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The two-dimensional free-boundary problem describing steady gravity waves with
vorticity on water of finite depth is considered. Under the assumption that the vorticity
is a negative constant whose absolute value is sufficiently large, we construct a solution
with the following properties. The corresponding flow is unidirectional at infinity and has
a solitary wave of elevation as its upper boundary; under this unidirectional flow, there is a
bounded domain adjacent to the bottom, which surrounds an interior stagnation point and
is divided into two subdomains with opposite directions of flow by a critical level curve
connecting two stagnation points on the bottom.
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1. Introduction

In the present paper, we consider the problem describing two-dimensional gravity waves
travelling on a flow of finite depth. For an ideal fluid of constant density, say water, the
effects of surface tension are neglected, whereas the flow is assumed to be rotational
with a constant vorticity; this, according to observations, is a type of motion commonly
occurring in nature (see, for example, Swan, Cummings & James (2001), Thomas (1981)
and references therein). Also, it is assumed that the reference frame is moving with the
wave so that the relative velocity field is stationary. Our aim is to consider a new class
of solitary waves each having a cat’s-eye – a region of closed streamlines surrounding a
stagnation point. To the best of the authors’ knowledge, there are no results concerning
solitary waves having such a pattern of streamlines; so far, this kind of behaviour has been
known only for periodic waves with vorticity.

The mathematical theory of two-dimensional solitary waves on irrotational flows goes
back to the discovery of John Scott Russell, who was the first to observe in 1834 and
subsequently to analyse a solitary wave of elevation (see Russell 1844). The existence
of the latter was justified mathematically by Boussinesq in 1877 and rediscovered by
Korteweg and de Vries in 1895. The existence of solitary waves in the framework of the full
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water wave problem is far more complicated and the first proofs were obtained much later
(Lavrentiev 1954; Friedrichs & Hyers 1954). Modern proofs by Thomas (1977) and Mielke
(1988) use the Nash–Moser implicit function theorem and a dynamical system approach,
respectively. All these papers deal only with waves of small amplitude, whereas Amick &
Toland (1981b) constructed large-amplitude solitary waves using global bifurcation theory
and then proved the existence of a limiting wave of the extreme form, that is, having
an angled crest (see Amick, Fraenkel & Toland 1982). All solitary waves considered in
these papers are of positive elevation, symmetric and monotone on each side of the crest
(see Craig & Sternberg 1988; McLeod 1984). The corresponding flows, being irrotatonal,
have a simple structure of streamlines (see Constantin & Escher 2007; Constantin 2010):
they are unbounded curves similar (diffeomorphic) to the free surface profile. For all
unidirectional waves with vorticity (when the horizontal component u of the relative
velocity field has a constant sign everywhere in the fluid), the latter property is also true.
Essentially, this forbids the presence of critical layers and stagnation points.

The first construction of unidirectional small-amplitude solitary waves with vorticity
was given by Ter-Krikorov (1962), whereas Benjamin (1962) obtained an approximate
form of the wave profile which is the same as in the irrotational case. However,
relationships between the wave amplitude, the length scale and the propagation velocities
depend on the primary velocity distribution in a complicated way. Much later, Groves
& Wahlén (2008) and Hur (2008) obtained new results for this topic. The latter authors
also considered solitary waves with vorticity in the presence of surface tension (Groves
& Wahlén 2007). The method used in Groves & Wahlén (2007, 2008), known as spatial
dynamics, is essentially an infinite-dimensional version of the centre-manifold reduction
which is known as spatial dynamics because it is applied to a Hamiltonian system with
the horizontal spatial coordinate playing the role of time. The first use of this method in
the water-wave theory is due to Kirchgässner (1982, 1988) (see also Mielke 1986, 1988,
1991), whereas an application of spatial dynamics to three-dimensional waves is given in
Groves & Nilsson (2018) (see also references therein). So far, use of spatial dynamics has
been restricted exclusively to small-amplitude waves. Recently, Wheeler (2013) examined
waves of large amplitude, but, like in the irrotational case, all solitary-wave solutions have
the same structure of streamlines, that is, are symmetric and of positive elevation (see Hur
2008; Wheeler 2015; Kozlov, Kuznetsov & Lokharu 2015, 2017). Thus, looking for a more
complicated geometry of solitary waves, it is natural to consider flows with stagnation
points and critical levels within the fluid domain. As in Wahlén (2009), by a critical level
we mean a curve for which the horizontal component of velocity vanishes.

The simplest case of flows with critical levels is that of constant negative vorticity, and
there are several advantages of studying this case. Flows with constant vorticity are more
easily tractable mathematically (see Ehrnström 2008; Wahlén 2009; Constantin, Strauss &
Vărvărucă 2016; Hur & Wheeler 2020). Moreover, these flows are of substantial practical
importance being pertinent to a wide range of hydrodynamic phenomena (see Constantin
et al. 2016, p. 196); an important example are currents producing shear near the sea bed.
A new feature of laminar flows with constant vorticity (compared with irrotational ones)
is that there are flows with critical levels. Moreover, it was shown by Wahlén (2009) that
small perturbations of these parallel flows are periodic waves with arrays of cat’s-eye
vortices – regions where closed streamlines surround stagnation points. An extension to
periodic waves of large amplitude with critical layers is given in Constantin et al. (2016)
(it includes overhanging waves). Despite the fact that waves considered in Wahlén (2009)
and Constantin et al. (2016) have critical layers, the geometry of free-surface profiles is
still simple; it is symmetric about every crest and trough, whereas monotone in between
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Solitary waves on constant vorticity flows 904 A4-3

FIGURE 1. A sketch of a streamline pattern. Solid lines are streamlines and the direction of the
flow (in the moving frame) is denoted by arrows. The dashed curve is a critical layer, where
the horizontal component of the velocity field vanishes, while circles are stagnation points. The
direction of the flow below the critical layer (grey region) is opposite to the direction of the flow
above it.

