along n =0 is displayed in figure 2(d) for
all three modes. The segments of alternating signs are displayed as red (positive) and
blue (negative) lines (due to the logarithmic representation and finite resolution, the zero
points are not explicitly shown). The slowest decay is observable for the first mode, but
even here after the third zero crossing the relative intensity decreased by more than five
orders of magnitude. Therefore, experimental observation appears to be possible only for
a small number of these vortices. Furthermore, it is visible that the intensity of the higher
modes is decreasing extremely fast and detection of these modes in experiments would be
highly unlikely.

The same analysis is repeated in figure 3 for the constant streamlines of vy ¢ for the
first three symmetric eigenvalues at a ratio /R = 0.01. First, it can be seen that there is a
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Figure 2. Plots of constant streamlines of the streamfunction ; , around £ = 7 for increasing o, and 1/R =
0.01. (a) oy =8.0152 + 14.896i, (b) ap = 11.028 + 37.902i, (c) a3z =12.613 + 60.411i, (d) Decay of |y 4|
along n =0.

horizontal separation line in the flow. This causes several free stagnation points to occur
in the flow along the horizontal dividing line. Above and below the horizontal dividing
line, vortices form with alternating direction of rotation. The streamfunctions decrease in
magnitude towards the right side of the gap. As observed for the asymmetrical solution
branch the vortices are oriented towards the right.

For higher eigenvalues, a finger-like flow results, similar to the asymmetric flow,
whereby, in contrast to the asymmetric flow, no central vortex forms on the horizontal
axis of symmetry. The vortex density increases with increasing eigenvalues. A schematic
representation of the three different types of stagnation points arising in the flow is
depicted in figure 4. Stagnation points occur at extrema of the streamfunction, which can
be true minima/maxima (left), saddle points (middle) or saddle points at a zero iso-contour
(right). In figures 5(a) and 5(b) a zoom into two distinct areas of figures 2(b) and 3(b) is
visible. On the one hand, the transition of the wall-bound vortices into the elongated finger
structure can be observed, and on the other hand, the three different types of stagnation
points from figure 4 are clearly recognisable. In figure 5(a), the visible streamlines
imply a stagnation point at the saddle points of co-rotating streamlines (approximately
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Figure 3. Plots of constant streamlines of the streamfunction v; ¢ around & = s for increasing o, and i/R =
0.01. (a) a1 =9.8456 +26.525i, (b) ap = 11.909 +49.181i, (c) a3z =13.199 4 71.611i, (d) Decay of | s|

OO0 OC

Figure 4. Depiction of three different kinds of stagnation points.

x ~0.006, y ~ £0.0018), represented by round markers. In addition, the formation of the
elongated, ‘finger-like’ vortex structures can be recognised, which encloses a single vortex,
whose centre of rotation is marked by a cross. In addition to these stagnation points, the
symmetric solution branch, shown in figure 5(a), exhibits an additional saddle point with
a change of sign. At this location a free stagnation point forms in the flow, marked by a
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Figure 5. Enlargements of figures 2(b) and 3(b). (a) ¥ 4 for —0.0128 < x < 0.0128, (b) ¥ ¢ for
—0.0128 < x < 0.0128

square marker. Finally, two crosses represent the approximate locations of the centres of
rotation of the wall-bound vortices.

3.4. Spacing and decay of the vortex chain

To conclude the analysis of the identified flow patterns, this section investigates the
distance between two consecutive vortices, as well as how fast their relative intensity
decays. First, the n-velocity component, according to (2.8), and its derivative with respect
to & are constructed

—— . sin(§)
pit.afs s 05 o) = —s€ TGy (7; ) (’“” ~ cosh(n) — Cos(§)> - Gl
ey, ;
u,g;a/s (&, n: an) = —Sela"@_n)Ga/s(n; o) (3.11b)

( ) iay, sin(§) 1 — cosh(n) cos(&) )
X | —o, — + .
" cosh(n) —cos(§)  (cosh(n) — cos(£))?

