LATTICE SUBGROUPS OF FREE CONGRUENCE GROUPS

by A. W. MASON

(Received 16 February, 1968)

1. Introduction. Let $\Gamma(1)$ denote the homogeneous modular group of 2×2 matrices with integral entries and determinant 1. Let $\widehat{\Gamma}(1)$ be the inhomogeneous modular group of 2×2 integral matrices of determinant 1 in which a matrix is identified with its negative. $\hat{\Gamma}(N)$, the principal congruence subgroup of level N, is the subgroup of $\mathrm{\Gamma}(1)$ consisting of all $T \in \mathrm{\Gamma}(1)$ for which $T \equiv \pm I(\bmod N)$, where N is a positive integer and I is the identity matrix. A subgroup \mathscr{G} of $\Gamma(1)$ is said to be a congruence group of level N if \mathscr{G} contains $\widehat{\Gamma}(N)$ and N is the least such integer. Similarly, we denote by $\Gamma(N)$ the principal congruence subgroup of level N of $\Gamma(1)$, consisting of those $T \in \Gamma(1)$ for which $T \equiv I(\bmod N)$, and we say that a subgroup \mathscr{G} of $\Gamma(1)$ is a congruence group of level N if \mathscr{G} contains $\Gamma(N)$ and N is minimal with respect to this property. In a recent paper [9] Rankin considered lattice subgroups of a free congruence subgroup \hat{F}_{n} of rank n of $\hat{\Gamma}(1)$. By a lattice subgroup of \hat{F}_{n} we mean a subgroup of \hat{F}_{n} which contains the commutator group \hat{F}_{n}^{\prime}. In particular, he showed that, if \hat{F}_{n} is a congruence group of level N and if \mathscr{G} is a lattice congruence subgroup of \hat{F}_{n} of level $q r$, where r is the largest divisor of $q r$ prime to N, then N divides q and r divides 12 . He then posed the problem of finding an upper bound for the factor q. It is the purpose of this paper to find such an upper bound for q. We also consider bounds for the factor r.

We note that, if \hat{G} is a lattice congruence subgroup of level $q r$ of a free congruence subgroup \hat{F}_{n} of level N, then $\mathscr{G} \cap \hat{\Gamma}(N)$ is a lattice congruence subgroup of $\hat{\Gamma}(N)$ of level $q r$. This reduces the problem to the consideration of lattice subgroups of $\Gamma(N)$ which are congruence groups of level qr. We may also assume that such a lattice subgroup is normal in $\hat{\Gamma}(1)$, since the intersection of its conjugates is also a lattice congruence subgroup of $\mathrm{\Gamma}(N)$ of the same level $q r$. We therefore confine our attention to lattice subgroups of $\Gamma(N)$ in $\Gamma(1)$ which are congruence groups of level $q r$ and which are normal in $\Gamma(1)$. We use McQuillan's classification of normal congruence subgroups of $\Gamma(1)[4]$ and follow his notation.
2. Let $G \cong \prod_{i=1}^{s} G_{i}$, the direct product of s finite groups G_{i}, and let L be a subgroup of G. We let $F_{i}=\left\{g_{i} \in G_{i}:\left(1,1, \ldots, g_{i}, \ldots, 1\right) \in L\right\}$ and call F_{i} the i th foot of L.

Theorem 1. If L is a normal subgroup of G, then F_{i} is normal in G_{i}. If, in addition, G / L is abelian, then G_{i} / F_{i} is abelian $(1 \leqq i \leqq s)$.

The proof is clear and is omitted.
Now let $N=\prod_{i=1}^{t} p_{i}^{x_{i}}$ and $q=\prod_{i=1}^{t} p_{i}^{\beta_{i}}$, where p_{i} is prime and $\beta_{i} \geqq \alpha_{i}>0(1 \leqq i \leqq t)$.
Theorem 2. $\Gamma(N) / \Gamma(q r) \cong \Gamma(1) / \Gamma(r) \times \prod_{i=1}^{t} \Gamma\left(p_{i}^{\alpha_{i}}\right) / \Gamma\left(p_{i}^{\beta_{i}}\right)$.

Proof. It is well known [7] that $\Gamma(d) / \Gamma(d m n) \cong \Gamma(d) / \Gamma(d m) \times \Gamma(d) / \Gamma(d n)$, when d is an arbitrary positive integer and $(m, n)=1$. By repeated applications of the above we obtain

$$
\Gamma(N) / \Gamma(q r) \cong \Gamma(N) / \Gamma(N r) \times \prod_{i=1}^{r} \Gamma(N) / \Gamma\left(N p_{i}^{\beta_{i}-\alpha_{i}}\right) .
$$

The result follows since $(r, N)=1$, and so

$$
\Gamma(N) / \Gamma(N r) \cong \Gamma(1) / \Gamma(r)
$$

Also

$$
\Gamma(N) / \Gamma\left(N p_{i}^{\beta_{i}-\alpha_{i}}\right) \cong \Gamma\left(p_{i}^{a_{i}}\right) / \Gamma\left(p_{i}^{\beta_{i}}\right) \quad(1 \leqq i \leqq t) .
$$