(just like that of the classical Stokes waves). Examples of more complicated wave profiles
are known (see Ehrnström, Escher & Wahlén 2011; Aasen & Varholm 2017; Kozlov &
Lokharu 2017, 2019). However, the vorticity distribution must be at least linear in order to
construct them. It should be emphasized that all theoretical studies of waves with critical
layers have been restricted so far to the periodic setting.

In the 1980s and 1990s, much attention was devoted to numerical computation of various
solitary waves on flows with constant vorticity; see the papers by Vanden-Broeck (1994,
1995) and references therein. In particular, an interesting family of solitary-wave profiles
was obtained in the second of these papers; it approaches a singular one with trapped
circular bulb at the crest which happens as the gravity acceleration tends to zero. However,
no attempt was made to find bottom or interior stagnation points for solitary waves. On
the other hand, Teles da Silva & Peregrine (1988) were the first who numerically observed
eddies surrounding interior stagnation points beneath wave crests of periodic waves on
water of finite depth with constant vorticity (see also Ribeiro, Milewski & Nachbin 2017).

In the present paper, a new family of solitary waves is constructed for large negative
values of the constant vorticity. All these waves have a remarkable property: the
corresponding flow is unidirectional at both infinities, but there is a cat’s-eye vortex
centred below the wave crest (see figure 1). (The term was coined by Kelvin in his
considerations of a shear flow having this pattern of streamlines; see Majda & Bertozzi
2002, pp. 53–54.) The vortex is bottom-adjacent and separated from the unidirectional
flow above it by a critical streamline connecting two stagnation points on the bottom. Every
solitary wave under consideration is obtained as a long-wave limit of Stokes wave-trains;
in this aspect, our result is similar to that of Amick & Toland (1981a), who dealt with
the irrotational case. However, Stokes waves have a cat’s-eye vortex centred below each
crest in our case. For a sketch of the corresponding streamline pattern, see the top part of
figure 4, whereas examples computed numerically are presented in Ribeiro et al. (2017, pp.
803–804). As the wavelength goes to infinity, these vortices do not shrink, which differs
from the case of small-amplitude waves, a sketch of which is plotted by Wahlén (2009)
in his figure 1. A sketch of streamlines corresponding to our solitary wave is plotted in
figure 1, where the circles denote stagnation points. Moreover, the dashed line shows the
critical level along which the horizontal component of velocity vanishes and the critical
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streamline located above the critical level also connects the two bottom stagnation points;
the direction of streaming is indicated by arrows.

It should be emphasized that small-amplitude solitary waves constructed in this paper
cannot be captured by applying spatial dynamics directly because the problem turns, in
some sense, into a singular one as the vorticity tends to infinity. Thus, an appropriate
scaling and a careful analysis are required before spatial dynamics can be used.

The plan of the paper is as follows. Statement of the problem and formulation of the
main results are given in § 1.1. Then, in § 2, the problem is scaled and reformulated in a
suitable way. After that, in § 3, it is reduced to a finite-dimensional Hamiltonian system
and theorem 3.2 provides the existence of solitary waves. Then the main theorem 1.1 is
proved in § 4. A discussion of the presented results is given in § 5.

1.1. Statement of the problem and formulation of the main result
Let an open channel of uniform rectangular cross-section be bounded from below by a
horizontal rigid bottom and let water occupying the channel be bounded from above by a
free surface not touching the bottom. The surface tension is neglected and the pressure is
assumed to be constant on the free surface. In appropriate Cartesian coordinates (X,Y),
the bottom coincides with the X axis and gravity acts in the negative Y direction. The
frame of reference is chosen so that the velocity field is time-independent as well as the
unknown free-surface profile. The latter is assumed to be the graph of Y = η(X), X ∈ R,
where η is a positive function; we note that for irrotational waves this is always true (see
Varvaruca 2008). The water motion is supposed to be two-dimensional and rotational,
where the vorticity distribution is a constant; combining this and the incompressibility of
water, we seek the velocity field in the form (ψY,−ψX), in which case ψ(X,Y) is referred
to as the stream function.

It is convenient to use the non-dimensional variables proposed by Keady & Norbury
(1978). Namely, lengths and velocities are scaled to (Q2/g)1/3 and (Qg)1/3, respectively,
where Q is the mass flux and g is the acceleration due to gravity. Thus, Q and g are equal
to unity in this case. Since the surface tension is neglected, the pair (ψ, η)must satisfy the
following free-boundary problem:

ψXX + ψYY − b = 0 for 0 < Y < η(X), (1.1a)

ψ(X,Y) = 0 on Y = 0, (1.1b)

ψ(X,Y) = 1 on Y = η, (1.1c)

|∇ψ(X,Y)|2 + 2Y = R on Y = η(X). (1.1d)

Here b > 0 is the vorticity constant, while constant R is considered as a parameter of
the problem; it is referred to as the total head or the Bernoulli constant (e.g. Keady &
Norbury 1978). This statement (with a general vorticity distribution) has long been known
and its derivation from the governing equations and the assumptions about the boundary
behaviour of water particles can be found in Constantin & Strauss (2004).