The integration constant s and Gg/(n; ) are merely constant complex prefactors
when evaluating (3.11a) and (3.11b) along a constant 7 line, e.g. n = 0. Hence, they merely
cause a phase shift € and scaling by a real factor. For the symmetric solution branch
the velocity vanishes along n = 0 and the analysis could be carried out e.g. at n = 1¢/2,
however, the overall spacing and decay behaviour is unaffected for higher modes and the
symmetric branch. Additionally, in the gap region 7/2 <& < 3w /2 and for sufficiently
large eigenvalues |o; |, |y | > 1 the parenthesis in (3.11a) and (3.115) is almost constant
and the equations are dominated by the complex exponential function. We therefore obtain
the following proportionalities:

un;l,a/s(ga 0; an) o ei(an(é—n)+e)’ (3.12a)
Uy .
%(5’ 0; o) o e’(an(%‘*ﬂ)ﬁ‘@‘ (3.12b)

Now, by finding the roots of (3.12a) in &, the approximate locations & of vortex centres
are obtained and the locations &4 of velocity maxima by repeating the same for (3.12b).
The distance d between consecutive vortex centres or velocity maxima is then computed
by forming the difference of subsequent locations. As the behaviour of both quantities is
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Figure 6. Decay factor k from (3.14) displayed as a function of //R for the asymmetric and symmetric
solution branches and the first three eigenvalues.

dominated by the complex exponential function, this results in the same value of

d(oy) =150/+,m+1 — &0/ 4.m| =~ (3.13)

rn
Additionally, the decay rate k can be computed from the relative magnitude of the velocity
at two consecutive velocity maxima. Using the approximate relation (3.12a), this results in

ei (o (E+,m+l —7)+€)

_ %

unE+.m+1, 05 o) T G.14)

un(é—l—,m, 0; o)

~
~

k(otn) =

ei (otn (g .m—70)+€)

for the approximate distance d between two consecutive vortices in £ and the factor &,
denoting the decay in their relative intensity.

The quantities displayed in (3.13) and (3.14), associated with the nth eigenmode, are
functions of the corresponding eigenvalue, which ultimately depends on the gap ratio
h/R. Following the procedure given in § 3.1, these eigenvalues can be determined in the
limit /R — 0. In figure 6 this analysis is carried out for the decay factor k given by
(3.14) for both the asymmetric and symmetric solution branches and the first three modes
n=1,2,3. The most slowly decaying mode for all gap ratios is the first mode of the
asymmetric solution branch. Furthermore, the decay factors of both branches and for all
modes approach an asymptotic limit as #/R — 0. As the first eigenmodes display the
slowest decay, they dominate the behaviour of the solution. The two limiting values for the
first mode in each branch are

~ 357.7,

lim R ~ 4952. (3.15)
h/R—0 k(o 1)

k(as,1)

The n + 1th mode decays approximately two orders of magnitude faster than the nth
mode, in both solution branches.

Similarly, one can examine the number of sign changes in (3.11a), where each sign
change corresponds to a vortex. Therefore, the total number of vortices Nygper in the
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Figure 7. Number of vortices present in the domain.
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Figure 8. Iso-contours of v , at the critical radius and slightly below for phase arg(s) =2.3672. (a) 1/R =
0.5342, (b) h/R = 0.5289.

domain equals the number of sign changes. In figure 7 Re(uy.14/5(&,0; aq,n)) and
Re(uy;1,a/5(§, 10/2; as,n)) are evaluated numerically and the minimum number of sign
changes, occurring over all phases arg(s) € [0, ], as & passes from O to 27, is counted.
First, it becomes evident from the slopes in the limit 2/ R — 0 in figure 7 that the number

of vortices increases as
B\~ A
Nyortex X E or |oy| o E . (3.16)

Second, it is immediately visible that the first asymmetric mode possesses the fewest
vortices inside the domai(n. Additionally, it is determined that there exists a critical ratio

(Sl

— ~0.5342, arg(s)cqri &~ 2.3672, 3.17)

crit
below which more than one vortex arises for all modes and all solution branches. Up to
the critical ratio the most dominant solution branch may exhibit one single global vortex,
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as displayed in figure 8(a). Below the critical ratio, #/R = 0.99(h/R); in figure 8(b),
an additional vortex arises on the right side of the gap. For decreasing ratios additional
vortices will form.

