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ABSTRACT. With the conclusion of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the
most recent long-lasting cold phase in Earth history. This last glacial advance left a strong observable
imprint on the landscape, such as moraines, trimlines and other glacial geomorphic features. These fea-
tures reflect the extent of former glaciers and ice caps, which in turn provides information on past tem-
perature and precipitation conditions. Here we present an inverse approach to reconstruct the
equilibrium line altitudes (E) from observed ice extents. The ice-flow model is developed solving the
mass conservation equation using the shallow ice approximation and implemented using Graphical
Processing Units (GPUs). We present the theoretical basis of the inversion method, which relies on a
Tikhonov regularization, and demonstrate its ability to constrain spatial variations in mass balance
with idealized and real glaciers.

KEYWORDS: ice and climate, ice-sheet mass balance, mass-balance reconstruction, moraine

1. INTRODUCTION

The Quaternary period, spanning the last 2.6 million years of
Earth history, was marked by warm and short interludes
between long and cold periods. While literature provides
tight constraints on how climate varied during glacial periods
in marine settings (Zachos and others, 2001; Lisiecki and
Raymo, 2005; Herbert and others, 2016), changes in tempera-
ture and precipitation on continents remain poorly con-
strained. Use and availability of proxies such as pollen
(Peyron and others, 1998) and speleothems (Luetscher and
others, 2015) can help shed more light on past climate condi-
tions.However, past glacial advances have left a strong imprint
on the Earth’s surface in the form of moraines, trimlines and
other glacial geomorphic features, which provide us invalu-
able information on past climate on continents (Penck, 1905;
Plummer and Phillips, 2003; Laabs and Carson, 2005).
Furthermore, thanks to geochronological methods (Gosse
and Phillips, 2001), such as14C (Hajdas, 2009), cosmogenic
nuclide (Blanckenburg and Willenbring, 2014) and optically
stimulated luminescence dating (Rhodes, 2011), the timing
of past glacial advances can be dated.

Ice-flow models have been used before to infer past
climate conditions on continents (Plummer and Phillips,
2003; Anderson and others, 2006; Kessler and others,
2006; Jouvet and others, 2008; Golledge and others, 2012;
Rowan and others, 2014; Eaves and others, 2016; Mey and
others, 2016). These studies consisted of running ice-flow
models forward and fitting observed moraines by optimizing
some of the model parameters. A key component in such
models is the mass balance, which defines ice accumulation
and ablation, and is thus primarily a function of precipitation
and temperature (Cuffey and Paterson, 2010). Several models
exist to simulate mass balance, from the simple positive
degree-day model (Braithwaite, 1995) to more sophisticated
energy mass-balance models (Oerlemans, 1992, 1997;
Becker and others, 2016; Pellicciotti and others, 2016).
These models have been successfully applied to reconstruct

glacial history (Becker and others, 2016; Seguinot and others,
2018), but require knowledge of a large number of uncertain
parameters, which might change over a glacial cycle. In-
depth analysis of ice-flow models used for paleoclimatic
reconstructions can be found in the paper by Kirchner and
others (2016).

In practice, past ice thicknesses are poorly constrained.
Recent studies on the European Alps have emphasized the
systematic mismatch between paleo ice-flow model and
reconstruction from trimlines (e.g., Cohen and others,
2017; Seguinot and others, 2018), in terms of ice thickness.
Here we introduce an inversion method to infer spatially
varying mass-balance information from the former extent of
glaciers derived from geomorphological observations, such
as moraines. We apply a gradient descent method to minim-
ize a cost function, which includes the misfit between
modeled and geomorphological maximal glacial extents
and a regularization term to ensure sufficient smoothness of
the inverted variables. As a result, the method consists of
running a forward model a large number of times with a
tuning of the mass balance at each iteration. The ice-flow
model is modeled by solving the mass conservation equation
using the shallow ice approximation (SIA) (Mahaffy, 1976;
Hutter, 1983) and the developed codes are accelerated
using Graphic Processing Units (GPUs).

Below, we first introduce the basic equations governing
our forward model. Then we present the theoretical basis
behind the method and provide a step-by-step recipe for its
numerical implementation. We then illustrate the method’s
efficiency for constraining spatial variations in mass
balance over mountain ranges with a series of examples.

2. FORWARD MODEL

2.1. Ice dynamics
At the time scale relevant for ice-sheet dynamics, ice can be
described as a viscous and incompressible non-Newtonian
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fluid (Cuffey and Paterson, 2010). Ice thickness can be
modeled by solving the mass conservation equation:

∂H
∂t

¼ �∇ � qþ b; (1)

whereH is the ice thickness, q is the horizontal ice flux and b
represents the mass-balance rate. Horizontal ice flux is
defined as vertically integrated velocity field q ¼ R SB u dz,
and we approximate velocities using the SIA:

uðzÞ ¼ �AðρgÞn½Hnþ1 þ ðS� zÞnþ1�j∇Sjn�1∇S|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðiÞ

þ AsðρgÞnHn�1j∇Sjn�1∇S|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðiiÞ

;
(2)

where (i) represents the deformation velocity and (ii) repre-
sents the sliding velocity, S is the surface altitude, ρ is
density of ice, g is the gravitational acceleration, A is the
ice-flow parameter, As is a sliding parameter and n is the
Glen flow law exponent. Values for the flow parameters A
and As are taken from Oerlemans (1997) (who used values
from Budd and others (1979)), and can be found listed in
Table 1, along with the other parameter values used in the
model.