A solution of problem (1.1a)–(1.1d) defines a solitary wave provided the following
relations hold:

η(X) → h and |ψX(X,Y)| → 0 as X → ±∞. (1.2)

Here h is a constant, which coincides with the depth of a certain laminar flow at infinity.
A sketch of the profile, which is typical for a solitary wave, is shown in figure 2. It should
be noted that the flow at infinity is not uniform as it is in the irrotational case.
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y = h

y = 0
x = –∞ x = +∞

FIGURE 2. A sketch of the solitary wave profile on a unidirectional flow.

Now we are in a position to formulate our main result concerning the existence of
solitary waves of elevation.

THEOREM 1.1. For every sufficiently large b > 0, problem (1.1a)–(1.1d), (1.2) has a
solution (ψ, η) with the following properties:

(i) η(X) > h for all X ∈ R, that is, η describes a solitary wave of elevation;
(ii) there are two stagnation points on the bottom and two streamlines within the fluid

domain connect these points (see figure 1); the critical level corresponds to the upper
streamline, whereas the other one is on the bottom;

(iii) the critical streamline surrounds a region of streamlines around an interior
stagnation point on the vertical line through the crest;

(iv) all streamlines above the critical one are diffeomorphic to the free-surface profile.

An equivalent formulation of this assertion and its proof are given in the next two
sections. Our approach is based on a carefully chosen scaling of the original problem.
Then we apply the spatial dynamics method to the scaled problem in the same way as in
Kozlov & Lokharu (2019). This allows us to reduce the problem to a finite-dimensional
Hamiltonian system; it has one degree of freedom and admits a homoclinic orbit
describing a solitary wave of elevation in the original coordinates. The orbit goes around
an equilibrium point representing a shear flow of constant depth with a counter-current and
this guarantees the presence of a stagnation point and a critical streamline as is illustrated
in figure 1.

2. Reformulation of the problem

To avoid difficulties arising from the fact that b is large, it is convenient to scale variables
as follows:

x̄ =
√

bX, ȳ =
√

bY, η̄(x̄) =
√

b η(X), ψ̄(x̄, ȳ) = ψ(X,Y). (2.1a–d)

This transforms (1.1a)–(1.1d) into

ψ̄x̄ x̄ + ψ̄ȳ ȳ − 1 = 0 for 0 < ȳ < η̄(x̄), (2.2a)

ψ̄(x̄, ȳ) = 0 on ȳ = 0, (2.2b)

ψ̄(x̄, ȳ) = 1 on ȳ = η̄, (2.2c)

|∇ψ̄ |2 + 2γ ȳ = R̄ on ȳ = η̄, (2.2d)

where γ = b−3/2 and R̄ = Rb−1. This problem describes two-dimensional waves with
vorticity (the latter is equal to one) and weak gravity because γ is a small parameter
provided b is large.
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904 A4-6 V. Kozlov, N. Kuznetsov and E. Lokharu

Let us consider the stream solution ψ̄ = u(ȳ; s) and η̄ = h(s) such that u′(0) = s. From
(2.2a)–(2.2c) one obtains the unique pair

u(ȳ; s) = 1
2 ȳ2 + sȳ, h(s) = −s +

√
2 + s2, (2.3a,b)

and (2.2d) yields the corresponding Bernoulli constant:

R̄(s) = 2γ h(s)+ [u′(h(s); s)]2. (2.4)

If s < 0, then the laminar flow defined by (2.3a,b) has a near-bottom counter-current,
whereas the corresponding flow is unidirectional when s > 0. In what follows we assume
that s < 0.

2.1. Flattening transformation
Changing the coordinates (x̄, ȳ) to

(x, y) =
(

x̄,
ȳ

η̄(x̄)
h(s)

)
, (2.5)

we map the water domain onto the strip R × (0, h(s)). Let

Φ̂(x, y) = ψ̄ (x̄, ȳ) (2.6)

be a new unknown function, for which problem (2.2) with R̄ = R̄(s) takes the form

[
Φ̂x − yη̄x

η̄
Φ̂y

]
x

− yη̄x

η̄

[
Φ̂x − yη̄x

η̄
Φ̂y

]
y

+ h2(s)
η̄2

Φ̂yy − 1 = 0 for 0 < y < h(s),

(2.7a)

Φ̂(x, 0) = 0 for x ∈ R, (2.7b)

Φ̂(x, h(s)) = 1 for x ∈ R, (2.7c)

Φ̂2
y(x, h(s))− η̄2(R̄(s)− 2γ η̄)

h(s)2(1 + η̄2
x)

= 0 for x ∈ R. (2.7d)

Note that Φ̂ = u( y; s) and η̄ = h(s) is a solution of this system. Let us write (2.7) as a
first-order system, for which purpose it is convenient to introduce the variable Ψ̂ conjugate
to Φ̂ (cf. Kozlov & Kuznetsov 2013):

Ψ̂ (x, y) = η̄

h(s)

[
Φ̂x − yη̄x

η̄
Φ̂y

]
. (2.8)
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Solitary waves on constant vorticity flows 904 A4-7

This allows us to write (2.7) as follows:

Φ̂x = h(s)
η̄
Ψ̂ + y

η̄
η̄xΦ̂y for (x, y) ∈ R × (0, h(s)), (2.9a)

