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Symbolical algebra and the quadrics containing
a rational curve.

By Professor H. F. BAKER, F.R.S.

(Received 29th September 1926. Read 5th November 1926.)

Introduction. In regard to the algebra of binary forms and the
theory of rational curves there exists a wide literature, with which
I am not well acquainted.* Very possibly the simple remark
made in this note is found elsewhere. But the note is a grateful
echo of recent delightful colloquy f with persons of good will.

If, in the familiar way, the lines of our ordinary space of three
dimensions are represented each by a point of a quadric in space of
five dimensions, the line coordinates of a line being the homogeneous
coordinates of the point which represents it, then a ruled surface of
ordinary space is represented by a curve lying on the quadric. But,
in particular, if the ruled surface be a developable, the curve on the
quadric in the space of five dimensions has the further property that
its tangent line at any point lies entirely on this quadric, instead
of merely touching i t ; in this case a generator of the original
developable is a line of a flat pencil of lines, in a tangent plane of
the developable, in which the generator itself occurs as a double
ray. A particular application of this which is familiar gives the
differential equation of a line of curvature of any surface in ordinary
space, by expressing that the normals of the surface at the points
of the line of curvature form a developable. This differential
equation is dldl' + dm dm.' + dn dri = 0, where I, m, n, I,' m,' n'
are the line coordinates of the normal (given, in terms of the
homogeneous coordinates of two points (a;, y, z, t), (x\ y', z', t') of

• Of. SEGRB, Enzykl. Math. HI, Mehrdimensionale Sdume, No. 27 (1912;
published 1921). He refers to Clifford, Classification of Loci, 1878 (Papers,
p. 811); P. H. SCHOUTE, Proc. Alcad. Amsterdam I (1899), p. 313 j BRUSOTTI,
Ann. di. Mat. IX (1904), p. 311, and Bend. 1st. homo., XLII (1909), p. 144.

t SKEAT Concise Elymol. Diet, gives, under Colloquy, "see Loquacious";
under which however are given Soliloquy, and Obloquy. Floreat Congressus
Mathematics.
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the line, by I — tx' - t'x, V = yz' — y'z, etc.); this equation expresses
that the curve, on the quadric II' + mm'+ nri = 0, representing
the normals, has its tangent lines on this quadric.

A well known developable is that formed by the tangent lines of
a rational cubic curve of ordinary space. This curve is the locus of
points of coordinates (t3, f, t, 1), for varying t. The chord joining
any two such points, (t^ and (t2), if s = J (t^ + t2), p — t, t2, has for
its line coordinates I, m, n, I', m', ri the ratios of the six numbers

4s2 -p, 2s, 1, -p, 2sp, -p*;

if we put

a;0= n, x, = \m, x2 = - I', x3 = \m\ x4 = - n', x5 = ^ I,

then a;,,, xl, ..., xs are in the ratios of

\, s, p, sp, p\ ^(4s2- p);

in particular, for a tangent line of the cubic curve we have p = s",
and x0, xlt ..., xi are in the ratios of 1, s, s', s3, s\ s2. The identity
IV + mm' + nri = 0 then leads to

x0 xt — 4ajj Xj + 3x.z x^ = 0,

and all the tangents of the cubic curve lie in the linear complex
given by xs = a;2. If now we regard x0, xu ..., xh as homogeneous
coordinates in a space of five dimensions, the developable formed
by the tangents of the cubic curve is represented by the rational
quartic curve given by

xo:xl:xi:xs:xi= 1 :s : s2: s3: s4,

lying in the four-fold space given by x5 = xs, on the quadric whose
equation is

xoxt - 4x1x3 + Zx.f = 0,

and the tangent lines of the rational quartic curve also lie on this
quadric. In fact any general point of such a tangent has homo-
geneous coordinates

1, s + m, s2+ 2ms, s3+ 3ms2, s*+ 4rras3,
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and it is at once verified that this point lies on this quadric for all
values of s and TO.*

The quartic curve lies in fact on six linearly independent
quadrics in the space of four dimensions, for it evidently lies on
any quadric whose equation is of the form

Xi_rxr - xt_, x, = 0, (r, s = 0, ..., 4),

and thus it lies on any quadric -whose equation is a linear function
of these. I t can be verified however that the only quadric which
also contains the tangents of the quartic curve is that considered
above, namely x0 xt - a;,2 - 4 (sc, x3 - x?) — 0.

Further, let the polar form obtained from the left side of this
quadric, namely

x0 xt' + x0' xt - 4 (#! x3 + Xi x3) + Qx2 x2'

be denoted by (x, x). I t is clear tha t if we substitute (1, s, s=, t>3, s4)
for (a;0, xlt x2, x3, xt), and (1, s', s'2, s", s'*) for (#„', «,', a;2', xs', xt'), then

(x, x') = (s - s')4.