The SIA is based on the assumption that large ice bodies
are mainly deformed by vertical shear stress, and therefore
neglects longitudinal stresses in the mass conservation equa-
tion (Eqn 1). We are using this approximation with the
assumption that the horizontal scale of the ice extent is
much larger than the vertical scale (H≪ L). Solving of full
set of Stokes equations, a full set of momentum equations,
would give more realistic results (especially near the margin
and ice divide). However, the ice extent is primarily a func-
tion of mass balance, topography and ice dynamics. Since
we only consider the extent of ice as forward model output
in our inversion method, we restrict our analysis to the SIA.

The mass-balance rate, b, is defined as the annual gain,
accumulation, or loss of mass, ablation, at the glacier
surface (e.g., Oerlemans, 2001; Cuffey and Paterson,
2010). We define the mass-balance rate, b, as a spatially
varying variable:

b ¼ minðβðSðx; yÞ � Eðx; yÞÞ; cÞ; (3)

where β is the balance rate gradient, E is the equilibrium line
altitude (i.e., the location where accumulation is equal to
ablation) and c is a maximum ice accumulation rate
(e.g., Meier, 1962; Kessler and others, 2006; Oerlemans,
2008). The evolution of the ice cap or glacier surface is in
part determined by the mass-balance rate and its values
depend on the local climate conditions. Mass-balance rate
is positive in the accumulation area and negative in the

ablation area. The mass-balance gradient, β, tends to be
steeper in the ablation than accumulation area (Mayo,
1984). To keep the problem simple for introducing the inver-
sion method, we choose the balance gradient to be constant.

Solving Eqn (1) using the SIA (Mahaffy, 1976; Hutter, 1983)
leads to a non-linear diffusion-reaction type equation that
can be solved numerically (Hindmarsh and Payne, 1996).
In that case, the ice flux q is defined as

q ¼ �D∇S; S ¼ Hþ B; (4)

where B is the bedrock and D is the diffusivity expressed as:

D ¼ ðρgÞn½AHnþ2 þ AsHn�j∇Sjðn�1Þ: (5)

The main advantage of models based on using SIA to solve
the mass conservation equation Eqn (1) is their computa-
tional efficiency, which we further enhance using GPUs.
The details of the numerical implementation we use can be
found in the Appendix A. Note, however, that the inversion
method approach we propose can be used with other types
of approximations for ice flow, such as solving a full set of
Stokes equations or a higher order approximation of these
equations (e.g., Pattyn, 2003; Egholm and others, 2011), as
long as it is computationally possible. For the moment,
running 1000–3000 inversion model runs with higher order
models without the use of GPUs is not practical.

3. INVERSION METHOD
In this section, we provide the theoretical basis of the inver-
sion method and its numerical implementation.

3.1. Theoretical basis
Our objective is to invert a known ice extent into a spatially
variable E using the forward model explained in Section 2.
The forward problem is defined as:

hmðx; yÞ ¼ FðEðx; yÞ; βÞ; (6)

where hm(x, y) is the data we are trying to fit (note that h(x, y) is
used for ice extent and H(x, y) for ice thickness), F is the
forward model (the ice-flow model), and E(x, y) and β are
the unknown parameters of the mass-balance equation,
Eqn (3), we wish to constrain. Below we derive the method
to infer E(x, y) and show it can be extended to β.

As with any inversion method, the primary objective is to
minimize the misfit between the model predictions and the
observations. To do so, we define a misfit function G(E) as
a spatially integrated difference between the ice extent calcu-
lated for a forward model, hm(x, y), and the observations,
ho(x, y) as:

GðEÞ ¼ 1
2

Z Lx

0

Z Ly

0
ðhoðx; yÞ � hmðx; yÞÞ2dxdy; (7)

where [0, Lx] × [0, Ly] is our computational domain. The
chosen computational domain strictly contains the area
where thickness is positive, i.e., we have S= B in the neigh-
borhood of the border of the domain. The goal is then to min-
imize the misfit function G by varying E(x, y) iteratively.

We now look for a descent direction to define a sequence
of Ei, which minimizes the misfit function G. For that
purpose, we formally compute 〈G′(E), δE〉, the directional

Table 1. Ice-flow model parameters

Constants Value Units

A Ice-flow parameter 1.9 · 10−24 Pa−3 s−1

As Sliding flow parameter 5.7 · 10−20 Pa�3m2s�1

ρ Ice density 910 kgm�3

g Gravitational constant 9.81 ms�2

n Exponent in Glen flow law 3
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derivative of G with respect to E along a given direction δE:

〈G0ðEÞ; δE〉 ¼ �
Z Lx

0

Z Ly

0
ðhoðx; yÞ

� hmðx; yÞÞ ∂hmðx; yÞ∂E
δEdxdy: (8)

The term ∂hm/∂E represents the change of ice extent with
respect to E, which are both function of x and y.

