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ABSTRACT. High-resolution chemical records from an 80.4 m ice core from the
central Himalaya demonstrate climatic and environmental changes since 1844. The
chronological net accumulation series shows a sharp decrease from the mid-1950s, which
is coincident with the widely observed glacier retreat. A negative correlation is found
between the ice-core d18O record and the monsoon precipitation for Indian region 7.
The temporal variation of the terrestrial ions (Ca2+ and Mg2+) is controlled by both the
monsoon precipitation for Indian regions 3,7 and 8, located directly south and west of the
Himalaya, and the dust-storm duration and frequency in the northern arid regions, such
as theTaklimakan desert, China.The NH4

+ profile is fairly flat until the 1940s, then sub-
stantially increases until the end of the1980s, with a slight decrease during the1990s which
may reflect new agricultural practices. The SO4

2^ and NO3
^ profiles show an apparent

increasing trend, especially during the period1940s^80s.Moreover, SO4
2^ concentrations

for the East Rongbuk Glacier core are roughly double that of the nearby Dasuopu core at
Xixabangma, Himalaya, due to local human activity including that of climbing teams
who use gasoline for cooking, energy and transport.

1. INTRODUCTION

Due to the large population of Southeast Asia and its vulner-
ability to droughts and floods, a better understanding of the
variability associated with the southwest monsoon would be
immensely beneficial. However, relatively little is knownabout
climatic changes in the region over time- scales ranging from
centuries to thousands of years. The Himalayan region con-
tains many subtropical high-elevation glaciers where ice-core
records with high resolution can be collected (Mayewski and
others, 1984; Hou and others, 1999; Qin and others, 2000;
Thompson and others, 2000). Moreover, the Himalayan range
acts as aboundarydue to its highelevation, limiting the north-
ern extent of the Indian summer monsoon. Ice-core records
from such sites could therefore provide insight into variations
of the monsoon in the past, as well as the background know-
ledge necessary to identify temporal and spatial variations in
the linkagesbetweenvariousclimate systems in Asia helpful in
determining controls on climate change in this region.

In August 1998, an 80.4 m ice core was recovered from a
site at 6500ma.s.l. on East Rongbuk (ER) Glacier, <5 km
northeast of the peak of Qomolangma (Mount Everest) (Fig.
1). Here we present a discussion of the climatological and
environmental significance of the chemical records of the ER
core.

2. METHODOLOGY

Standard methods were used for ice-core sampling (Buck and
others,1992;Whitlow and others,1992). To avoid possible con-
tamination, strict protocol was followed during processing.
All sampling tools and sample containers were pre-cleaned
using ultrapure water. During sampling, personnel involved
wore polyethylene gloves, non-particulating clean suits and
masks. Samples were kept frozen (in the field and during
transportation) until analysis. In addition, blanks were ana-
lyzed at the beginning, middle andend of each processing day.

The ice core was cut at intervals of 3.5^5 cm for a total of
1816 samples. For each of the samples, an outer 2 cm annulus
was removed and the inner sections were immediately put
into pre-cleaned plastic sample containers for further chemi-
cal analysis. At the same time, the scraped ice material was
collected for ­ -activity measurement. Each of the ­ -activity
samples weighed about 1kg, corresponding to a length of
110 cm ice core.

Analyses of oxygen isotope ratios (d18O) were performed
in the Laboratory of Ice Core and Cold Regions Environ-
ment, Chinese Academy of Sciences, using a Finnigan delta-
plus mass spectrometer (accuracy 0.05%), and results are
expressed as the relative deviation of heavy-isotope content
of Standard Mean OceanWater. Measurements of the major
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chemical species were performed using a Dionex model 4000
ion chromatography system, and the ­ -activity samples were
filtered twice through cation exchange filters and analyzed
with a gas-flow proportional counter at the Climate Change
Research Center, University of New Hampshire.