We write

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad U=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad W=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

Let \mathscr{G} * be a lattice subgroup of $\Gamma(N)$ and let it be a congruence group of level qr. As previously stated, we may take \mathscr{G}^{*} to be normal in $\Gamma(1)$. Let

$$
\mathscr{G} \cong \mathscr{G}^{*} / \Gamma(q r)
$$

Denote the foot of \mathscr{G} in $\Gamma(1) / \Gamma(r)$ and $\Gamma\left(p_{i}^{\alpha_{i}}\right) / \Gamma\left(p_{i}^{\beta_{i}}\right)$ by F and F_{i} respectively $(1 \leqq i \leqq t)$. We let

$$
F \cong F^{*} / \Gamma(r) \quad \text { and } \quad F_{i} \cong F_{i}^{*} / \Gamma\left(p_{i}^{\beta_{i}}\right) .
$$

We now apply Theorem 1 (with $L=\mathscr{G}$) and conclude that F^{*} is a normal congruence subgroup of $\Gamma(1)$ of level r, such that $\Gamma(1) / F^{*}$ is abelian, and that F_{i}^{*} is a normal congruence subgroup of $\Gamma(1)$ of level $p_{i}^{\beta_{i}}$, such that $\Gamma\left(p_{i}^{\alpha}\right) / F_{i}^{*}$ is abelian.

Theorem 3. The factor r divides 12.
Proof. Clearly $F^{*} \supseteq \Gamma^{\prime}(1)$, where $\Gamma^{\prime}(1)$ is the commutator subgroup of $\Gamma(1)$. The result follows since van Lint has shown [3] that $\Gamma^{\prime}(1)$ is a congruence group of level 12.

Theorem 4. If p_{i} is an odd prime and F_{i}^{*} is a lattice subgroup of $\Gamma\left(p_{i}^{\alpha_{i}}\right)$ and a normal congruence subgroup of $\Gamma(1)$ of level $p_{i}^{\beta_{1}}$, then $p_{i}^{\beta_{1}}$ divides $p_{i}^{2 \alpha_{1}}$.

Proof. For p_{i} odd, Section 3 of McQuillan's paper shows that F_{i}^{*} is either $\Gamma\left(p_{i}^{\beta_{i}}\right)$ or $\Gamma\left(p_{i}^{\beta_{i}}\right)$, when $\Gamma(l)=\{A \in \Gamma(1): A \equiv \pm I(\bmod l)\}$.

Now if $F_{i}^{*}=\bar{\Gamma}\left(p_{i}^{\beta_{i}}\right)$, then $-I \in F_{i}^{*}$. As $F_{i}^{*} \subseteq \Gamma\left(p_{i}^{\alpha_{i}}\right)$, this implies that $-I \equiv I\left(\bmod p_{i}^{\alpha_{i}}\right)$, which leads to a contradiction as p_{i} is odd and $\alpha_{i}>0$.

Hence $F_{i}^{*}=\Gamma\left(p_{i}^{\beta_{i}}\right)$, and we have that $\Gamma\left(p_{i}^{q_{i}}\right) / \Gamma\left(p_{i}^{\beta_{1}}\right)$ is abelian. Thus we must have

$$
U^{p_{i}^{\alpha_{i}}} W^{p_{i}^{\alpha_{i}}} \equiv W^{p_{i}^{\alpha_{i}}} U^{p_{i}^{\alpha_{i}}} \quad\left(\bmod p_{i}^{\beta_{i}}\right),
$$

which is true if and only if $p_{i}^{\beta_{1}}$ divides $p_{i}^{2 \alpha_{i}}$.
We now consider lattice subgroups of $\Gamma\left(2^{n}\right)$ which are normal congruence subgroups of $\Gamma(1)$ of level 2^{m}. Let \mathscr{G}^{*} be such a subgroup and set

$$
\mathscr{G} \cong \mathscr{G}^{*} / \Gamma\left(2^{m}\right)
$$

The non-trivial possibilities for \mathscr{G} are, in McQuillan's notation,

$$
\mathscr{G}=Z\left(2^{m}\right) ; \quad E_{m}, \pm E_{m}(m \geqq 2) ; \quad C_{m}, H_{m}, \Lambda_{m}(m \geqq 3) ; \quad D_{m}, F_{m}, \pm D_{m}(m \geqq 4)
$$

The group Λ_{m} is not listed by McQuillan but is the normal subgroup corresponding to $\Gamma\left(2^{m}\right)$, i.e. $\Lambda_{m} \cong \bar{\Gamma}\left(2^{m}\right) / \Gamma\left(2^{m}\right)$.

We consider the cases $n=1$ and $n>1$ separately. We denote the group $\Gamma\left(2^{\prime \prime}\right) / \Gamma\left(2^{m}\right)$ by $\boldsymbol{K}_{\boldsymbol{m}}^{\boldsymbol{u}}$.

Theorem 5. If $\mathscr{G}{ }^{*}$ is a lattice subgroup of $\Gamma(2)$ and is a normal congruence subgroup of $\Gamma(1)$ of level 2^{m}, then 2^{m} divides 16 .