The goal of the inversion is to minimize G, and thus make
〈G′(E), δE〉 negative. However, the inverse problem is under-
determined (Hansen, 1994; Zhang and Xu, 2011). We solve
this by imposing some form of regularization. Here we
assume a smooth solution and impose smoothness on E
using a Tikhonov regularization (Tikhonov, 1963; Poplavskii
and others, 2001). We do this by defining a new misfit
function G, now containing the regularization term:

GðEÞ ¼ 1
2

Z Lx

0

Z Ly

0

�
ðhoðx; yÞ � hmðx; yÞÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiÞ

þ τ2

��
∂E
∂x

�2

þ
�
∂E
∂y

�2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðiiÞ

��
dxdy;

(9)

(i) in Eqn (9) is the same as in Eqn (7), while (ii) imposes the
smoothness on the solution. The parameter τ2 is a positive
constant which acts as the additional constraint of smooth-
ness. A large constant would force the solution to be very
smooth, while a small or zero constant would cancel this
constraint. Following the same derivation as above for (ii):

〈G0ðEÞ; δE〉 ¼
Z Lx

0

Z Ly

0
τ2

∂E
∂x

∂
∂x

δE þ ∂E
∂y

∂
∂y

δE
� �

dxdy; (10)

and using the integration by parts:Z Lx

0

Z Ly

0

∂E
∂x

∂
∂x

δE þ ∂E
∂y

∂
∂y

δE
� �

dxdy

¼ ∂E
∂x

þ ∂E
∂y

� �
δE

� �Lx;Ly
0;0

�
Z Lx

0

Z Ly

0

∂2E
∂x2

δE þ ∂2E
∂y2

δE
� �

dxdy:

(11)

Because the first term on the right-hand side becomes neg-
ligible, as there is no ice on the boundaries of the model, we
can choose E in the neighborhood of the border such that
∂E/∂x= ∂E/∂y= 0, so 〈G′(E), δE〉 becomes:

〈G0ðEÞ; δE〉 ¼
Z Lx

0

Z Ly

0
�τ2

∂2E
∂x2

þ ∂2E
∂y2

� �� �
δEdxdy; (12)

which combined with Eqn (8) gives:

〈G0ðEÞ; δE〉 ¼
Z Lx

0

Z Ly

0
hoðx; yÞ � hmðx; yÞð Þ � ∂hmðx; yÞ

∂E

� ��

� τ2
∂2E
∂x2

þ ∂2E
∂y2

� ��
δEdxdy:

(13)

Following the same logic, one can perform the same devel-
opment for β instead of E:

〈G0ðβÞ; δβ〉 ¼
Z Lx

0

Z Ly

0
hoðx; yÞ � hmðx; yÞð Þ � ∂hmðx; yÞ

∂β

� ��

� τ2
∂2β
∂x2

þ ∂2β
∂y2

� ��
δβdxdy:

(14)

3.2. Numerical implementation of the inverse
algorithm
To this end, we use the gradient descent method (Press,
2007; Fletcher, 2013), in which E(x, y) is updated with the
following increment:

δE ¼ � τ1 ho � hmð Þ � τ2
∂2E
∂x2

þ ∂2E
∂y2

� �� �
: (15)

This choice of δE leads to a decrease of the misfitG, assuming
an appropriate choice of the iteration parameters τ1 and τ2,
which are positive constants. We show below that recombin-
ing and substituting Eqn (15) into Eqn (13) results in negative
increment of the misfit G:

〈G0ðEÞ; δE〉 ¼
Z Lx

0

Z Ly

0
�δE � hoðx; yÞ � hmðx; yÞð Þ½

×
∂hmðx; yÞ

∂E
þ τ1

� ��
δEdxdy:

(16)

Sorting Eqn (16) leads to:

〈G0ðEÞ; δE〉 ¼ �
Z Lx

0

Z Ly

0
δE½ �2dxdy

�
Z Lx

0

Z Ly

0
hoðx; yÞ � hmðx; yÞð Þ

×
∂hmðx; yÞ

∂E
þ τ1

� �
δEdxdy:

(17)

Table 2. Implementation of the inversion algorithm

Inversion algorithm

I. Assign initial guesses for E
II. Run the forward SIA model F(E, β), mass-balance rate b is calculated using (Eqn (3)).
III. Output of the forward model, the ice extent (h), is used to calculate an error function γ:

γ= ho− hm
IV. Update the E by multiplying the error function γ with accompanying parameters:

E= E− τ1γ
V. The problem is regularized by applying diffusion to updated E

E ¼ E þ τ2∇
2E

VI. Repeat steps II to V until γ is minimized
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One can see that Eqn (17) is negative if the term (ho(x, y)−
hm(x, y)) is sufficiently small, in other words the method con-
verges if our initial guess is not too far from the final solution.