Ψ̂x = η̄x

η̄
( yΨ̂ )y − h(s)

η̄
Φ̂yy + η̄

h(s)
for (x, y) ∈ R × (0, h(s)), (2.9b)

Φ̂(x, 0) = Ψ̂ (x, 0) = 0 for x ∈ R, (2.9c)

Φ̂(x, y) = 1 on y = h(s), (2.9d)

Φ̂2
y + Ψ̂ 2 = η̄2

h2(s)
(R̄(s)− 2γ η̄) on y = h(s). (2.9e)

Furthermore, we have that

η̄x(x) = − Ψ̂ (x, h(s))

Φ̂y(x, h(s))
. (2.10)

Relations (2.9) can be considered as an infinite-dimensional dynamical system for Φ̂
and Ψ̂ only. Indeed, η̄ and η̄x can be eliminated with the help of (2.9e) and (2.10), which
will be formalized in the next section.

2.2. Linearization around a laminar flow

Let us linearize relations (2.9) around the stream solution Φ̂ = u( y; s), Ψ̂ = 0, η̄ = h(s),
for which purpose we introduce

Φ = Φ̂ − u − yuy

h(s)
ζ, Ψ = Ψ̂ , ζ = η̄ − h(s). (2.11a–c)

Then we obtain from (2.9):

Φx = Ψ + N1 for (x, y) ∈ R × (0, h(s)), (2.12a)

Ψx = −Φyy + N2 for (x, y) ∈ R × (0, h(s)), (2.12b)

Φ(x, 0) = Ψ (x, 0) = 0 for x ∈ R, (2.12c)

Φy − κΦ = N3 on y = h(s). (2.12d)

Here

κ = κ(s, γ ) = γ + k
k2

and k = k(s) = h(s)+ s =
√

2 + s2 > 0, (2.13a,b)

whereas the nonlinear operators in (2.12a), (2.12b) and (2.12c) have the form

N1 = −h(s)Ψ ζ + yζx( yζ + h(s)Φy)

h(s)(h(s)+ ζ )
,

N2 = ζ 2 + h(s)ζx( yΨ )y + h(s)ζΦyy

h(s)(h(s)+ ζ )
,

N3 = −h(s)2Ψ 2 + (ζ +Φy)(−h(s)ζ(h(s)− 2k)+ 2ζ 2k − h(s)2Φy)

2(h(s)+ ζ )2k
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.14)
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904 A4-8 V. Kozlov, N. Kuznetsov and E. Lokharu

respectively. Moreover, we find that

ζ(x) = −Φ(x, h(s))
k

, ζx(x) = − h(s)Ψ (x, h(s))
h(s)ζ + h(s)k + ζk + h(s)Φy(x, h(s))

. (2.15a,b)

Substituting these expressions into formulae for N1, N2 and N3, we see that (2.12a) and
(2.12b) form an infinite-dimensional reversible dynamical system on the manifold defined
by (2.12c) and (2.12d); the mapping (Φ,Ψ ) �→ (Φ,−Ψ ) is the reverser. Nonlinearity of
the boundary condition (2.12d) is inessential in view of its reducibility to a homogeneous
one by a proper change of variables; see Groves & Wahlén (2008) and Kozlov & Lokharu
(2019) for details.

Let us assume that Ψ ∈ C(R; X1) and Φ ∈ C(R; X2), where Xm = { f ∈ Hm(0, 1) :
f (0) = 0}, m = 1, 2, and Hm(0, 1) stands for the corresponding Sobolev space. Since k
and κ depend analytically on s and γ belonging to a small neighbourhood of the origin,
the same is true for the operators N1, N2 and N3. More precisely, let

Λε = {λ = (s, γ ) ∈ R
2 : |s|2 + |γ |2 < ε2} (2.16)

be a small neighbourhood of the origin in the parameter space, then

N1 ∈ C∞(X1 × X2 ×Λε; H1(0, 1)), N2 ∈ C∞(X1 × X2 ×Λε; L2(0, 1)), (2.17a,b)

whereas N3 ∈ C∞(X1 × X2 ×Λε; R). Moreover, all derivatives of these operators are
bounded and uniformly continuous in Λε .

2.3. A linear eigenvalue problem
The centre subspace of system (2.12) is determined by the imaginary spectrum of the
linear operator L(Ψ,Φ) = (−Φyy, Ψ ) defined on a subspace of X1 × X2 and subject to
the homogeneous condition

Φy(h(s)) = κΦ(h(s)). (2.18)

It is straightforward to establish that the spectrum of L is discrete and consists of all τ̂ ∈ C

such that μ = τ̂ 2 is an eigenvalue of the following Sturm–Liouville problem:

− ϕyy = μϕ on (0, h(s)); ϕ(0) = 0 and [ϕy − κϕ]y=h(s) = 0. (2.19a,b)

(Basic facts about Sturm–Liouville problems can be found in Teschl (2012).) Thus, the
imaginary spectrum of L corresponds to the negative eigenvalues of (2.19a,b).

The spectrum of (2.19a,b) is discrete and consists of real simple eigenvalues, say

μ1 < μ2 < · · · < μj < · · · , (2.20)

accumulating at infinity, whereas the corresponding eigenfunctions ϕj can be rescaled to
form an orthonormal basis in L2(0, h(s)).