Proof. The non-trivial possibilities for \mathscr{G} are as listed above. We note that two matrices $A, B \in \mathscr{G}$ are considered as equal if and only if $A \equiv B\left(\bmod 2^{m}\right)$.

Now it is readily seen that all the possible groups \mathscr{G} have elements whose $(1,2)$ and $(2,1)$ entries are either zero or 2^{m-1}. Now, considering U^{2} and W^{2} as members of K_{m}^{1}, we have, since K_{m}^{1} / \mathscr{G} is abelian,

$$
\left[U^{2}, W^{2}\right]=U^{2} W^{2} U^{-2} W^{-2} \in \mathscr{G}
$$

As $\left[U^{2}, W^{2}\right]=\left[\begin{array}{rr}21 & -8 \\ 8 & -3\end{array}\right]$, this implies that $8 \equiv 0$ or $2^{m-1}\left(\bmod 2^{m}\right)$. These two congruences combine into $16 \equiv 0\left(\bmod 2^{m}\right)$, which gives the required result.

Now

$$
D_{4}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{rr}
5 & 8 \\
8 & -3
\end{array}\right],\left[\begin{array}{ll}
9 & 0 \\
0 & 9
\end{array}\right],\left[\begin{array}{rr}
-3 & 8 \\
8 & 5
\end{array}\right]\right\},
$$

when the matrices are considered modulo 16. Let

$$
D_{4} \cong D_{4}^{*} / \Gamma(16)
$$

$\Gamma(2)$ is generated by $\pm U^{2}, W^{2}$, and hence the commutator subgroup $\Gamma^{\prime}(2)$ is generated by [$U^{2 \lambda}, W^{2 \mu}$], with λ, μ integral. Since

$$
\left[U^{2 \lambda}, W^{2 \mu}\right] \equiv\left[\begin{array}{cc}
1+4 \lambda \mu & -8 \mu \lambda^{2} \\
8 \mu^{2} \lambda & 1-4 \lambda \mu
\end{array}\right] \quad(\bmod 16)
$$

it can be readily verified that $\left[U^{2 \lambda}, W^{2 \mu}\right] \in D_{4}^{*}$, for all λ, μ. Hence D_{4}^{*} is a lattice subgroup of $\Gamma(2)$ of level 16 , which shows that the upper bound for 2^{m} is in fact attained. We note finally that $\pm D_{4}^{*}$ is also a lattice subgroup of $\Gamma(2)$ of level 16 , where

$$
\pm D_{4} \cong \pm D_{4}^{*} / \Gamma(16)
$$

We now assume that $n>1$ and consider the non-trivial possibilities for the group \mathscr{G}, listed previously.

Lemma 1. $\mathscr{G} \neq \Lambda_{m}, \pm E_{m}, \pm D_{m}, Z\left(2^{m}\right)$.
Proof. The result follows because each of the above groups corresponds to a subgroup of $\Gamma(1)$ containing $-I$.

Now $\mathscr{G} \subseteq K_{m}^{n}$ and $-I \nsubseteq \Gamma\left(2^{n}\right)$, when $n>1$. We shall assume from now on without loss of generality that $m>n$.

Lemma 2. If $m>n, \mathscr{G} \neq H_{m}$ and $\mathscr{G} \neq F_{m}$.
Proof. If $\mathscr{G}=H_{m}$, we have, since $\mathscr{G} \subseteq K_{m}^{n}$,

$$
\left[\begin{array}{cc}
-1+2^{m-1} & 0 \\
0 & -1+2^{m-1}
\end{array}\right] \equiv I \quad\left(\bmod 2^{n}\right)
$$

which is untrue as $n>1$. Thus $\mathscr{G} \neq H_{m}$.
If $\mathscr{G}=F_{m}$, we have, since $\mathscr{G} \subseteq K_{m}^{n}$,

$$
\left[\begin{array}{cc}
-1-2^{m-2} & 0 \\
0 & -1+2^{m-2}
\end{array}\right] \equiv I \quad\left(\bmod 2^{n}\right)
$$

This yields the congruence $2^{m-2} \equiv 2\left(\bmod 2^{n}\right)$.
Now we are assuming that $m-2 \geqq n-1$. If $m-2>n-1$, then the congruence reduces to $2 \equiv 0\left(\bmod 2^{n}\right)$, which is not so. If $m-2=n-1$, then we have $2^{n-1} \equiv 2\left(\bmod 2^{n}\right)$, which is only true if $n=2$. But the existence of the group F_{m} ensures that $m \geqq 4$. Hence $n+1 \geqq 4$ and so $n \geqq 3$, which gives the required contradiction.

Thus we may conclude that $\mathscr{G} \neq F_{m}$.
We shall now use Lemmas 1 and 2 to obtain the following theorem.
Theorem 6. If \mathscr{G}^{*} is a lattice subgroup of $\Gamma\left(2^{n}\right)$ and is a normal congruence subgroup of $\Gamma(1)$ of level 2^{m}, then 2^{m} divides $2^{2 n+1}$.