In practice, we follow the steps of the inversion algorithm
presented in Table 2. First, we start by assigning an initial
guess for E (step I). We arbitrarily choose an equilibrium
line altitude field, E, and add some white noise to avoid
imposing a spatial pattern to the solution, and therefore
avoid the influence of the initial guess on the solution.
Adding random noise enables to test whether the method
can retrieve a meaningful solution or not, even with a poor
initial guess. Next, the mass conservation equation Eqn (1)
is solved using the mass-balance rate field, (b), calculated
using the input E, Eqn (3), and the model is run until a
steady state is reached, i.e., the ice thickness and ice extent
do not change (step II). The output of the forward model,
i.e., the ice extent, is used to calculate γ (step III). We
define γ as the difference between observed ice extent data
and ice extent calculated from a forward model run. Note
that although the algorithm works using ice thickness (H),
we rarely know it. In that case, we calculate ice extent (h)
by setting ice thickness equal to 1 where there is ice, and
equal to 0 where there is no ice. Step IV consists of updating
the equilibrium line altitude locally by increasing (or
decreasing) it where the modeled ice extent/ice thickness
was found large (or small). If the glacier is too thick or goes
beyond the ice extent, E is raised. Conversely, E is lowered
if the glacier extent is too small. We then regularize the
problem by applying diffusion on E using τ2 (step V) for a
chosen number of diffusion iterations, nsm. Steps IV and V
correspond to one step of the descent direction given by
Eqn (15). Finally, we return to step II, and iterate until γ is
minimized (step VI). In the case where we want to invert
for β instead of E, the described steps remain the same.
One only needs to replace E with β in the equations since
the equations are identical.

The parameters τ1 and τ2 are positive scalar values, which
must be chosen. Both τ1 and τ2 are problem dependent. The
choice is based mainly on the spatial dimensions of the
problem and the spatial variability of the solution.

Furthermore, the choice of the inversion update parameter
τ1 reflects on the precision of the result. Too high a value will
make it difficult for the inversion algorithm to converge to the
solution because of too large jumps in value of E after each
inversion step. On the other hand, a small value, after apply-
ing diffusion, might not result in a change in E that is suffi-
ciently large enough to modify the ice extent of an area,
thus not enable to fit the data successfully.

Diffusion in step V represents the smoothness one wishes
to impose on E. We do this by iteratively solving the diffusion
equation using a fully explicit scheme. The degree of smooth-
ness is set by the number of iterations used in the explicit
scheme. A large number of diffusion iterations may lead to
a very smooth solution, and might not enable to capture
local variations in mass-balance rate. In contrast, a small
number of diffusion iterations leads to overfitting the data.
We must keep in mind that we are fitting the ice extent by
varying only one physical parameter, E, and that differences
between observations and our model output could come also
from the assumptions made in our forward model. The
choice of number of diffusion iteration is illustrated later on.

We would like to stress here, the algorithm shows that the
method only requires computing ice thickness and the
Laplacian of E.

4. RESULTS
In this section, we illustrate the efficiency of the method with
a series of synthetic examples. We start with a simple 2-D
problem and then present a 2-D synthetic example using
real topography (Uinta Mountains). In the simple 2-D
example we show, in separate experiments, that the
method can invert the ice extent in order to recover both E
and β, while in the Uinta Mountains example we show that
one can use ice thickness as well as ice extent to reconstruct
E. Finally, we show how the method can be applied to a
natural example at the Last Glacial Maximum (LGM) in the
South Island of New Zealand. In the following experiments,
ice extents are presumed to be reached at the same time,
steady state solution, and sliding is parametrized to be con-
stant. The balance gradient, β, is also kept constant in all
examples except where we use the method to recover β.
Since we can only do our inversion in the area of the map
where we have ice, the results will also be presented only
within the ice extent.

4.1. Two-dimensional inversion
For this 2-D case, we present two experiments. First, we
invert the synthetic ice extent and assess whether the
method enables us to recover the prescribed E, and in the
second experiment we show that the method is capable to
recover β as well. The ice thickness, hence ice extent as
well, are simulated by prescribing an arbitrary E and β.

A combination of two simple Gaussian shapes is used for
the bedrock:

B¼B0 exp � X2

1010
� Y2

109

� �
þexp � X2

109
�ðY�ðLy=8ÞÞ2

1010

 !" #
;

(18)

where B0 is the maximum bedrock elevation, X and Y
represent the matrices of distance vectors, and Ly is the
length scale in the y-direction. The prescribed Eo we wish
to recover is defined as follows:

Eo ¼ 2150þ900arctan
Y
Ly

� �
: (19)

In this experiment, β is constant and set to 0.01. The initial
guess is equal to 3000 m with 400 m amplitude white noise.

In the second experiment, we show that the method
enables to recover the mass-balance gradient, β. For this,
we use the same setup as above, i.e., bedrock is defined as
in Eqn (18), and E as in Eqn (19). We prescribe βo we wish
to recover:

βo ¼ 0:01þ 0:015 arctan
X
Lx

� �
; (20)

where Lx is the length scale in the x-direction.
Figure 1 shows the calculated E and β (Figs 1a and 1c) and

the differences between our inversions and the prescribed
values (Figs 1b and 1d). In both cases, during the inversion,
convergence is reached when the differences between the
forward model output ice extent differ from our synthetic
‘observations’ by <10 points. The results show that conver-
gence is reached after 293 iterations for E and 149 iterations
for β. More importantly, the two results demonstrate that it is
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possible to recover E and β using this approach, and capture
the spatial variation that was imposed by Eqns (19) and (20)
and illustrated in Figs 1a and 1c. The parameters used in this
test are summarized in Table 3.

4.2. Two-dimensional inversion, Uinta Mountains
synthetic test
Now the method is applied to a real topography. In this
example, we show that the method is capable of restoring
spatially variable E by using the ice extent as well as ice thick-
ness as data. The Uinta Mountains, North America, was used
as bedrock topography (Fig. 2a). The topography was
extracted from the SRTM data (Jarvis and others, 2008) and
smoothened using a median filter.