2.4. On the existence of a negative eigenvalue
Let us investigate the spectral problem (2.19a,b) for negative s and positive γ such that
λ = (s, γ ) ∈ Λε and ε is sufficiently small. Solving (2.19a,b) explicitly, we find that μ1 is
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Solitary waves on constant vorticity flows 904 A4-9

the unique negative eigenvalue equal to, say −τ 2, provided τ is defined by the dispersion
equation:

τh(s) coth(τh(s)) = κh(s). (2.21)

Using the definition of κ , we see that

κh(s) = 1 + γ − s√
2

+ O(s2) as s → 0. (2.22)

Therefore, κh(s) > 1 for all s < 0 and γ > 0 such that (s, γ ) ∈ Λε , and so the dispersion
equation has a unique root τ > 0 such that

[τh(s)]2 = 3
γ − s√

2
+ O(|s|2 + |γ |2) as s, γ → 0. (2.23)

Since [h(s)]2 = 2 + O(s) as s → 0, we see that τ tends to zero as s, γ → 0. Therefore,
some asymptotic formulae below will be written in terms of the small parameter τ . Let us
summarize.

If γ − s is positive, which is the case when s < 0, then (2.19a,b) has a negative
eigenvalue μ1 = −τ 2. Moreover, there exists only one such eigenvalue and τ → 0 as
s, γ → 0; the corresponding normalized eigenfunction has the asymptotic formula

ϕ1( y) = c0 y[1 + O(|s|2 + |γ |2)] as s, γ → 0, where c0 =
√

3
23/2

, (2.24)

and (2.24) is uniform with respect to y ∈ [0, h(s)] and λ = (s, γ ) ∈ Λε . The positive
spectrum of L is separated from zero, because μ2 > π2/h2(s) > π2/2 for small
negative s.

3. Reduction to a finite-dimensional system

Let us reduce system (2.12) to a finite-dimensional Hamiltonian one, for which
purpose the centre-manifold technique of Mielke (1988) (he considered quasilinear elliptic
problems in cylinders) is used. For this purpose we apply a result obtained by Kozlov
& Lokharu (2019); namely, their theorem 3.1 provides a convenient way for obtaining a
reduced problem. Prior to that, the so-called spectral splitting is applied to decompose the
system.

3.1. Spectral decomposition and reduction
Following the method proposed by Kozlov & Lokharu (2019), we seek (Φ,Ψ ) in the form

Φ(x, y) = α(x)ϕ1( y)+ Φ̃(x, y), Ψ (x, y) = β(x)ϕ1( y)+ Ψ̃ (x, y), (3.1a,b)

where Φ̃ and Ψ̃ are orthogonal to ϕ1 in L2(0, h(s)); that is,

α(x) =
∫ h(s)

0
Φ(x, y)ϕ1( y) dy, β(x) =

∫ h(s)

0
Ψ (x, y)ϕ1( y) dy. (3.2a,b)

For λ ∈ Λε we define projectors Pλφ = αϕ1 and P̃λ = id − Pλ, which are well defined
on H1(0, h(s)) and orthogonal in L2(0, h(s)). Multiplying (2.12a) and (2.12b) by ϕ1 and
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904 A4-10 V. Kozlov, N. Kuznetsov and E. Lokharu

integrating over (0, h(s)), we obtain

αX = β + F1(Ψ,Φ; λ), (3.3)

βX = −τ 2α + F2(Ψ,Φ; λ), (3.4)

where

F1(Ψ,Φ; λ) =
∫ h(s)

0
N1(Ψ,Φ; λ)ϕ1 dy,

F2(Ψ,Φ; λ) =
∫ h(s)

0
N2(Ψ,Φ; λ)ϕ1 dy − N3(Ψ,Φ; λ)ϕ1(h(s)).

⎫⎪⎪⎬⎪⎪⎭ (3.5)

The system for Φ̃ and Ψ̃ is as follows:

Φ̃x = Ψ̃ + P̃λ(N1), (3.6)

Ψ̃x = −Φ̃yy + P̃λ(N2)+ ϕ1(h(s))ϕ1N3, (3.7)

and these functions satisfy the following boundary conditions:

Φ̃(x, 0) = Ψ̃ (x, 0) = 0, Φ̃Y(x, h(s))− κ Φ̃(x, h(s)) = N3. (3.8a,b)

Let X̃(λ)
j denote P̃λ(Xj), j = 0, 1, 2, where λ ∈ Λε , and so Ψ̃ ∈ X̃(λ)

1 and Φ̃ ∈ X̃(λ)
2 for

all x ∈ R and λ ∈ Λε . Then theorem 3.1 proved in Kozlov & Lokharu (2019) yields the
following assertion for the decomposed system (3.3)–(3.8a,b).

THEOREM 3.1. For any m ≥ 2 there exist ε > 0, neighbourhoods W ⊂ R2, W1 ⊂
X1,W2 ⊂ X2 and the vector-functions rj : W ×Λε → Wj, j = 1, 2, of the class Cm(W ×
Λε) with the following properties.

(i) The derivatives of r1 and r2 are bounded and uniformly continuous, and the estimate

‖r1; H1‖ + ‖r2; H2‖ = O(|α|2 + |β|2), where (α, β) ∈ W, (3.9)

holds uniformly with respect to λ ∈ Λε .
(ii) rj(α, β, λ) ∈ X̃(λ)

j , j = 1, 2, for all λ ∈ Λε and all (α, β) ∈ W.
(iii) The set Mλ = {(Ψ r[α, β; λ], Φr[α, β; λ]) : (α, β) ∈ W, λ ∈ Λε} ⊂ X1 × X2, where

Ψ r[α, β; λ] = βϕ1 + r1(α, β; λ) and Φr[α, β; λ] = αϕ1 + r2(α, β; λ), (3.10)

is a locally invariant manifold for (2.12), that is, through every point of Mλ goes only
one solution of (2.12) and it belongs to Mλ as long as (r1, r2) ∈ W1 × W2.