Proof. Lemmas 1 and 2 show that the remaining possibilities for \mathscr{G} are

$$
\mathscr{G}=D_{m}, E_{m}, C_{m} .
$$

Suppose now that $\mathscr{G}=D_{m}$; we make the further assumption, again without loss of generality, that $m>n+1$. Now $D_{m} \subseteq K_{m}^{m-2} \subseteq K_{m}^{n}$, if $m>n+1$. But we know that K_{m}^{n} / D_{m} is
abelian. Hence K_{m}^{m-2} / D_{m} is abelian and

$$
\left(K_{m}^{n} / D_{m}\right) /\left(K_{m}^{m-2} / D_{m}\right) \cong K_{m}^{n} / K_{m}^{m-2} \cong \Gamma\left(2^{n}\right) / \Gamma\left(2^{m-2}\right)
$$

Thus $\Gamma\left(2^{n}\right) / \Gamma\left(2^{m-2}\right)$ is abelian and so

$$
U^{2^{n}} W^{2^{n}} \equiv W^{2 n} U^{2^{n}} \quad\left(\bmod 2^{m-2}\right)
$$

which is true if and only if 2^{m} divides $2^{2 n+2}$.
However, if $m=2 n+2$, then the fact that $K_{2 n+2}^{n} / D_{2 n+2}$ is abelian implies that

$$
\left[U^{2 n}, W^{2 n}\right] \in D_{2 n+2}
$$

Now

$$
\left[U^{2 n}, W^{2 n}\right] \equiv\left[\begin{array}{cc}
1+2^{2 n} & 0 \\
0 & 1-2^{2 n}
\end{array}\right] \quad\left(\bmod 2^{2 n+2}\right)
$$

A simple inspection shows that $\left[U^{2^{n}}, W^{2^{n}}\right] \notin D_{2 n+2}$. Hence we conclude that, if $\mathscr{G}=D_{m}$, then 2^{m} divides $2^{2 n+1}$.

Suppose now that $\mathscr{G}=E_{m}$ or C_{m}. Now both E_{m} and $C_{m} \subseteq K_{m}^{m-1} \subseteq K_{m}^{n}$, for $m>n$. Using an argument similar to that given in the first part of the theorem, we can show that the fact that K_{m}^{n} / \mathscr{G} is abelian implies that $\Gamma\left(2^{n}\right) / \Gamma\left(2^{m-1}\right)$ is abelian, for $\mathscr{G}=E_{m}$ or C_{m}. Thus

$$
\left[U^{2^{n}}, W^{2^{n}}\right] \equiv I \quad\left(\bmod 2^{m-1}\right)
$$

which is true if and only if 2^{m} divides $2^{2 n+1}$.
The theorem is thus established and we now show that the upper bound of $2^{2 n+1}$ is attained. Let

$$
C_{2 n+1} \cong C_{2 n+1}^{*} / \Gamma\left(2^{2 n+1}\right)
$$

and suppose that $A, B \in \Gamma\left(2^{n}\right)$. Then

$$
A=\left[\begin{array}{cc}
1+a 2^{n} & b 2^{n} \\
c 2^{n} & 1+d 2^{n}
\end{array}\right], \quad \text { where }(a+d)=2^{n}(b c-a d)
$$

and

$$
B=\left[\begin{array}{cc}
1+e 2^{n} & f 2^{n} \\
g 2^{n} & 1+h 2^{n}
\end{array}\right], \quad \text { where }(e+h)=2^{n}(f g-e h)
$$

Thus

$$
A B=\left[\begin{array}{cc}
1+(a+e) 2^{n}+(a e+b g) 2^{2 n} & (b+f) 2^{n}+(a f+b h) 2^{2 n} \\
(c+g) 2^{n}+(c e+g d) 2^{2 n} & 1+(h+d) 2^{n}+(c f+h d) 2^{2 n}
\end{array}\right],
$$

and

$$
A^{-1} B^{-1}=\left[\begin{array}{cc}
1+(h+d) 2^{n}+(h d+b g) 2^{2 n} & -\left\{(b+f) 2^{n}+(f d+b e) 2^{2 n}\right\} \\
-\left\{(c+g) 2^{n}+(h c+a g) 2^{2 n}\right\} & 1+(a+e) 2^{n}+(a e+f c) 2^{2 n}
\end{array}\right]
$$

Now

$$
[A, B]=A B A^{-1} B^{-1} \equiv\left[\begin{array}{cc}
1+(b g-f c) 2^{2 n} & 0 \\
0 & 1+(f c-b g) 2^{2 n}
\end{array}\right] \quad\left(\bmod 2^{2 n+1}\right)
$$

Thus

$$
[A, B] \equiv I \quad \text { or } \quad\left[\begin{array}{cc}
1+2^{2 n} & 0 \\
0 & 1+2^{2 n}
\end{array}\right] \quad\left(\bmod 2^{2 n+1}\right)
$$

This implies that $[A, B] \in C_{2 n+1}^{*}$, for all $A, B \in \Gamma\left(2^{n}\right)$. Thus $C_{2 n+1}^{*}$ is a lattice subgroup of $\Gamma\left(2^{n}\right)$ and is a congruence group whose level is equal to the upper bound of $2^{2 n+1}$.