Snow and ice chemistry in the Himalaya shows a clear
seasonal variation that can be used for ice-core dating. Based
on the deuterium content of precipitation samples collected at
Lhajung (4420m), Nepal Himalaya, from April 1974 to
March 1975, Wushiki (1977) found high dD values in the pre-
monsoon precipitation, and lowest values in the middle of the
monsoon season, which are believed to be due to a `̀ precipita-
tion-amount effect’’. This style of seasonal variation of stable-
isotopic content in precipitation is also apparent on the north
slope of the Himalaya (Wake and Stiëvenard,1995; Kang and
others, 2000). High concentrations of Ca2+, Mg2+ and SO4

2^

in the spring/summer season suggest that dust raised during
the spring dust-storm period is transported southward from
theTaklimakan desert and the Qaidam basin, China, by per-
sistent northwesterly surface winds (Wake and others, 1993;
Kang and others, 2000). The summertime peaks of Na+ and
Cl^ ions reflect the influx of marine air masses associated with
northerly-flowing monsooncirculation (Wake andothers,1993;
Kang and others, 2000). Therefore, internal consistency exists
between the seasonal variations of stable-isotopic ratios and
major-ion concentrations for our ice-core chemical records,
i.e. high d18Ovalues roughlycorrespondto the major-ionpeaks.

We first use the annual signal in the d18O series to date
the ice core.When the d18O data do not provide a clear sea-
sonal cycle, seasonal variations in major-ion (Ca2+, Na+

and NH4
+) profiles are utilized. The dating is further veri-

fied by ­ -activity peaks corresponding to the annual layers
1963 and1954 (Hou and others, 2002, fig.2) and the sulphate
volcanic events of 1877 (Suwanose-jima, Japan; 29.5³N,
129.7³ E), 1883 (Krakatau, Indonesia; 6.1³ S, 105.4³ E), 1888

Fig. 1. Location map of ice-core drilling sites in the central
Himalaya.

Fig. 2.The net accumulation profiles of the ice cores collected at ER Glacier (a) and FER Glacier (b), together with the all-India
summer monsoonal precipitation record (c) and the all-India annual precipitation record (d).The coarse lines show the four-point
smoothing results.
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(Bandai, Japan; 37.6³ N, 140.1³ E), 1889 (Suwanose-jima,
Japan; 29.5³ N, 129.7³ E), 1902 (three eruptions at 13^15³ N),
1929 (Komaga-take, Japan; 42.1³ N, 140.7³ E), 1951 (two
eruptions at 8.9^16.3³ S) and 1963 (Agung, Indonesia;
8.3³ S, 115.5³ E). However, it should be noted that some sul-
phate peaks in our core can be formed by spring/summer
dust storms. It is also suggested that a major monsoon fail-
ure, the cause of a devastating Indian drought, occurred in
1876^77 (Thompson and others, 2000), which corresponds
to the peak concentrations of marine ions, so we set the
highest Na+ concentration at 63.5 m as a reference of 1876.

3. RESULTS AND DISCUSSION

3.1. Decline in recent net accumulation

We calculate the chronological series of the annual net
accumulation since 1954 (Fig. 2) based on the dating and
the density^depth profile (we measured the density of each
ice-core drilling interval, and a total of 190 measurements
were obtained). The results of another core recovered from
a site at 6500 m a.s.l. on Far East Rongbuk (FER) Glacier in
1997 (Hou and others,1999) are compared here. Four-point
smoothing is adopted to eliminate the stochastic effect of
dating. The net accumulation records of the ER core (Fig.
2a) and the FER core (Fig. 2b) clearly show a sharp decline
from the mid-1950s to the late1960s, and fairly steady values
since then. The average annual net accumulation values for
the two periods1954^63 and either1964^96 (FER) or1964^
97 (ER) as identified by the double ­ -activity peaks, are
581.7 mm and 321.2 mm w.e. for the ER core, and 267.5 mm
and 150.3 mm w.e. for the FER core, respectively. The net
accumulation ratios between the above periods are also
very similar for the ER core (1.81) and the FER core (1.78).
The thickness and strain rate are not yet available, so the
thinning effect cannot be adjusted. Since more thinning is
expected in deeper annual layers, the real decrease in
amplitude from the mid-1950s to the late 1960s would be
more prominent after a thinning adjustment.

The average net accumulation rate at the FER core site
is less than half of the corresponding value at the ER core
site, though these two sites are only a few kilometers apart.
The effect of orography is believed to account for the low
accumulation rates at the FER site, since an east^west ridge
over 7000 m a.s.l. separates FER and ER Glaciers. Most of
the annual precipitation received in the Himalaya origi-
nates from the Bay of Bengal and the Arabian Sea during
the summer monsoon season. It penetrates through a rela-
tively low col and deposits at the ER core site, resulting in
relatively high accumulation rates there. Moreover, FER
Glacier is located on the south slope, while ER Glacier is
on the northern slope. Therefore, heavy snowmelting takes
place on the surface of the FER Glacier, as observed in the
field, but little if any melting occurs at the ER core site
during the ablation season, which enhances the difference
between the net accumulation rates at the two drilling sites.