(iv) Every global solution (α, β) ∈ C(R; W) of the reduced system

αx = β + F1(Ψ
r[α, β; λ], Φr[α, β; λ]; λ),

βx = μ1α + F2(Ψ
r[α, β; λ], Φr[α, β; λ]; λ), (3.11)

where λ ∈ Λε, generates the solution (Ψ,Φ) of (2.12) with

Ψ (x, y) = Ψ r[α(x), β(x); λ]( y), Φ(x, y) = Φr[α(x), β(x); λ]( y). (3.12a,b)

Moreover, the reduced system (3.11) is reversible.
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Solitary waves on constant vorticity flows 904 A4-11

A direct calculation shows that the reduced system (3.11) has the following structure:

αx = β[1 + O(|α| + |α|2 + |β|2)],
βx = −τ 2α + Aα2 + O(|α|3 + |β|2),

(3.13)

where A = 1
2 c3

0 + O(|s|2 + |γ |2) as s, γ → 0 and c0 is the constant defined in (2.24); hence
A = √

33/213/2 + O(|s|2 + |γ |2). Now, we are in a position to formulate and prove the
following.

THEOREM 3.2. Problem (3.13) has a homoclinic solution such that

αh(x) = τ 2α�+ − [
3
2α

�
+τ

2 + O(τ 4)
]

sech2(τ x/2) as τ → 0, (3.14)

whereas βh is defined implicitly by the first formula (3.13). Here α�+ = A−1 + O(τ 2) is a
constant independent of x .

Proof. It is known (see Groves & Stylianou 2014; Kozlov & Kuznetsov 2013) that problem
(1.1a)–(1.1d) has a Hamiltonian structure (even for arbitrary vorticity) with the horizontal
coordinate playing the role of time. The corresponding Hamiltonian is the flow force
invariant; in the original coordinates (X,Y), it has the following form:

S = [
1
2 R − b

]
η(X)− 1

2

{
η2(X)−

∫ η(X)

0

1
2(ψ

2
Y − ψ2

X)+ bψ dY
}
. (3.15)

Thus, the reduced system (3.13) has a constant of motion H(α, β); to obtain an expression
for it one has to subject b−1S to all changes of variables described above. A direct
calculation yields that

H(α, β) = 1
2

(
β2 + τ 2α2) − A

3
α3 + O

(
α4 + β2) (= b−1S), (3.16)

where A is the coefficient in the second equation (3.13). It should be noted that H(α, β) is
an even function of β which follows from reversibility of this system. The form of H(α, β)
suggests that variables must be scaled as follows:

α(x) = τ 2α1(x1), β(x) = τ 3β1(x1), x = τ−1x1, H(α, β) = τ 6H1(α1, β1),

(3.17a–d)
where

H1(α1, β1) = 1
2

(
α2

1 + β2
1

) − A
3
α3

1 + τ 2O
(|α3

1 | + |β4
1 |
)
, (3.18)

and so the scaled equations are

[α1]x1 = β1 + τ 2β1O
(|α1| + |β1|2

)
,

[β1]x1 = −α1 + Aα2
1 + τ 2O

(|α1|3 + |β1|2
)
.

(3.19)

The graph of H1(α, 0) in a neighbourhood of the origin is sketched in figure 3(a). It is
clear that the local maximum of this function close to the origin is attained at α = α�+ and
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L
l

α1

α1

β1

α+ α+

α+

α–α–

α–

H1(α1, 0)

H1 = � H1 = L
(b)(a)

FIGURE 3. The behaviour of the Hamiltonian near the origin (a) and its level curves (b).
(a) Graph of the function H1(α1, 0). (b) Phase portrait.

L = H1(α
�
+, 0) is its value. Then the level line

H1(α1, β1) = � (3.20)

is a closed curve for every � ∈ (0,L) and it corresponds to a periodic solution. The contour

H1(α1, β1) = L (3.21)

defines the homoclinic orbit; see a sketch of level lines in figure 3(b). The values α�− and
α�+ correspond to the ‘crest’ level and the limiting depth, respectively. An essential feature
of the homoclinic orbit is that α1 attains negative values on its left-hand part; this implies
that there is a stagnation point as will be shown below.

Let us turn to proving (3.14). By αh
1 we denote a homoclinic solution to (3.19). It is

easy to see that it is monotone on each side of the crest which corresponds to the value
αh

1(0) = α�−. Then we have

X1 =
∫ x1

0
dx1 =

∫ αh
1 (x1)

α�−

dα1

[αh
1]x1

, (3.22)

where [αh
1]x1 = βh

1 [1 + O(τ 2)]; see the first equation (3.19). On the other hand,

L − H1(α
h
1, 0) = [βh

1 ]2

2

{
1 + τ 2O([βh

1 ]2)
}
, (3.23)

where the system’s reversibility is used. Expressing [βh
1 ]2 from the last formula and taking

into account the fact that it is positive on the interval of the integration, we obtain

x1 =
∫ αh

1(x1)

α�−

dα1

[αh
1]x1

= [1 + O(τ 2)]
∫ αh

1(x1)