4. Conclusion

In this paper, the stationary Stokes flow between two immobile cylinders is investigated
using a streamfunction approach. Following Bluman & Gregory (1985), the biharmonic
equation for the streamfunction is transformed into a linear differential equation with
constant coefficients in the BCS. Then, the general solution for the streamfunction in
bipolar coordinates is derived, see Appendix A.

The focus of the present work then lies in finding solutions to the Stokes problem using
homogeneous boundary conditions, in which case the rollers are defined as stationary
impermeable walls. This leads to an eigenvalue problem, which is constructed analytically
and then solved numerically. The eigenvalue problem results in a division of the flow
pattern into asymmetric and symmetric flow, describing the symmetry of the velocity
fields around n = 0. Additionally, the streamfunction can be constructed so that it exhibits
a decaying behaviour of the flow from left to right or right to left. Combining the
behaviour in &£ and 5 a total of four different solution paths are identified, as summarised
by (3.9).

All four solution branches demonstrate the formation of viscous vortices in the nip,
similar to the corner vortices first observed by Moffatt (1964). Moffatt describes that, for
smaller opening angles between two rigid plates, the number of vortices in the corner
increases. This behaviour is similar to what is observed in this work for a reduction of the
gap ratio, where the vortex density, i.e. the number of vortices per unit length, increases
with decreasing gap ratio 4/R and for higher eigenmodes «;,, n > 1. Furthermore, for
higher modes, finger-like structures appear in the flow, while the magnitude of the
streamfunction decays faster.

Finally, an analysis of the vortex spacing and relative intensity revealed that the
periodicity is determined by the real part of the eigenvalue and the relative intensity
between two consecutive vortices is given by the quotient of the imaginary to real part of
the eigenvalues. For the slowest decaying eigenmode, i.e. the most dominant one, a relative
intensity of subsequent vortices of k~! 2 357.7 is identified in the limit #/R — 0, while
the number of vortices tends towards infinity. This value is very close to the minimum
decay factor of k~! a2 365 identified for the case of viscous vortices between two rigid
plates in Moffatt (1964).

With the equations presented here for the streamfunction, (3.9), it is not possible
to represent the extreme case #/R =0, as then ng=0 and n; =0 apply and thus the
roller surfaces coincide in the BCS. This interesting case requires a different solution
approach, e.g. the matched asymptotic expansion chosen by Dorrepaal & O’Neill (1979)
or an alternative coordinate transform as that employed in Schubert (1967) and Dormy &
Moffatt (2024). Although Dorrepaal & O’Neill (1979) do not distinguish individual
eigenvalues and the rollers in their work come into contact, their solutions are qualitatively
similar to the symmetric flow for the first eigenvalues from this work, see figure 3(a).
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Appendix A. General product solution

In this section, the general product solution of the biharmonic equation in the BCS is
derived. Based on the (2.10) and (2.11), the following product ansatz is chosen to construct
the streamfunction:

P&, n)=PE)QM), (Al)
where P depends only on & and Q only on 7. Inserting (A1) into (2.11) results in
PYO+2P"Q" +POW +2P"Q-2PQ" +PQ=0. (A2)

Dividing the above equation with PQ results in

P@W p Q// 0 “4) )24 Q//
2 2——-2—+1=0. A3
T 0 + 0 +t2 0 + (A3)

The following procedure follows the solution method shown by Doschoris (2012) for
differential equations with mixed derivatives: taking derivatives of (A3) with respect to &

and n we obtain
2 " A Vi 7
L)L ()4 (2, "
dedn \ PQ d \P/dp\ Q

from which it follows that one of the subsequent terms must be constant

" "

?zzl:azzconst., Q—::I:ﬂzzconst., o, B eC. (AS5)

The fourth derivatives in (A3) are also represented with the introduced constants « and
B by first rearranging the (A5) to
P"=+a’P, Q"=+%p°Q, (A6)
and then differentiating twice
PW=x4’P", 0W=1x8%0". (A7)
If the equations from (A6) are inserted into the equations from (A7), this results in

P& @)
— =a*, Q—=ﬁ4. (A8)
P Q
Finally, the differential (2.11) results in the differential equation systems given in table 2.
Based on these equations, the solutions of the biharmonic equation in the BCS given in
the tables 3 and 4 are obtained, which can be superposed due to linearity.