* It is remarked by Clifford (loc. cit.) that for this rational quartic curve, the
four points whose osculating threefolds pass through an arbitrary point of the
fourfold space lie on the polar threefold of the point in regard to the quadric;
with a similar result for the rational curve of even order in its own normal space
of the same order. That the tangents of the quartic curve lie on the quadric is
recognised by Brusotti (loc. cit.) The tangents also lie on the cubic locus
expressed by the vanishing of the determinant of which the three -rows consist
respectively of the elements x0, xt, Xn\ xly x2, x3; x2, x3, xt. Segre (loc. cit.),
following Schoute (loc. cit.), remarks that if we take the locus of the (I-I) folds
joining I points of the rational curve of order n in n - fold space, where 2 S ^ n ,

this locus, which is of dimension 21-1, and of order (n \ satisfies the

equations

= 0.
X2 ... Xn-l-

For n = 3, this gives the equations of the cubic curve; for n = 4, beside the
equations of the curve, it gives the equation of the cubic threefold, just referred
to, containing all the chords of the curve and in particular its tangents; and so on.
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Thus, if (z(1)), (a;12*), (x;3)), â 41) be any four points of the rational
quartic curve we have

[(»">, a:'3') (rfv, x«> )]i + [(x«>, *"> ) (â 2>, a;<4> )]i
+ [(*»», a^) (a*1', »«)]* = 0.

A relation to which this is practically equivalent was remarked* by
Professor A. C. Dixon, Quart. J. of Maths , XXII I (1889), p. 352, as

connecting the line coordinates of any four tangents of a cubic
curve in ordinary space; in his formula, in place of (a;111, sc|2)), for
example, there occurs the moment of two lines, of line coordinates
(lu « , , . . .) (£,, m2, . . . ) , namely

lil^'+ m-^rn^ + njfij' + /,' /2 + m/m,, + n,'n3.

This moment, as we know, is covariant for linear transformation
of the coordinates of our ordinary space, which retain the relation,
W + mm' + nn = 0, connecting the coordinates of a line. Equally
the polar form for any quadric is covariant for transformation
preserving the equation of the quadric. For instance, to take one
case, the form

{*, a;'} = xoxi' + xo'xt - 2a>5a;!,'

is covariant when xox4 - x^ is preserved; and we evidently have,
in the same way,

[{a^, a;'3' } {a^, x^ }]i + O<3), a;'1' } {a=(2», x1* }]i
+ [{x»>,xV}{xe\x«<}]i = 0,

this being interpretable as the equation of a conic touching the
three sides of a triangle.

Another case of such an irrational equation of three terms is
that connecting the line coordinates of any three generators of the
same system of a quadric surface in ordinary space with the line
coordinates of any tangent line of the quadric. UsiDg CT12 for the
moment of two lines, above referred to, if 1, 2, 3 refer to three
generators of the same system and 4 refers to any tangent line of
the quadric, the relation f is

[nT23CT14]i + [W3ICT24]i + [CT12CT34]i = 0.

*See P. W. WOOD, Cambridge Ma'.h. Tracts, No. 14, p. 21. Profesjor
Dixon's discovery is equivalent to saying tliat four tangents of a cubic curve in
space cut, upon their two transversals, ranges whose cross ratios are - j,sq, and
- pq3, where p, g are two numbers which are harmonic conjugates with respect
to the two imaginary cube roots of unity.

f l should like to mention that this relation was remarked to me by
Professor Turnbull.
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Any tangent line of a quadric is in a flat pencil of lines of which
two members are the generating lines of the two systems of the
quadric at the point of contact of the tangent line; also 57, 4 is linear
in the coordinates of the tangent line (4). Thus 73,4 is the sum of
two parts, of which the part referring to the generating line of the
system other than that of the line (1) is identically zero, because
these generators intersect. The irrational relation may therefore be
regarded as referring to four generators of a quadric surface, of
the same system. Interpreting the lines of ordinary space by
points of a quadric in space of four dimensions, the relation becomes
one connecting four points of a conic, and is that above remarked.