First, a forward model was run with a prescribed Eo, which
includes some spatial variability. The imposed pattern
follows a N–S arctangent form. The ice extent is derived
from the calculated ice thickness, which then represents

the synthetic observations that we wish to invert for mass
balance. The ice extent is calculated by setting the ice thick-
ness equal to 1 where there is ice, and to 0 where there is not.
Furthermore, high peaks that pierce through the ice are not
included in our misfit calculations. The initial guess for Em
field is 3100 m with 400 m amplitude random white noise
added to it. To assess the performance of the inversion
scheme, the sum of differences between the synthetic Eo
field and the calculated Em are monitored. All parameters
used can be found in Table 4.

The results of the inversion for the Em field are presented
in Fig. 2. The differences between the prescribed solution
Eo and inversion model solution Em are <30 m, which
falls under 5% difference from the prescribed solution
(Fig. 2c).

We now repeat the same test with the same forcing, but
instead of using the ice extent we randomly chose ice
thickness points on our synthetic glacier. Out of 40 317
ice thickness points within the ice extent we chose 433
(Fig. 9a). The only difference in the approach from the
previous example is that now we calculate γ as a difference
of ice thickness values in the chosen points between cal-
culated and synthetic ice. The resulting figures (Fig. 9 in
Appendix B) and tables with used parameters can be
found in Appendix B.

Now we investigate the influence of the number of the
diffusion iterations. We report two different end-member
cases. The first one uses only five diffusion iterations
(Fig. 3a) and the second uses 5000 iterations (Fig. 3b).
Fig. 3 shows the differences between the Eo for the two
end-member tests. It appears that the choice of the
number of diffusion iterations strongly influences the preci-
sion of the result. A large number of diffusion iterations
reduces the spatial variability in mass balance, and is thus
filtering out any local gradient, whereas a small number of
diffusion iterations reduces the rate at which the residuals
are decreased (Fig. 4).

Fig. 1. (a) shows the calculated (modeled) E using our inversion algorithm, (b) difference between synthetic and calculated Ewhere there is ice
(within the ice extent), (c) shows the calculated (modeled) β using our inversion algorithm, (d) difference between synthetic and calculated β
where there is ice (within the ice extent).

Table 3. Two-dimensional inversion parameters

Constants Value Units

B0 Max. bedrock elevation 3500 m
β Mass-balance gradient 0.01 a�1

c Max. ice accumulation 2.0 ma�1

nx Number of points in x 100
ny Number of points in y 100
Lx Length scale in x 250 000 m
Ly Length scale in y 200 000 m
nsm Number of diffusion iterations (both cases) 30
τ1 (E) E inversion update parameter 390 m
τ1 (β) β inversion update parameter 0.015 a−1

τ2 Diffusion update parameter (both cases) 0.25 · min
(dx2, dy2)

m2
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4.3. Inversion of LGM ice extent in the South Island of
New Zealand
To verify the method for a real situation, we reconstruct the
LGM mass balance using the observed ice extent of the
South Island of New Zealand (Barrell, 2011). This example

offers us the possibility of comparing the results with previous
reconstructions (Golledge and others, 2012).

The South Island’s climate is heavily influenced by the
Westerlies. As the air flows across the Southern Alps, precipi-
tation is orographically enhanced with up to 10 m a−1 of pre-
cipitation on the west side (Henderson and Thompson,
1999). The eastern slopes see considerably lower rates of pre-
cipitation (about 1 m a−1) as a consequence of the westerly
airflow across the mountain range.

In the past, the Southern Alps have experienced exten-
sive glaciations, including full transitions from glacial to
fluvial processes (Whitehouse, 1988). Climate has con-
trolled the growth and decay of mountain glaciers in New
Zealand since at least 2.4–2.6 Ma (Suggate, 1990), as testi-
fied by an exceptional moraine record across the entire
South Island (Barrell, 2011). During the LGM, the North
Atlantic meridional overturning circulation was weakened
compared with present, the Intertropical Convergence
Zone shifted southward, which in the southern mid-lati-
tudes modified the location of wind and temperature
(Rojas and others, 2009; Denton and others, 2010;
McGlone and others, 2010). The LGM was thus marked
by changes in regional atmospheric conditions that
affected winds and precipitation in the Southern Alps,
which may have led to a change in humidity, possibly
up to 25% drier than today (Golledge and others, 2012).
Temperatures were between 4°C and 8°C lower than
today (Newnham and others, 1989; Barrows and others,
2007; Golledge and others, 2012; Seltzer and others,
2015). Most importantly, despite these changes, the oro-
graphically enhanced precipitation was preserved during
the LGM. This contrast of precipitation is also observed
in the position of the equilibrium line altitude, E, on
either side of the mountain range (Golledge and others,
2012). Therefore, the spatial variation in E provides us
with an appropriate test.

In this inversion, we constrain E(x, y) using the LGM ice
extent (Barrell, 2011) shown in Fig. 5a. For simplicity, we
use the present day bedrock with all elevations below sea
level set to zero. Note, we assume that the ice extent
obtained from data is reached at the same time over its
entire length. All parameter values used for this test can be
found in Table 5.