We previously speculated that the decreased net accumu-
lation at the FER site is associated with a recent temperature
increase in the region that intensified the ablation (Hou and
others,1999). Qin and others (2000) also suggested a decrease
in moisture fluxassociatedwitha change in atmospheric circu-
lation. Here we compare the net accumulations with the all-
India summer monsoonal and annual precipitation records
(Fig. 2c and d, respectively; data are available from Indian

Institute for Tropical Meteorology at http://www.tropmet.
ernet.in). The substantially decreased rainfall amounts from
the mid-1950s to the late1960s are consistent with our ice-core
records. Subbaramayya and Naidu (1992) also suggested a
sudden decrease in the all-India monsoon rainfall during
1958^69 from the 11year moving averages of the area-
weighted average monsoon rainfall in all the subdivisions of
India. Thus it appears that a sudden climate change in the
Asian monsoon regionwith respect to the total monsoonrain-
fall occurred from the late 1950s to the late 1960s, leading to
general drought conditions through the complex interactions
among monsoon rainfall, Himalayan and Eurasian snow
cover, sea-surface temperature and wind field. While the
decreasing rainfall trend was reversed in the early 1970s (Fig.
2c and d), it has continued in parts of central north India that
are adjacent to our drilling sites (Subbaramayya and Naidu,
1992). This is also true of the high Himalaya, as indicated by
the continuing low net accumulation rates from the 1960s to
the present (Hou and others,1999; Qin and others, 2000).

Though model studies mostly suggest an increase in mon-
soon precipitation with greenhouse-gas-induced global tem-
perature increase, as a result of intensification of monsoon
circulation due to increase in land^ocean thermal contrast,
decreased monsoon precipitation was also predicted based
on sulfate aerosol forcing (Lal and others, 1995; Mudur,
1995). Thus the decrease in net accumulation may also be
due to the location of the ice-core drilling sites between two
large emission sources, i.e. China and India.The ER ice core
also shows a one-third increase in sulfate concentration since
the beginning of the 20th century (see below). It is likely that
the increase in atmospheric sulfate aerosol has already begun
to affect the monsoon in the Himalaya, offsetting the increas-
ing trend in monsoon precipitation that would have been
caused by the increase in atmospheric greenhouse gases
(Shrestha and others,1997).

3.2. d18O

The d18O record of the ER core is negativelycorrelated with
the monsoon precipitation for Indian region 7 (R = 0.206),
and the correlation coefficient increases to ^0.323 for the
period 1954^97, when the dating result is more reliable due
to the ­ -activity horizon (Fig. 3). Qin and others (2000) also
suggested that atmospheric circulation is strongly associ-
ated with d18O in the Himalaya. However, Thompson and
others (2000) hypothesized that temperature is the domi-
nant process controlling d18O in the Dasuopu ice core.

In the tropics, a strong inverse relationship is recognized
to exist between the d18O in precipitation and the amount of
precipitation (Dansgaard,1964; Rozanski and others,1992). In
southern regions of the Qinghai^Xizang (Tibetan) Plateau
and the Himalaya, the amount effect on d18O in precipitation
is also evident based on the results from precipitation and
snow-pit sampling (Wushiki, 1977; Wake and Stiëvenard,
1995; Kang and others, 2000; Qin and others, 2000). There-
fore, the inverse association between ER d18O and precipita-
tion in Indian region 7 is to be expected, giventhe influence of
precipitation amount on d18O. Previous studies have also sug-
gested the influence of local moisture transport to FER
Glacier (only a few kilometers from ER Glacier) which has
undergone less isotopic fractionation (Qin and others, 2000).

The ER, FER and Dasuopu cores were all dated by the
reference layers of ­ -activity peaks, and similar sampling
and analysis methods were adopted for the isotopic measure-
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Fig. 3.The d18O profile of the ER cores, together with the summer monsoonal precipitation record for Indian region 7.The dashed
lines show the annual means, and the solid lines show the 3 year smoothing results.