The polar form employed in the irrational equations is suggested
by the form of the moment of two lines. But when we consider
the general rational curve of order «, in space of n dimensions, of
which any point has coordinates of the forms

(xo,xu ...,«;„) = (1, t,t\ ...,<"),

the equation

wherein (xc, ..., xn) are current coordinates, is that of the
(n - l)-fold which meets the curve in n coincident points at (6);
for example when n = 3 this is the equation of the osculating
plane of the cubic. If then we put

n \ , / 11
( a ; , x ) = x o x n ' - ( ! \ x , » ' „ _ , + ( 2 ) x * x ' - - - i - • • • + ( - 1 / ' x,, « o ' i

which, when (x), (x) are the points (t), (6) of the curve, reduces to
(6 - I)", we see that, for any four points of the curve, we have

^ 4 1 ) ] ^ = 0 ,

whether w be odd or even, though it is only in the latter case that
(x, x') is the polar form for a quadric. This relation leads to that
given by Clifford (loc. cit.) for a general rational curve of order n
in space of (n - 1) dimensions.
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Reference may be made in this connexion to an interpretation
of the relation

5T23CT14 + CT31 W2J + UI2 U:4 = 0

connecting the mutual moments of four lines, given by Mr P. W.
Wood in No. 14 of the Cambridge Math. Tracts (1913), p. 78. Repre-
sented as a relation connecting four points of the quadric in four
dimensions, since four points determine a space of three dimensions,
it expresses a condition for four points of an ordinary quadric. If
we define the Hessian point of three points upon a conic as the
intersection of the three lines each joining one of the points to the
pole of the other two, the condition is that the tangent plane of the
quadric at one of the four points should pass through the Hessian
point of the other three ; and, as the relation is symmetrical, if this
is true for one of the four points it is true for the others. If the
quadric, referred to the four points, be

•2fyz + 2gzx + 2hxy + 2uxt + 2vyt + \Lwzt = 0,

the condition is easily seen to be uf + vg + wh = 0.

Enunciation. Consider, in space of n dimensions, homogeneous
coordinates denoted by a0, a,, ae, ..., an. Also, consider in this
space the rational normal curve of order n of which any point is
given in terms of a parameter 6 by the equations

a0 a, a., an

T = T = W = ""= ¥'
This curve lies upon ln(n - 1) linearly independent quadiics.
From these a certain number of quadiics can be formed which
contain, not only the curve, but also all its tangent lines. From
these again, when n is large enough, a certain number of quadrics
can be formed which contain, not only the curve and its tangent
lines, but also all its osculating planes. From these again, when n
is large enough, can be formed a certain number of quadrics which
determine all the threefold spaces determined by four consecutive
points of the curve. And so on.

Now consider the expression

P, = {abf < - ' - " a./"'' &,»--* b.r",
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where h is 1, or 2, ... , or | n (or J (n - 1) when n is odd), r is h, or
h + 1, ..., or (n - h), and s is A, or h + 1, ..., or (n - h). Here
alt a2 and bub2 are equivalent symbols, as used in invariantive
algebra, to be interpreted finally in terms of the real coordinates
a0, alt ... , an by replacing both al

n"pa/ and b,"^pb2
1' by ap ; and

(ab) denotes, as usual, axb2 - a.,b^. For a given h, the expression
P is one of those occurring in the expansion of

{abf'(alXl + a2xo)"-2"(6l2/l + b.,y2)"-*',

which it is usual to denote by

(abf1 a/"2" V1-2".

When replaced by its real value the expression P is a quadric in
a0, a,, ... , an.

We say then that this quadric P contains not only the rational
curve referred to, but all the spaces determined by h (or fewer)
consecutive points of the curve, at every point of this; say, all its
osculating (h - !) folds, and therefore all its osculating (k — 1) folds
for k < h. But further also that all the quadrics containing the
curve and its osculating (h — Y)-folds are linear functions of the
1 (n - 1h + 1) (n - 2h + 2) quadrics P which so arise for a given h.

In particular, when n is even, there is one unique quadric, which
contains the curve, its tangents, its osculating planes, ..., and finally
its osculating ( | n - \)-folds, namely the quadric symbolically given
by (ab)n; while when n is odd, there are three quadrics containing
the curve, its tangents, ... , finally its osculating J (n — 3)-folds,
namely those symbolically denoted by

It is known, but may be recalled for the sake of clearness, that
the linear spaces of highest dimension entirely lying on a quadric in
space of n dimensions are of dimension \n - 1, or \ (n - 1),
according as n is even or odd. In the Jormer case these spaces foi'm
a single system, in the latter case they form two systems. For
instance, a quadric in four dimensions contains a single system of
lines, but a quadric in five dimensions contains two systems of
planes (as well as lines lying thereon). Cf. BERTINI, Geometria
degli iperspaxi (Pisa, 1923), Chap. VI.
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Proof. First remark that if a quadric, in (n + 1) homogeneous
variables, which, for a moment, we denote, in the usual way, by
x0, x,, ... , xn, contain, for all values of 6, the two points for which
x0, xlt ..., xn have the respective sets of values