Appendix B. Solution branches and pressure fields

In § 3 four distinct solution branches were found, and the streamlines displayed for two of
them, namely the v , and v ¢ solutions. To keep a compact structure within this work,
streamlines for the other two branches are not shown here. They exhibit the same features
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Nr.  ODEfor P(£) ODE for 0 (i)
L P —a2P=0 Q(4)+2(052—I)Q,/+(a2+l)2Q=0
L P'4+a?P=0 QW —2(’ + DQ" +(&* —1)?Q =0
UL PO 422+ DP + (B2~ 1?P=0  Q"—p?0=0
V. PO -DP +(B+1PP=0  Q"+°0=0

Table 2. Four sets of linear ordinary differential equations (ODE).

L P = E cosh(«¢€) + F sinh(a)
Q = A cosh(n) cos(an) + B cosh(n) sin(an) + C sinh(n) cos(an) + D sinh(n) sin(an)
1L P =E cos(a§) + F sin(a§) = J(E —iF)e' + }(E +iF)el**

—E _ Foqi _ — FolaE—m) 4 p,—ia-m)
=FEcos(x(§ —m))+ Fsin(w(§ —m))=FEe + Fe
feE:a) fol&s) Si(&;) Jr&;)
Q0 = A cosh((@ + 1)n) + C cosh((¢ — 1)) + B sinh((e + 1)n) + D sinh((@ — 1)n)

8a(m;) gs(m:a)
II. P=E cos((B—1&) + F sin((B—1&) + G cos((B+ 1)§) + H sin((B + 1)§)
Q = A cosh(Bn) + B sinh(8n)
V. P = E cosh(B&) cos(§) + F sinh(B&) cos(§) + G cosh(B&) sin(§) + H sinh(B&) sin(§)

Q= A cos(Bn) + B sin(Bn)

Table 3. General solutions to the differential equations in table 2.

a=0or =0
I Po=Eo + Fo&
Qo= Ag coshn+ By sinhn+ Con coshn+ Dgn sinhn
1L Py=Ey + Foé
Qo= Ap coshn+ By sinhn+ Con coshn+ Dgn sinhn
III. Po=Eg cosé+ Fp&cosé + Go siné + Hp Esiné
Qo= Co+ Don
Iv. Py=Ey cos&é + FyEcosé+ Gg sin€é + Hy Esiné&
Qo=Co+ Don
a==x1or f==%£1:
1I. Py =E| cos& + F; siné&
Q1 =A; cosh2np+ By sinh2n+ Cyn+ D;
II1. Py =E;| cos2& + Fy sin2& + G&+ H

Q1= A coshn+ B; sinhn
a==ior B==i:

L P, =FE; cos& + F; sin&
Qi = Aj cosh2n+ B; sinh2n+ C; + Din
IV. P, = E; cos2& + F; sin2& 4+ G £ + H;

Qi = Aj coshn+ Bj sinhp

Table 4. Special solutions of the differential equations from table 2.
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as discussed in § 3.3, the main difference being that they decay from right to left. Graphical
representation of these branches, for several ratios 4/ R are collected and available in the
data repository https://doi.org/10.48328/tudatalib-1820.

The pressure gradients can be derived from (2.7), similar to Wakiya (1975a). By
inserting the four distinct solutions for the streamfunction in this connection

ap_AAY)  dp  B(AY)

ag  an  an  dE
and integrating once, a solution for the pressure field can be obtained for each solution
branch. For brevity the pressure solutions are not shown here, but several examples can be
accessed in the data repository. Within the pressure solutions the same finger-like patterns
and alternating signs (with respect to an arbitrary reference pressure pg) can be observed.
The most notable difference is that the pressure solution corresponding to a symmetric
streamfunction (asymmetric flow) is asymmetric with respect to the n = 0 line.

Additionally, the repository contains an applet to interactively display the

streamfunctions for arbitrary ratios hA/R and phases arg(s). For the critical ratio
and phase from (3.17), the repository contains two animated videos displaying the
variation of the critical ratio at the fixed critical phase and vice versa.

(BI)
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