We present twomodel results, test A and test B, for two dif-
ferent sets of τ1, τ2 and nsm. Both test results (Fig. 5) exhibit a
clear north–south gradient in the elevation of E, as well as the
west–east gradient. The N–S change could be the result of the
temperature change because of the latitudinal differences,
making the southern areas colder and with larger accumula-
tion zones, and in turn lower E values. The W–E gradient
reflects the influence of the westerly winds bringing precipi-
tation to the west side, thus increasing the accumulation and
lowering the altitude of E, while the east side is drier with less
accumulation and higher E.

In the second test, test B, we reduce the values of the
update parameters, τ1 and τ2, and the number of diffusion
steps nsm. Reducing nsm leads to more local variations.
Smaller τ2 (five times smaller than the first test) reduces
the influence of smoothing, while a smaller τ1 results in
smaller changes in E between iterations, all resulting in a
more precise fit. Figs 6a and 6b show the differences
between the observed (data) and calculated ice extent
(model) for each test. Test B enables to better fit the data,
although it does it at the expense of creating local

Fig. 2. (a) shows the bedrock map used (Uinta Mountains) with the
synthetic ice extent, (b) is the calculated (modeled) E using our
inversion algorithm, (c) difference between synthetic and calculated
E where there is ice (within the moraines extent).

Table 4. Uinta Mountains inversion experiment parameters

Constants Value Units

β Mass-balance gradient 0.007 a�1

c Max. ice accumulation 2.0 ma�1

nx Number of points in x 512
ny Number of points in y 512
dx Spatial discretization in x 339.56 m
dy Spatial discretization in y 242.44 m
nt Number of forward model iterations 150 000
niter Number inverse iterations 1000
τ1 E inversion update parameter 150 m
τ2 Diffusion update parameter 14 336 m2

nsm1 Number of diffusion iterations – Figure 2 50
nsm2 Number of diffusion iterations – Figure 3a 5
nsm3 Number of diffusion iterations – Figure 3b 5000
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depressions in E. This information is lost in the first test
because higher smoothing, nsm, acts as a filter of local var-
iations. It is worth keeping in mind that we are showing the
results of the inversion algorithm varying only one param-
eter, E. This results in overfitting the data and neglecting
the influence of other physical processes ignored in the
model as well as approximations made in the forward
model, as stated above.

Fig. 3. (a) is the difference between synthetic and calculated E where there is ice ( within the moraines ice extent) with number of diffusion
iterations set to 5, (b) is the difference between synthetic and calculated E where there is ice with number diffusion of iterations set to 5000.

Table 5. New Zealand inversion experiment parameters

Constants Value Units

β Mass-balance gradient 0.02 a�1

c Max. ice accumulation 2.0 ma�1

nx Number of points in x 1024
ny Number of points in y 1024
nt Number of forward model iterations 110 000
dx Spatial discretization in x 668.99 m
dy Spatial discretization in y 646.51 m
niter Number inverse iterations 3000
τ11 E inversion update parameter - test A 100 m
τ21 Diffusion update parameter - test A 101 944 m2

nsm1 Number of diffusion iterations - test A 100
τ12 E inversion update parameter - test B 25 m
τ22 Diffusion update parameter - test B 20 389 m2

nsm2 Number of diffusion iterations - test B 5

Fig. 4. Residuals calculated as a sum of differences between the
synthetic E and the calculated E where there is ice. The red dots
represent residuals for the case shown in Figure 3a, green for case
shown in Figure 3b and blue the case from Figure 2.

Fig. 5. Application of the inverse algorithm to the South Island of
New Zealand. (a) Bedrock map used (gray) with the LGM ice
extent obtained from Barrell (2011) (green), (b) calculated
(modeled) E field using our inverse algorithm where there is ice
(Test A), (c) E field calculated with the second set of parameters
using our inverse algorithm where there is ice (Test B).
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5. DISCUSSION AND CONCLUSIONS
The main goal of this paper is to present a simple inversion
method to reconstruct the spatially variable mass balance
and equilibrium line altitude (E) fields using ice extent data.
This approach offers the possibility of constraining past cli-
mates in glaciated mountain ranges. The inverse method is
based on a Tikhonov regularization and computationally,
besides the forward model, only requires the calculation of
a diffusion equation. In order to show the range of applica-
tions of the method, we have constructed six experiments,
both synthetic and natural, whose results are presented. To
significantly reduce the calculation time necessary for our
inverse model, we have implemented the codes to run on
GPUs.

In the first experiment, the 2-D synthetic case, we have
shown the method is capable of reconstructing a spatially
variable E as well as a spatially variable β on a simple topog-
raphy, consisting of a combination of two Gaussian bumps,
using ice extent (Fig. 1). The second experiment is the 2-D
synthetic case using real topography (Uinta Mountains)
where we show that the method can successfully reconstruct
spatially variable E, defined as an arctangent function from
N–S, using only ice extent as constraint for our inversion.
We first ran our forward ice-flow model with a chosen
setup and then used the calculated ice extent as synthetic
observations to invert E we originally used. The error while
recovering E is less than 5% (Fig. 2c). The same was done
in the experiment using ice thickness points presented in
Appendix B. The difference is that instead of the ice extent
we are using randomly chosen ice thickness points
(Fig. 9a). Fig. 9 in Appendix B shows that the method can
do the inversion successfully. When analyzing errors of the
results obtained using ice extent (Fig. 2c) and ice thickness
(Fig. 9c), we can see that using the ice extent the largest
error is in the middle of the ice extent and the opposite
effect using ice thickness. This happens because the
method is more precise in places where it is better con-
strained by data. In the ice extent case, the errors are
smaller on the edges, and in the ice thickness case, errors
are larger on the edges and smaller inside the ice because
of the distribution of our ice thickness points.