1,0. P, . . . ,0»,
0, 1, '26, ...,nfl—',

then this quadric contains the tangent lines of the curve which is
the locus, as 6 varies, of the former point; and, more generally, if
the quadric contain, for all values of 6, the h points with respective
coordinates

i, e, e* 01", ..., 0»
0, 1, 26, ..., w6m~\ ..., «0—*
0, 0, 1 , . . . , | m ( » i - 1 ) 0 " - - , . . . , ln(n - 1)6—3

o , o , o , . . .

then this quadric contains not only the curve given by the first
point, as 6 varies, but also its tangent line, its osculating plane, . . . ,
and finally its osculating (h — l)-fold, determined by h "consecutive"
points, at every point of the curve.

This is a familiar fact. If the quadric be denoted symbolically
by cx

2 =• 0, and the sets of coordinates in these h rows be
denoted, respectively, with a slight inconsistency of notation, by
(a;), (arj, ..., (ar4_,), we may formulate the proof of this lemma in
an elementary way thus: The equation c," = 0, when satisfied
identically for all values of 6, leads, by differentiation in regard to 6,
to cxcx — 0. If we also have, for all values of 6, c~x = 0, and we

differentiate cxcx = 0 to obtain c\ + cxcx> = 0, we can infer
cxcx2 = 0; while, from c2^ = 0, we have cS) c^ = 0. Thus we

may write

If now we also have c*̂  = 0, for all values of 6, and differentiate

cx% = 0, cXi% = 0, c% = 0
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in regard to 6, we obtain results which we can denote by writing

the process can be continued, finally, assuming <?„ = 0, we have

results which we can denote by writing

"l, _ l ' x ';, ' x i *;, ' *•> *h ' ' 'l,-\*h

Thus, if we take any point on the planar (h - 1) fold determined
by (a;), (a;,), ..., (x,,_j), of which point the general coordinate will
be of the form

in which X,, ... , A.̂ .., are arbitrary but the same for all the
(n + 1) coordinates, we at once find by substitution that

cf
2 = 0

which is what we desired to prove.
Indeed, we also have

which expresses that the tangent (n - l)-fold of the quadric, at
the point of coordinates (a1,), contains the osculating (h - l)-fo)d
of the curve (x).

This lemma being clear, we now seek the quadric containing,
for all values of 6, the h points whose coordinates are those put
down above, namely

1. f, . . . , (7 , . . . , V ,

»•» G - . ) -
Hut ice return to the notation a,,^, ..., au, for the coordinates oj
a point.

The general quadric in theEe coordinates contains \(n+ l)(n + 2)
terms. These are in face the distinct terms in the symbolical
product a"bg

n, in which a, b are equivalent symbols, namely the
coefficients of the (n+ 1) terms xi"~mx2

my1"-my.2'", for m = 0 ,1 , . . . , n,
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together with the £ [(n + 1)" - (n + 1)] terms ap aq, in which p, q
are different, arising from

al"-"a/xl"-1>x.f . &,— » 6/ y?—> yf
+ a1'—'aSxs"-'x2*b1»->>bfy1«-'>y.r,

which, since a, b are equivalent, is the same as

We do not write «," 6x
n, since, for instance, if n were 3, both the

terms a,362
3 and a*a2. b, 62

2, that is a0a3 and a, o2, would otherwise
come with the same multiplier, x* x£ being the same as Xj2 x2. x1 x£.

To find the quadrics containing the point (1, 0, G2, ..., 6"), for
all values of 6, we may substitute these coordinates in the general
quadric, and equate to zero the coefficients of the various powers of
6, say the terms of the same weight. The result of the substitution
is a polynomial in 0 of order 2n, so that the J(n + l)(n + 2)
coefficient are subject to 2n + 1 linear conditions, and there remain
\ (n + 1) (n + 2) - (2w + 1), or \n{ri - 1) linearly independent
quadrics containing the curve of points (1, 6, 02, ..., 6").

Consider now the terms of the symbolical expression

these consist of (n - 1) terms such as the product of

with

(a&)%—- ' a / - 1 * ,—'- ' f t / " 1 , r = l0 20 ... (n -- 1),

which, in real form, is

2(ar_!ar + 1 - a,2),

together with J [(n - I)2 - (n - 1)] terms which, allowing for the

fact that a, b are equivalent symbols, are all of the form

(ab)'a1"-r-1 a/-1 bf—1 b,'-1

here the factor not containing a;, y, has the real value

» , - i« l + 1 + a—i «V+i - 2ara, r, s = 1, 2, ..., (n - 1),

https://doi.org/10.1017/S001309150003443X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150003443X


141

including the former for r = s. We thus find in all

±[(n - 1)'+ (n - 1)], or }«(n - 1),

quadrics, evidently linearly independent; and their form shews
that they all contain the curve of points (1, 0, 62, ..., 6").