α�−

dα1√
2[L − H1(α

h
1, 0)]

. (3.24)

Let us find an approximation of the integral using a third-degree polynomial for the
expression under the square root; more precisely, let us show that

L − H1(α1, 0) = a(τ )(α1 − α�−)(α1 − α�+)
2 + τ 2O(|α1 − α�−||α1 − α�+|2), (3.25)

where

a(τ ) = − L
α�−[α�+]2

= A
3

+ O(τ 2). (3.26)
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Solitary waves on constant vorticity flows 904 A4-13

It should be emphasized that (3.25) is used as a representation of L − H1(α1, 0) only on
the interval [α�−, α

�
+]. To prove (3.25) we note that

L − H1(α1, 0) = L − α2
1

2
+ A

α3
1

3
+ τ 2O(|α1|3) =: Q1(α1)+ τ 2O(|α1|3). (3.27)

A direct calculation yields that the estimate O(τ 2) holds for

Q1(α
�
−), Q1(α

�
+), ∂α1 Q1(α

�
+). (3.28a–c)

Therefore, solving a linear system, one obtains that up to O(τ 2) the coefficients of

a(τ )(α1 − α�−)(α1 − α�+)
2 (3.29)

are the same as those of Q1. This shows that the error in (3.25) has the same estimate
O(τ 2). It remains to use the fact that L − H1(α1, 0) has a simple zero at α�− and a double
zero at α�+ which proves (3.25).

Now we have∫ αh
1 (x1)

α�−

dα1√
2(L − H1(α1, 0))

= [1 + O(τ 2)]
∫ αh

1 (x1)

α�−

dα1√
2a(α1 − α�−)(α1 − α�+)2

= 1 + O(τ 2)

a0

√
2a

[
ln

∣∣∣∣∣a0 + √
α1 − α�−

a0 − √
α1 − α�−

∣∣∣∣∣
]α1=αh

1 (x1)

α1=α�−

= 1 + O(τ 2)

a0

√
2a

⎛⎜⎝ln

⎡⎢⎣
(

a0 +
√
αh

1(x1)− α�−
)2

α�+ − αh
1(x1)

⎤⎥⎦
⎞⎟⎠ , (3.30)

where a0 = √
α�+ − α�−. Comparing this and (3.24), one obtains the following asymptotic

formula for the solitary-wave solution:

αh
1(x1) = α�+ −

[
6
A

+ O(τ 2)

]
e(−(1 + O(τ 2))x1) as τ → 0, (3.31)

where the formulae α�− = −α�+/2 + O(τ 2) and α�+ = A−1 + O(τ 2) are taken into account.
Furthermore, it is straightforward to show that

‖αh
1 − α

h,�
1 ‖L∞(R) = O(τ 2) as τ → 0, (3.32)

where

α
h,�
1 (x1) = 1

A
− 3

2A
sech2(x1/2). (3.33)

The latter is a homoclinic solution of (3.19) with τ = 0, in which case β1 = [αh,�
1 ]x1 .

Combining this and the asymptotic formula (3.31), one arrives at (3.14) by rescaling
variables to the original ones. �
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Y = 1

Y = 0

X1
c = 0

X1
c = 0

X1
t + 2Σ

X1
t + 2Σ

– X1
† X1

†

X1
†– X1

†

X1
t

X1
t

FIGURE 4. Two Stokes waves corresponding to different values of � plotted in (X1,Y)
variables.

3.2. Periodic waves
The streamline pattern for periodic solutions was studied in Wahlén (2009). It was shown
that below every crest there is a cat’s-eye region adjacent to the bottom as in figure 4. Our
aim is to show that this region stays bounded as � → L, so that the solitary wave has a
similar streamline pattern.

An approximation of solutions for periodic waves can be found in the same way as for
solitary waves. Indeed, let us consider the periodic solution α�1 corresponding to some
energy H1 = �. Let a trough of this wave be located at x c

1 = 0 and let the nearest crest to
the left be at x t

1 < x c
1 (see figure 4). Then for every x1 ∈ (x t

1x c
1] we have

x1 − x t
1 =

∫ α�1(x1)

α−

dα1

[α�1]x1

= [1 + O(τ 2)]
∫ α�1(x1)

α−

dα1√
2[�− H1(α1, 0)]

. (3.34)

In particular, the half-period of this solution is equal to

Σ� = x c
1 − x t

1 = [1 + O(τ 2)]
∫ α+

α−

dα1√
2[�− H1(α1, 0)]

, (3.35)

and so Σ� → +∞ as � → L. Let us estimate the bottom width of a cat’s-eye vortex (in
figure 4, it is bounded above by the dashed streamline). On every interval symmetric about
the crest and having the length 2Σ�, there are exactly two stagnation points on the bottom
that bound the bottom-attached vortex (these points are plotted as dots in figure 4), and
α�1(±x†

1) = 0 at these points nearest to the origin. From (3.34) the approximate formula
follows:

− x†
1 − x t

1 = [1 + O(τ 2)]
∫ 0

α−

dα1√
2[�− H1(α1, 0)]

, (3.36)

which yields that x†
1 = O(1) as � → L in view that the integral∫ 0

α−

dα1√
2[L − H1(α1, 0)]

(3.37)

is finite. Indeed, the function L − H1(α1, 0) has only one simple zero α1 = α�− on the
interval of integration. Thus, x†

1 remains bounded when the wavelength goes to infinity,
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Solitary waves on constant vorticity flows 904 A4-15

and the same is true for the domain occupied by cat’s-eye vortex. Therefore, the pattern of
streamlines remains the same for the limiting solitary wave (see figure 1).