We now tabulate the results, quoting the upper bounds for the factors q and r in each case and stating a lattice subgroup of $\Gamma(N)$ which is a congruence group whose level is equal to the upper bound for $q r$, denoted by max $q r$.

We shall make use of the groups $\Gamma^{\prime}(1), M^{*}$ and Γ^{4}. The group M^{*} is the group corresponding to M quoted by McQuillan. M^{*} is a normal congruence subgroup of $\Gamma(1)$ of level 3 containing $\Gamma^{\prime}(1)$. The group Γ^{4} is not listed by McQuillan. It is the subgroup of $\Gamma(1)$ generated by $\left[\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right]$ and $\left[\begin{array}{rr}-1 & -1 \\ 1 & 0\end{array}\right]$ and can readily be shown to be a normal congruence subgroup of $\Gamma(1)$ of level 4 , containing $\Gamma^{\prime}(1)$. We put $N=2^{n} l$, where $n \geqq 0$ and l is odd.

TABLE

$(N, 12)$	q divides	r divides	$\max q r$	$\max q r$ attained by
1	N^{2}	12	$12 N^{2}$	$\Gamma^{\prime}(1) \cap \Gamma\left(N^{2}\right)$
2	$4 N^{2}$	3	$12 N^{2}$	$D_{4}^{*} \cap \Gamma\left(l^{2}\right) \cap M^{*}$
3	N^{2}	4	$4 N^{2}$	$\Gamma\left(N^{2}\right) \cap \Gamma^{4}$
4	$2 N^{2}$	3	$6 N^{2}$	$C_{2 n+1}^{*} \cap \Gamma\left(l^{2}\right) \cap M^{*}$
6	$4 N^{2}$	1	$4 N^{2}$	$D_{4}^{*} \cap \Gamma\left(l^{2}\right)$
12	$2 N^{2}$	1	$2 N^{2}$	$C_{2 n+1}^{*} \cap \Gamma\left(l^{2}\right)$

Further, for all integers d such that N divides d and d divides max q, a lattice subgroup of $\Gamma(N)$ which is a congruence group of level d may be readily produced.
3. We now extend the results of the table to the inhomogeneous modular group $\hat{\Gamma}(1)$. We let \mathscr{G} be a lattice subgroup of $\hat{\Gamma}(N)$ and let it be a congruence group of level $q r$, as before. We may take \mathscr{G} to be normal in $\Gamma(1)$. Let $\overline{\mathscr{G}}$ be the corresponding subgroup to \mathscr{G} in $\Gamma(1)$. We have $\mathscr{G} \cong \mathscr{G} / \Lambda$, where $\Lambda=\{I,-I\}$. It is easily verified that \mathscr{G} is a congruence group of level d in $\Gamma(1)$ if and only if $\overline{\mathscr{G}}$ is a congruence group of level d in $\Gamma(1)$.

We consider the cases $N=2$ and $N>2$ separately.

Theorem 7. If $\hat{\mathscr{G}}$ is a lattice subgroup of $\hat{\mathrm{C}}(2)$ and is a normal congruence subgroup of $\hat{\Gamma}(1)$ of level qr, then qr divides 48.

Proof. We have $\Gamma(2) \cong \Gamma(2) / \Lambda$ and $\mathscr{G} \cong \bar{G} / \Lambda$, when $\overline{\mathscr{G}}$ is the group corresponding to \mathscr{G} in $\Gamma(1)$. Then $\overline{\mathscr{G}}$ is a normal congruence subgroup of $\Gamma(1)$ and has level $q r$. We also have

$$
\vec{\Gamma}(2) / \mathscr{G} \cong \Gamma(2) / \bar{G} .
$$

Thus, since $\hat{\Gamma}(2) / \hat{G}$ is abelian, $\overline{\mathscr{G}}$ is a lattice subgroup of $\Gamma(2)$. The result follows by applying the results of the table for the case $N=2$.

Let $Z^{*}(8), \pm \hat{D}_{4}^{*}$ and \hat{M}^{*} be the subgroups of $\Gamma(1)$ corresponding to the subgroups $Z^{*}(8), \pm D_{4}^{*}$ and M^{*} of $\Gamma(1)$ respectively. $Z^{*}(8)$ and $\pm \hat{D}_{4}^{*}$ are lattice congruence subgroups of $\hat{\Gamma}(2)$ of levels 8 and 16 respectively and \hat{M}^{*} is a congruence group of level 3 containing $\Gamma^{\prime}(1)$, the commutator subgroup of $\Gamma(1)$. The groups $\hat{H} \cap \hat{K}$, where $\hat{H}=\Gamma(2), \Gamma(4), Z^{*}(8)$ or $\pm \hat{D}_{4}^{*}$, and $\hat{K}=\hat{\Gamma}(1)$ or \hat{M}^{*}, form a set of lattice congruence subgroups of $\hat{\Gamma}(2)$, whose levels are equal to the eight even divisors of 48 , including 48 itself.