Fig. 4.Three-year smoothing results of the annual Ca2+and Mg2+averages of the ER cores and the annual monsoon precipitation
records for Indian regions 7 and 8.The coarse lines for Ca2+, Mg2+and precipitation profiles show the polynomial regressions to
indicate their corresponding long-term variations. Annual dust-storm history at Minfeng is from Shalamaiti (1996).The original
ionic concentrations were resampled to yield average annual values in order to match with the other annual data, and a 3 year
smoothing mean was applied to eliminate the stochastic effect of dating error.
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ment, so we believe that the d18O profiles of the two cores
reflect their corresponding climatic signals. The apparent
discrepancy between the d18O profiles shows the difficulty of
accurately interpreting ice-core records from the Himalaya,
and more cores are needed to deduce the spatial characteris-
tics of the ice-core records.

3.3. Ca2+ and Mg2+

In Figure 4 we plot the Ca2+ and Mg2+ profiles of the ER
core, together with the monsoon (June^September) precipi-
tation for Indian regions 7 and 8, and the annual dust-storm
duration and days at Minfeng, located on the southern edge
of the Taklimakan desert (Shalamaiti, 1996). A negative
relation is found between the crustal-source Ca2+ and Mg2+

and the monsoon precipitation. The correlation coefficients
are ^0.141 between the annual Ca2+ values and their corres-
ponding regional monsoon precipitation, and 0.244 for the
3 year unweighted running means, respectively.The negative
relationship still exists at decadal scale, as indicated by the
polynomial regressions. The agreement between the Ca2+

and Mg2+ variations and the dust-storm records for the
period 1960^90 indicates the potential influence of the arid
regions on the ice-core Ca2+ and Mg2+ records. Though a
negative trend in dust-storm frequency and duration since
the 1960s was suggested for most places in northern China,
mainly due to the decreasing wind strength (Parungo and
others, 1994; Shalamaiti, 1996; Yang and others, 1998), the
increasing trend of the Ca2+ and Mg2+ profile for recent
decades may reflect enhanced desertification and environ-
mental deterioration in the Himalayan region.

3.4. NH4
+

The NH4
+ profile is fairly flat until the 1940s, then substan-

tially increases until the end of the 1980s, with a slight
decrease during the 1990s (Fig. 5).We compare our data with
the decadal-average NH4

+ concentration of an ice core
drilled on the glacier saddle Colle Gnifetti, Monte Rosa
massif (4450m a.s.l.), Switzerland, whose NH4

+ level was
constant until 1870 and increased afterwards by a factor of
three (Do« scher and others, 1996). Do« scher and others (1996)
have suggested that the NH4

+ concentrations from the begin-
ning of the 20th century are due to NH3 emissions in Europe.
The dominant NH3 emission in Europe arises from agricul-
tural sources, mainly bacterial decomposition of livestock
wastes (81%) and fertilizer application (Buijsman and
others,1987).Therefore, the slightly decreasing NH4

+ concen-
trations of the ER core during the first half of the 20th cen-
tury may reflect reduced agricultural activity in East and
Southeast Asia due to social turbulence, especially during
World War II,while the sharp increase in NH4

+ concentra-
tions during the second half of the 20th century may corres-
pond to population explosion resulting in increased
agricultural activity. In addition, fertilizer was not widely
used throughout East and Southeast Asia until recent
decades. Ammonium data from the Greenland Summit ice
cores also showed a significant increase by more than a factor
of 2 since 1950, mainly for snow deposited during the winter
half-year, suggesting its anthropogenic origin (Fuhrer and
others, 1996). Asman and others (1988) estimated a doubling
of European NH3 emissions since 1920, based on livestock
statistics, and they considered contributions of natural emis-
sions to be already negligible in Europe by 1900. Our results

Fig. 5.Three-year smoothing results of the annual NH4
+averages of the ER cores. Coarse line for the NH4

+profile shows the
polynomial regressions to indicate its long-term variations.The decadal values of NH4

+for an ice core from the glacier saddle
Colle Gnifetti, Monte Rosa massif (4450 m a.s.l.), Switzerland, are from Do« scher and others (1996).
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suggest that NH4
+ did not originate substantially from

anthropogenic sources in the central Himalaya before1950.
Despite the 1991 Kuwait oil fires and the 1997 fires in