4. Proof of theorem 1.1

From (3.31), it is straightforward to recover the asymptotics of the free-surface profile
in the original non-dimensional coordinates; it looks as follows:

η(X) = h− +
√

b
[

3
c2

0
+ O(τ 2)

]
τ 2sech2(

√
bτX/2) as τ → 0, (4.1)

and so describes a solitary wave of elevation. Here, the depth at infinity is h− = h(s)+ 2s,
which coincides with that of the unidirectional laminar flow conjugate to (2.3a,b). (Thus,
this flow supports solitary waves similarly to the irrotational case.) Furthermore, c0 is the
constant defined in (2.24) and τ is the unique positive root of the dispersion equation
(2.21), which, according to (2.23), tends to zero as s → 0 and b → ∞ simultaneously
(indeed, γ = b−3/2).

To show that the flow supporting this wave has a bottom-attached cat’s-eye vortex, let
us track back the changes of coordinates made above and find that

Φ̂y = uy +Φy − (uy + y)Φ(x, h)/(kh). (4.2)

Here Φ(x, y) = α(x)ϕ1( y)+ yO(τ 4) = c0 y[α(x)+ O(τ 4)] as τ → 0, where the second
equality is a consequence of (2.24). Hence we see that

Φ̂y = uy

[
1 − c0α(x)√

2 + s2
+ O(|s|2 + |γ |2)+ O( y)

]
+ α(x)[c0 + O( y)] as s, γ → 0 and y → 0. (4.3)

The first term is negative near the bottom because uy < 0 according to formula (2.3a,b)
and the assumption that s < 0, whereas the expression in the square brackets is positive.
Moreover, it was established in the proof of theorem 3.2 that α(x) is negative on some
interval. Taking this into account, the second term in the last formula also attains negative
values near the bottom which shows that the same is true for Φ̂y .

It follows from considerations in § 3.2 that the cat’s-eye region shown in figure 4 remains
bounded as � → L. This yields that the pattern of streamlines of Φ̂ has the structure plotted
in figure 1. Since the pattern of streamlines of ψ is essentially the same, this completes
the proof of theorem 1.1.

5. Concluding remarks

We have considered the problem describing water waves in a rotational flow of finite
depth when the corresponding unperturbed shear flow has a near-bottom counter-current.
The latter flow exists, in particular, when the vorticity is a negative constant; its value is
assumed to be large which simplifies the analysis as to whether this flow supports a solitary
wave. It was emphasized by Benjamin (1962) that investigating propagation of waves, it
is essential to avoid the artificial assumption of irrotational motion because it ignores the
effects of friction and current. In the model presented here, the latter is taken into account
directly by the vorticity distribution, whereas the former is treated as diffused over the
whole cross-section of an infinitely long channel.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

64
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.647


904 A4-16 V. Kozlov, N. Kuznetsov and E. Lokharu

Our approach combines scaling and the spatial dynamics technique. By scaling, the
problem is shown to be equivalent to another one, in which the vorticity is equal to −1,
whereas the gravity constant γ > 0 is treated as a small parameter depending on the
original vorticity. Moreover, an extra parameter is involved in our construction, namely
the velocity s < 0 of the unperturbed flow at the bottom. The main results are that this
flow supports a solitary wave provided γ and s are sufficiently small, whereas the pattern
of streamlines contains a bottom-attached region below the crest, where they are closed
and surround an interior stagnation point. This extends previous results on solitary waves
concerning unidirectional flows only to the more complicated flow.

It occurs that the presence of two parameters even simplifies tackling the problem
despite neither of them being suitable for use in the spatial dynamics method in the same
way as in Groves & Wahlén (2008). Nevertheless, this method is applicable, because there
is another natural small parameter. Indeed, the centre subspace of the spatial dynamics
method is determined by the imaginary spectrum of the linearized operator defined by a
nonlinear system. We linearize our system depending on the parameter γ (it arises after
a flattening transformation which is a standard procedure when the partial hodograph
transform cannot be used) around the stream solution involving the second parameter s
and this leads to a Sturm–Liouville problem. If both γ and s are small, then it has only one
negative eigenvalue, −τ 2, where τ is a unique positive root of the dispersion equation.
Moreover, τ → 0 as γ and s go to zero, and so it is convenient to use τ as a small
parameter while analysing a finite-dimensional Hamiltonian system to which the original
one reduces.

As in the simpler case studied by Groves & Wahlén (2008), there exists a homoclinic
solution of the finite-dimensional system, and it is expressed in terms of the hyperbolic
secant, but in a more complicated way. Moreover, the asymptotic formula (4.1) recovered
from the homoclinic solution expresses the free-surface profile of a solitary wave in
the original coordinates. Presumably, this formula is suitable for numerical computation
of the profile. Indeed, if proper values of γ and s are taken, then the root τ can be
found numerically from the dispersion equation (2.21) and used for evaluating (4.1).
Computation of the corresponding streamlines is a more sophisticated task, as a paper
by Ribeiro et al. (2017) dealing with periodic waves demonstrates. Adaptation of their
method to solitary waves is a challenge to be investigated. Another question related to the
latter paper is to find out whether the pressure on the bottom boundary is different from
that in the irrotational case.
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