Theorem 8. If $N>2$ and \mathscr{G} is a lattice subgroup of $\Gamma(N)$ and is a normal congruence subgroup of $\mathrm{\Gamma}(1)$ of level qr, then there exists a lattice subgroup \mathscr{G} of $\Gamma(N)$ in $\Gamma(1)$ such that \mathscr{G} is a normal congruence subgroup of $\Gamma(1)$ of level qr and $\mathscr{G} \cong \mathscr{G}$.

Proof. Let $\overline{\mathscr{G}}$ be defined as before, so that $\hat{\mathscr{G}} \cong \overline{\mathscr{G}} \mid \Lambda$. We also have

$$
\hat{\Gamma}(N) \cong \bar{\Gamma}(N) / \Lambda \cong \Gamma(N)
$$

Now $\overline{\mathscr{G}} \subseteq \Gamma(N)$ so that, for any $A \in \overline{\mathscr{G}}, A \equiv \pm I(\bmod N)$. We note that, as $N>2$, we cannot have a member of \bar{G} congruent to both I and $-I(\bmod N)$.

We define a subset \mathscr{G} of \bar{G} as follows.

$$
\mathscr{G}=\{A \in \bar{G}: A \equiv I(\bmod N)\}
$$

Clearly \mathscr{G} is a subgroup of \bar{G} contained in $\Gamma(N)$, such that $\mathscr{G} \cong \overline{\mathscr{G}} / \Lambda$. Now $\hat{\Gamma}(q r) \subseteq \widehat{G}$ and $q r$ is minimal. This implies that $\bar{\Gamma}(q r)$ and hence $\Gamma(q r)$ is contained in $\overline{\mathscr{G}}$.

In fact $\Gamma(q r) \subseteq \mathscr{G}$; for, if not, there exists $X \in \bar{G}$ such that

$$
X \equiv I(\bmod q r) \quad \text { and } \quad X \equiv-I(\bmod N)
$$

This yields a contradiction, since N divides $q r$ and $N>2$. Moreover the level of \mathscr{G} is exactly $q r$; for if there exists $d<q r$ such that $\Gamma(d) \subseteq \mathscr{G}$, then $\Gamma(d) \subseteq \mathscr{G}$, which contradicts the minimality of q r.

Finally \mathscr{G} is of course normal in $\Gamma(1)$ and is a lattice subgroup of $\Gamma(N)$; for we have

$$
\hat{\Gamma}(N) / \hat{G} \cong \Gamma(N) / \mathscr{G}
$$

We note that, if \mathscr{G} is a lattice subgroup of $\Gamma(N)$, where $N>2$, and \mathscr{G} is a normal congruence subgroup of $\Gamma(1)$ of level $q r$, then the subgroup \mathscr{G} of $\Gamma(1)$ corresponding to \mathscr{G}, where $\mathscr{G} \cong \mathscr{G}$,
is a lattice subgroup of $\hat{\Gamma}(N)$ and is a normal congruence subgroup of $\hat{\Gamma}(1)$ of level $q r$. The fact that its level is exactly $q r$ follows from Theorem 8. For, clearly, $\bar{\Gamma}(q r) \subseteq \mathscr{G}$ and, if $\Gamma(d) \subseteq \mathscr{G}$ with $d<q r$, then Theorem 8 shows that $\Gamma(d) \subseteq \mathscr{G}$, which contradicts the minimality of $q r$.

Theorems 7 and 8 show that the upper bounds for $q r$ in $\Gamma(1)$, shown in the table, also hold in $\mathrm{P}(1)$. Moreover the remarks following the two theorems show that the upper bounds are attained in $\mathrm{\Gamma}(1)$ in all cases. More generally, it is easily seen that, for all integers d such that d divides $\max q r$ and N divides d, there exists a lattice subgroup of $\hat{\Gamma}(N)$ which is a congruence group of level d. In particular we note that in $\Gamma(1)$ the factor r divides 12 in all cases, a result obtained by Rankin by different methods.
4. In this section we introduce an infinite class of lattice subgroups of $\mathrm{\Gamma}(N)$ and use the results of the previous section to investigate which of these groups is a congruence group. These subgroups provide a natural extension to the subgroups $\Omega(p, S)$ of $\Gamma(p)$ (p a prime) introduced by Reiner [10], and for $p=2$ by Fricke [1] and Pick [8], and contain an infinite set of subgroups of finite index in $\hat{\Gamma}(1)$ which are not congruence groups.

Lemma 3. For $N>1, U^{N}$ may be taken as a free generator of $\hat{\Gamma}(N)$.
Proof. For $N>1$, it is well known that $\mathrm{\Gamma}(N)$ is a free group [5]. Further, $\mathrm{\Gamma}(N)$ has $n=\mu / N>1$ incongruent cusps, where $\mu=[\hat{\Gamma}(1): \widehat{\Gamma}(N)]$. Now, by Section VI, 4 (p. 241) of [2], $\Gamma(N)$ has a canonical fundamental region with n incongruent parabolic vertices and $4 g+n$ other "accidental" vertices, which are all congruent to each other $\bmod \hat{\Gamma}(N)$, where g is the genus of $\mathrm{\Gamma}(N)$. The n parabolic vertices determine n parabolic generators P_{1}, \ldots, P_{n}, which form part of a set of $2 g+n$ generators of $\hat{\Gamma}(N)$, and which satisfy one relation only (Theorem, p. 234 of [2]). We may take $P_{1}=U^{N}$, and, as $n>1$, we may use the relation to eliminate P_{2}, leaving a set of free generators of $\Gamma(N)$, one of which is U^{N}.