Kalimantan and Sumatra, Indonesia (the `̀ best-estimate’’
total NH3 emission is 2.585 MtN for the Indonesia fires only
(Levine, 1999)), NH4

+ concentrations in the 1990s are less
than in the 1980s. According to the calculations of Lee and
Atkins (1994), emissions of NHx(NH3 + NH4

+) from straw
burning were equivalent to approximately 20 kt Na^1 in
1981 and declined to 3.3 kt Na^1 in 1991 as a result of new
agricultural practices. Moreover, fresh-snow chemistry
(wet deposition) explicitly reflects monsoon air mass with
more marine origin (Shrestha and others, 1997). Monsoon
air masses travel over low-lying valleys and mountain slopes
dominated by cultivated land, forests and vegetation before
reaching our drilling site. There are also many villages
where animal husbandry and fertilization of fields with
manure is practised, and burning of firewood is the main
source of domestic energy. Therefore, the decline of NH4

+

concentrations in the 1990s may be attributed to either agri-
cultural practices (e.g. ploughing the straw and stubble into
the soil instead of burning it) or changing sources of domes-

tic energy (e.g. hydropower, oil or solar energy instead of
firewood burning).

3.5. SO4
2^ and NO3

^

Significant variability is evident for the SO4
2^ and NO3

^

profiles (Fig. 6): for example, the maximum and minimum
SO4

2^ and NO3
^ concentrations are 533.57, 3.05, 631.07 and

0.48 ppb, respectively. However, both the SO4
2^ and NO3

^

profiles show an apparent increasing trend, especially
during the period 1940s^80s. Data from the Dasuopu ice
core also indicate double SO4

2^ and NO3
^ concentrations

since 1860 (Thompson and others, 2000). SO4
2^ and NO3

^

concentrations are highest in the 1990s for the Dasuopu
core, but there is a decline during this period for the ER
record.This difference may be largely due to the lower-reso-
lution sampling and averaging effect for the Dasuopu data.

Previous studies have suggested that SO4
2^ and NO3

^ in
the Himalayan snow originate from several sources, includ-
ing crustal species (Mayewski and others, 1983, Wake and
others, 1993), biomass burning (Davidson and others, 1986)
and local acidic gases (Shrestha and others, 1997). We note

Fig. 6.Three-year smoothing results of the annual SO4
2̂ and NO3

^averages of the ER cores. Coarse lines for the SO4
2̂ and NO3

^

profiles show the polynomial regressions to indicate their respective long-term variations.The decadal values of SO4
2̂ and NO3

^

for the Dasuopu core are adapted fromThompson and others (2000).
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that the NO3
^ concentration levels are similar for both the

Dasuopu and ER cores, but SO4
2^ concentrations in the ER

core are roughly double those in the Dasuopu core, which
may be due to local human activity including that of climb-
ing teams who visit the Everest region. However, the similar
temporal variations for SO4

2^, NO3
^, Ca2+ and Mg2+

records of the ER core still reflect the dominance of natural
forces in the Qomolangma (Mount Everest) region.

Fifteen years (1980^95) of observations of weekly mean
concentrations of 18 constituents in the aerosol of the lower
Arctic troposphere at Alert, Canada, indicated a marked
decrease of SO4

2^ and NO3
^ since 1991, likely linked to the

collapse of industry in the early years of the new Eurasian
republics (Sirois and Barrie, 1999). The substantially
decreased SO4

2^ and NO3
^ concentrations of the ER core

in the1990s are consistent with the Arctic observation.How-
ever, the Dasuopo core does not reveal this decrease, possi-
bly because of the lower sample resolution at this site.

4. CONCLUSIONS

Our results indicate that ice cores from high-elevation sites
in the Himalaya preserve information on the change of
monsoon intensity, anthropogenic activities and dust-storm
history. Such kinds of information are not only critical for
understanding the mechanism of the South Asian monsoon
system, but also provide boundary conditions for better
modeling and forecasting.

The apparent spatial discrepancy for some ice-core
parameters shows the need for more cores from the Himalaya
in order to deduce the real signals and the regional chemical
characteristics. For this purpose, we have recovered a 116.7 m
bottom core at the col of ERGlacier (6550 m a.s.l.) in summer
2001, and hope to recover more bottom cores in the Himalaya
next year.
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