The influence of different number of diffusion iteration has
been presented (Figs 3a, 3b). It is clear that too many diffu-
sion iterations will result in losing the spatial variability of
the result, while too little iterations will not propagate the
update from the edges of the ice efficiently to its middle.

In order to verify the method, we applied it to a real case,
the LGM ice extent of the South Island of New Zealand
(Barrell, 2011). The assumption made in this experiment is
that the entire ice extent is reached at the same time,
representing something close to the LGM steady state. Our
inversion result for the first test is similar in both pattern
and values to the reconstruction done by other authors
(Golledge and others, 2012). Fig. 5b shows a clear N–S gra-
dient, which corresponds to the latitudinal change and is thus
controlled by temperature, and a clear W–E gradient, which
corresponds to the influence of the Westerlies and is thus
controlled by precipitation. The second result is an
example of overfitting the data. It is important to emphasize
that the model setup for this experiment is simplified,
which is one of the reasons for the mismatches between
the observed and calculated ice extent (Fig. 6b). The
bedrock topography used was the current one and the
values below sea level were set to 0, thus ignoring calving.
Basal sliding was parameterized as a constant value, while
basal melting was not taken into account. The influence of
isostasy was ignored, which is not a valid assumption for
such an ice mass, and is most likely the reason E elevations
are higher than expected. Despite these limitations, our
method is still able to invert the spatial pattern, both the N–

S and W–E gradients, and recover values close to other
reconstructions.

The experiments presented show several possible appli-
cations. In order to obtain a more accurate reconstruction
of mass-balance parameters for large mountain ranges, the
forward model needs to be improved to include the effects
of isostasy. The choice of bedrock topography for a
certain time period remains a setback. The use of present
day topography for LGM neglects the change in the
amount, distribution and thickness of eroded and deposited
sediments since the LGM. Sediment-filled valleys today
might have been empty or not even eroded. This influences
where our ice can flow in forward model calculations,
changing the resulting ice extent and therefore our inverse
calculations.

The role of β has not been fully addressed in cases where
we attempt to recover E. In the presented experiments
the balance gradient β was set to be constant value,
and chosen arbitrarily. Future work will include an
expansion of the method in order to recover both spatially
variable E and β fields. Computationally, adding the inver-
sion of another parameter in the algorithm would only

Fig. 6. Differences between the observed and modeled ice extents. (a) Test A. (b) Test B. Yellow represents areas where the data have ice but
the model output does not, the red is where the model output calculates ice and the data show there was no ice in those areas.
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require the calculation of an additional diffusion equation
for β.

Similar methods to quantify climate parameters (tempera-
ture, precipitation, mass balance, equilibrium line altitude)
using ice extents have been developed by other authors
(Plummer and Phillips, 2003; Kessler and others, 2006;
Golledge and others, 2012; Rowan and others, 2014). The
approaches differ in defining the climate forcing (energy
balance model, positive degree-day model, net mass
balance Eqn (3)), and the ice-flow models used vary in
complexity. Some authors use current day conditions or
present-day mean annual temperature and precipitation
measurements to produce scenarios where these parameters
are uniformly changed, temperature reduction by −1°C or
precipitation lowered by 25%, and then compare ice-flow
model calculations with observations. The main difference
with our approach is that our inversion algorithm works as
a spatially variable optimization.

Overall, we show that by calculating only an additional
diffusion equation, the method is capable to reproduce the
general pattern of a spatially variable E over a mountain
range using ice extent data.
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APPENDIX A. NUMERICAL IMPLEMENTATION OF
THE FORWARD MODEL
Equation (1) is solved explicitly using the finite difference
method (FDM) on a staggered grid (Hindmarsh and Payne,
1996). Figure 7 is a schematic presentation of a staggered
grid. The ice thickness points are in the nodes of the grid,
while fluxes are in between the nodes and the diffusivities
are in the middle of the cell. To conserve mass and avoid
unrealistically large fluxes that can occur when using the
SIA on high resolutions and steep terrains (Plummer and
Phillips, 2003; Jarosch and others, 2013), we have

Fig. 7. Scheme representation of the staggered grid.

Fig. 8. Comparison between our numerical solution and the
benchmark provided from Jarosch and others (2013). The red line
represents the bedrock topography; the blue line is the analytical
solution. The blue dots are the numerical solution of our forward
model.
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implemented a flux correction for diffusivity calculations
based on an algorithm inspired by Wang and
others (2011). This changes how B, H and the slope ∇S in
Eqns (4) and (5) are calculated compared with Hindmarsh
and Payne (1996) and substantially helps the convergence
of our forward model. The topography and ice thickness
are computed as follows:

~Biþ1
2;jþ1

2
¼ max½Bi;j;Biþ1;j;Bi;jþ1;Biþ1;jþ1�; (A1)

~Hiþ1
2;jþ1

2
¼ 1

4
max½0; Si;j � ~B; Siþ1;j � ~B; Si;jþ1

� ~B; Siþ1;jþ1 � ~B�;
(A2)

and the slope:

∂S
∂x

≈
maxð~B; Siþ1;jÞ �maxð~B; Si;jÞ þmaxð~B; Siþ1;jþ1Þ �maxð~B; Si;jþ1Þ

2dx
; (A3)

∂S
∂y

≈
maxð~B; Si;jþ1Þ �maxð~B; Si;jÞ þmaxð~B; Siþ1;jþ1Þ �maxð~B; Siþ1;jÞ

2dy
; (A4)

and the squared norm:

∇Sj j2¼
�
∂S
∂x

�2

þ
�
∂S
∂y

�2

: (A5)

Finally, the fluxes in x and y directions are defined as:

qxðiþ1
2;jÞ ¼

Diþ1
2;jþ1

2
þDiþ1

2;j�1
2

2
maxðmaxðBiþ1;jþ1;Bi;jþ1Þ; Siþ1;jþ1Þ �maxðmaxðBiþ1;jþ1;Bi;jþ1Þ; Si;jþ1Þ

dx
; (A6)

qyði;jþ1
2Þ ¼

Diþ1
2;jþ1

2
þDi�1

2;jþ1
2

2
maxðmaxðBiþ1;jþ1;Biþ1;jÞ; Siþ1;jþ1Þ �maxðmaxðBiþ1;jþ1;Biþ1;jÞ; Siþ1;jÞ

dy
: (A7)

Combining the above expressions gives us the divergence
of the flux:

∇ � q ≈
qxðiþ1

2;jÞ � qxði�1
2;jÞ

dx
þ
qyði;jþ1

2Þ � qyði;j�1
2Þ

dy
: (A8)

Because we are solving our equations explicitly, our time
step dt is strongly restricted by the Courant–Friedrichs–
Lewy (CFL) condition, resulting in many forward model
iterations before converging to a solution. We balance
this by writing our codes for GPUs, which significantly
increase our computational efficiency. GPUs are specia-
lized for intensive highly parallel computation (graphics
rendering) with more transistors devoted to data process-
ing rather than data caching and flow control (NVIDIA,
2017). Since we are only interested in steady-state solutions
of Eqn (1), we accelerate the convergence using a local time
step, such that

dtti;j ¼ min
1
c
; cstab

minðdx2; dy2Þ
eþ ~D

t
i;j

0
@

1
A; (A9)

where dx and dy is the spatial step, dtti;j is the local time at
each iteration, c is the maximum ice accumulation rate

from Eqn (3), cstab is the time-step coefficient (Courrant
number, for 2-D cases in this paper set to 1/8.1), e is a

small number (10−3) and ~D
t
i;j is the spatially averaged value

of diffusivity for a given point (i, j) for the current (t)
iteration. Note here that one can solve the steady-state state
solution of the reaction-diffusion equation directly as a
non-linear elliptic equation (Jouvet and others, 2008, 2011;
Jouvet and Bueler, 2012).

Because solving our inverse problem explicitly may
require a large number of iterations, thousands of inverse
model iterations and tens to hundreds of thousands forward
model iterations, or if we are interested in either high-reso-
lution or continental scale problems, we accelerate the
code on GPUs using the parallel computing platform
CUDA created by NVIDIA (Micikevicius, 2009; NVIDIA,
2017). Other authors have also implemented ice-flow
models for GPUs (Brædstrup and others, 2014).

When implemented on GPU, the computation time for
our forward model to calculate 110k iterations, and reach
steady state, on a 1024 × 1024 grid takes around 113 s
using GeForce GTX TITAN black card, and 76 s using
TITAN X card, both cards were used to for our experiments
and both are gaming cards, while one inverse model iteration
step takes around 121 s and under 80 s, respectively. This
number varies with the model of the GPU used. Just as an

Table 6. Uinta Mountains ice thickness experiment

Constants Value Units

β Mass-balance gradient 0.007 a�1

c Max. ice accumulation 2.0 ma�1

nx Number of points in x 512
ny Number of points in y 512
dx Spatial discretization in x 339.56 m
dy Spatial discretization in y 242.44 m
nt Number of forward model iterations 150 000
niter Number inverse iterations 1000
τ1 E inversion update parameter 14 m
τ2 Diffusion update parameter 11 712 m2

nsm Number of diffusion iterations 130
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example to solve the same forward problem with the same
setup on a professional GPU NVIDIA Tesla V100 takes 24 s.
The forward model was benchmarked using the experiment
proposed by Jarosch and others (2013) (Fig. 8).

APPENDIX B. UINTA EXAMPLE USING ICE
THICKNESS
Here we present the result and the values used for the inver-
sion experiment using ice thickness values instead of ice
extent. Fig. 9a represents the result of the method, while
Fig. 9b shows the differences between the calculated E and
a synthetic one. Parameter values used in the setup can be
found in Table 6.

MS received 8 January 2018 and accepted in revised form 3
October and 4 October 2018;

first published online 15 November 2018

Fig. 9. Results of the inversion algorithm using ice thickness points
instead of ice extent (a) position of the randomly chosen ice
thickness points with color corresponding to their altitude (point
size not to scale), (b) is the calculated (modeled) E using our
inversion algorithm, (c) difference between synthetic and
calculated E where there is ice (within the moraines extent).
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