Lemma 4. The rank of $\Gamma(2)$ is 2 and, when $N>2$, the rank of $\Gamma(N)$ is $1+\mu(N) / 12$, where

$$
\mu(N)=N^{3} \prod_{p / N}\left(1-\frac{1}{p^{2}}\right)
$$

Proof. It is known that $\Gamma(2)$ is freely generated by U^{2} and W^{2}. Using this fact we may compute the rank of $\hat{\Gamma}(2 N)(N>1)$ by the well known Reidemeister-Schreier formula for the rank of a subgroup of finite index in a free group of finite rank. The rank of $\hat{\Gamma}(N)(N>2)$ may then be calculated from the rank of $\Gamma(2 N)$ using the Reidemeister-Schreier formula in reverse.

Let $P=\hat{\Gamma}(N) / \hat{\Gamma}^{\prime}(N)$ and let P^{S} be the subgroup of P generated by the S th powers of the elements of $P(S \geqq 1)$. Denote by $\Omega(N, S)$ the inverse image of P^{S} under the canonical mapping of $\mathrm{P}(N)$ onto P. It is readily seen that $\Omega(N, S)$ consists of those elements of $\hat{\Gamma}(N)$ for which the exponent sums with respect to each of the free generators of $\Gamma(N)$ is a multiple of S. Clearly $\Omega(N, S)$ is a lattice subgroup of $\Gamma(N)$ and is normal in $\hat{\Gamma}(1)$. It also follows that $[\hat{\Gamma}(N): \Omega(N, S)]=S^{\sigma}$, where σ is the rank of $\hat{\Gamma}(N)$.

Lemma 5. If S_{1} divides S_{2}, then $\Omega\left(N, S_{1}\right) \supseteq \Omega\left(N, S_{2}\right)$.
The proof is obvious.
Theorem 9. $\Omega(N, S)$ is a congruence group if and only if $\Omega(N, S) \supseteq \hat{\Gamma}(N S)$.
Proof. The level of $\Omega(N, S)$, as defined by Wohlfahrt in [11], is $N S$. This follows from the normality of $\Omega(N, S)$ in $饣(1)$ and from the fact that U^{N} may be taken as a free generator of $\hat{\Gamma}(N)$. We obtain the required result by applying Theorem 2 of Wohlfahrt's paper.

We now use Theorem 9 to investigate which of the groups $\Omega(N, S)$ is a congruence group. The results obtained will include these of Reiner, for clearly, when N is a prime p, the groups are the subgroups $\Omega(p, S)$ introduced by him. We treat the cases $N=2, N=3$ and $N \geqq 4$ separately.

Theorem 10. $\Omega(2, S)$ is a congruence subgroup if and only if $S=1,2,4,8$.
Proof. If $\Omega(2, S)$ is a congruence group, then by Theorem 9 and the results shown in the table in Section 2 we may conclude that S divides 24.

If S is any divisor of 24 divisible by 3 , then Lemma 5 implies that $\Omega(2,3)$ is a congruence subgroup. However, $[\hat{\Gamma}(2): \Omega(2,3)]=9$ and $[\hat{\Gamma}(2): \hat{\Gamma}(6)]=12$, which yields an immediate contradiction. Hence $\Omega(2,3)$ is not a congruence subgroup.

There remain the cases $S=1,2,4,8$ to consider. We note that $\hat{\Gamma}(2)$ is freely generated by U^{2} and W^{2}. The proof for the case $S=8$ is to be found in Theorem 3 of a paper by Newman [6]. In fact Newman shows that $\hat{\Gamma}(16)$ is contained in that lattice subgroup of $\boldsymbol{\Gamma}(2)$ whose elements have exponent sums with respect to the generator U^{2} that are multiples of 8. However, elementary modifications of his proof show that any element of $\hat{\Gamma}(16)$ also has its exponent sum with respect to the generator W^{2} congruent to zero modulo 8 . Since $\Omega(2,8)$ is a congruence group, so also are $\Omega(2,1), \Omega(2,2)$ and $\Omega(2,4)$, by Lemma 5 . Clearly $\Omega(2,1)=\hat{\Gamma}(2)$ and it is also readily verified that $\Omega(2,2)=\Gamma(4), \quad \Omega(2,4)=\hat{Z}^{*}(8)$ and $\Omega(2,8)= \pm \hat{D}_{4}^{*}$. This completes the proof of the theorem.

Theorem 11. $\Omega(3, S)$ is a congruence subgroup if and only if $S=1,3$.
Proof. If $\Omega(3, S)$ is a congruence subgroup, then by Theorem 9 and the results for $N=3$ in the table, we conclude that S divides 12. If S is an even divisor of 12 , then Lemma 5 implies that $\Omega(3,2)$ is a congruence subgroup. But $[\Gamma(3): \Omega(3,2)]=8$ and $[\Gamma(3): \Gamma(6)]=6$, which yields an immediate contradiction.

Trivially $\Omega(3,1)=\hat{\Gamma}(3)$ and, since $\hat{\Gamma}(3)$ is freely generated by $\left(U^{-1} W\right)^{-\nu} U^{3}\left(U^{-1} W\right)^{\nu}$ $(v=1,2,3)$, it is easily verified that $\hat{\Gamma}(9)=\Omega(3,3)$. This completes the proof of the theorem.

Theorem 12. If $N \geqq 4, \Omega(N, S)$ is a congruence subgroup if and only if $S=1$.
Proof. If $\Omega(N, S)$ is a congruence subgroup, then, by Theorem 9 and the results of the table in Section 2, S divides $12 N$. Clearly $\Omega(N, 1)=\widehat{\Gamma}(N)$ which is a congruence subgroup and, if $S>1$, then Lemma 5 implies that $\Omega(N, p)$ is a congruence subgroup, where p is any prime dividing S. Now, since S divides $12 N$, this implies that $\Omega(N, p)$ is a congruence subgroup, where p is any prime dividing N, or, when $(N, 2)=1$, that $\Omega(N, 2)$ is a congruence
subgroup, or, when $(N, 3)=1$, that $\Omega(N, 3)$ is a congruence subgroup. We shall obtain a contradiction in the most general case for $(N, 6)=1$. The remaining cases for $N \geqq 4$ are proved similarly.

When $(N, 6)=1$,

$$
[\hat{\Gamma}(N): \hat{\Gamma}(N p)]=p^{3}, \quad[\hat{\Gamma}(N): \hat{\Gamma}(2 N)]=6, \quad[\hat{\Gamma}(N):\lceil(3 N)]=24 .
$$

Also

$$
[\hat{\Gamma}(N): \Omega(N, p)]=p^{\sigma}, \quad[\hat{\Gamma}(N): \Omega(N, 2)]=2^{\sigma}, \quad[\hat{\Gamma}(N): \Omega(N, 3)]=3^{\sigma} .
$$

Contradictions follow in all cases since the formula established in Lemma 4 shows that $\sigma>3$. The proof of the theorem is complete.

We conclude by observing that we may easily extend Lemma 3 in the following way. If \mathscr{G} is any free normal subgroup of finite index μ in $\Gamma(1)$, whose level, as defined by Wohlfahrt in [11], is N, then we may take U^{N} to be a free generator of \mathscr{G}, provided $\mu / N>1$. As the commutator subgroup $\mathscr{G}^{\prime} \subseteq \mathscr{G}$, the level of \mathscr{G}^{\prime} is a multiple of N. If $\mu / N>1$ and $U^{N l} \in \mathscr{G}^{\prime}$, for some integer l, this implies a non-trivial relation between the free generators of \mathscr{G}, which is an obvious contradiction. Hence, when $\mu / N>1$, the level of \mathscr{G}^{\prime} is infinite. In fact $\mu / N>1$ for all free normal subgroups \mathscr{G} of finite index in $\hat{\Gamma}(1)$, except for $\mathscr{G}=\hat{\Gamma}^{\prime}(1)$, when $\mu=N=6$. This discussion shows that Proposition 1 of [9] only holds for $\mathscr{G}=\boldsymbol{\Gamma}^{\prime}(1)$, where the level of $\mathscr{G}^{\prime}=\mathrm{f}^{\prime \prime}(1)$ is 6 .

REFERENCES

1. R. Fricke, Über die Substitutionsgruppen, welche zu den aus Legendre'schen Integralmodul $k^{2}(\omega)$ gezogenen Wuhrzeln gehören, Math. Ann. 28 (1887), 99-118.
2. Joseph Lehner, Discontinuous groups and automorphic functions, Mathematical Surveys, No. VIII, American Mathematical Society (Providence, R.I., 1964).
3. J. H. van Lint, On the multiplier system of the Riemann-Dedekind function η, Nederl. Akad. Wetensch. Proc. Ser. A 61 (=Indag. Math. 20) (1958), 522-527.
4. D. L. McQuillan, Classification of normal congruence subgroups of the modular group, Amer. J. Math. 87 (1965), 285-296.
5. M. Newman, Free subgroups and normal subgroups of the modular group, Illinois J. Math. 8 (1964), 262-265.
6. M. Newman, On a problem of G. Sansone, Ann. Mat. pura appl. 65 (1964), 27-34.
7. M. Newman and J. R. Smart, Modulary groups of $t \times t$ matrices, Duke Math. J. 30 (1963), 253-257.
8. G. Pick, Uber gewisse ganzzahlige lineare Substitutionen, welche sich nicht durch algebraische Congruenzen erklären lassen, Math. Ann. 28 (1887), 119-124.
9. R. A. Rankin, Lattice subgroups of free congruence groups, Inventiones Math. 2 (1967), 215-221.
10. I. Reiner, Normal subgroups of the unimodular group, Illinois J. Math. 2 (1958), 142-144.
11. K. Wohlfahrt, An extension of F. Klein's level concept, Illinois J. Math. 8 (1964), 529-535.

University of Glasgow