Thus all the quadrics containing the curve can be expressed in
terms of such as this last, whose expression is symmetrical in
regard to r and s. And to find the expression of any quadric con-
taining the curve, in terms of such as this, is quite easy; for,
instance, take the quadric ax.rar - ax-sa, = 0, which evidently
contains the curve, and is a type in terms of which all such quadrics
can be expressed To express this in terms of the quadrics we
have obtained it is only necessary to express

oX-r̂ gr + fr-Tar _ ax-» fit _ fr-t a.*

in the form («. - /3)2 x, where TT is a polynomal in a. and (3, and
then to replace a., f3 respectively by a2/ a^ and 62/*ii a« is clearly
possible.

Thus all the quadrics containing the curve are those found from

by dealing with this in the manner explained.
Now consider the quadrics, chosen from among these, which

contain, not only the curve (1, 8, 62, ..., 6"), but also the points
(0, 1, 26, ..., n$--x), for all values of 6. As before we may
substitute the last written values for the coordinates in the general
quadric of the type {cdff ax

n~" bs"~2, and equate to zero the coefficients
of the various powers of 0. The substitution in the particular
quadric

«r-;«« + i + « , - I » H I ~ 2ara,

leads to - 2 #r+'-2 ; thus the highest power of 6, after the substitu-
tion in the general quadric which contains the curve, which arises
when r = s = n — 1, is 6""~i. The coefficients therein must thus
be subject to 2n — 3 conditions. Thus there are

in (n - 1) - (2n - 3), or }(n - 2) (n - 3)

linearly independent quadrics containing the rational curve and all
its tangent lines.
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Take now the symbolical expression

of which a general term, as in the previous case, is

(ab)4 a,"-'-2 < "— 2 6—2

wherein the real form of the factor independent of x, y is

The number of such terms, r and s having the values
2, 3, . . . , ( n -2 ) , is

•n - 3 + | [(n - 3)" - (n - 3)], o r | ( n - 2) (n - 3),

and these are clearly linearly independent. Moreover, the sub-
stitution, in this form, of mdm~1 ioram leads to zero ; and the reason
for this is evidently that the expression

OCLujJ

vanishes for a. = /S In fact the expression within the square
brackets divides by (a. — /3)*, and, after differentiation, divides by
(a. - ft)-. In other words, if we operate upon (at)4rtx"~46,"~4 with

we obtain an expression dividing by (a6)2.

Thus we infer that all the quadrics containing the rational curve
and its tangents are those obtained from

The next step is precisely similar. If in the general quadric last
obtained we substitute, for the coordinates, respectively

0,0, 1,36 \m(m- 1) 0"-2, ...,\n{n- 1)0"- \

there will result a polynomial in 0 in which the highest term is
that derived from

ar-2«.+2 - 4ar_,a#+i + 6ara, - 4or + 1a,_,
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for r = 8 = n - 2 For general values of r, s the substitution in
this quadric leads* to 66r+'~*; the highest power of 6 is thus
02"-1, and this step imposes (2« - 7) conditions upon the coefficients
in the preceding quadrics; indeed, at each step four less conditions
must be imposed than for the preceding step. The number of
resulting quadrics is thus

£ (n - 2) (n - 3) - (2n - 7), or £ (n - 4) (n - 5).

This is precisely the same as the number of independent terms
obtained from

and these terms all satisfy the necessary conditions as before,
because this expression, when operated on with o2 / 8a» 3̂ si gives an
expression dividing by (ab)4.

The process can be continued. In order to obtain the quadrics
containing the osculating (A — l)-folds of the curve we must at the
last step impose 2n - ih + 5 linear conditions, and these quadrics
contain £ (n - 2h + 1) (n - 2/t + 2) terms, which are given by the
expression

(«&)»<»,— =* ft,—2*.

In particular, when n is even, h may be as great as J n, and there
is one resulting quadric; but when n is odd, h cannot he greater
than J(n - 1), and there are three resulting quadrics, as has been
stated.

* In general we have

(•VM'tvffM-i^rj-1)
, I2h\tr - h + 2\/« + h - 2v (2h\/r - h + 3\/s + h - 3\ , /2A\

+ \ ' i ! \ h ) \ h ) - \ a ) \ h ) \ h ) + - - = \ h )

where ft 3 r 52A, i < > < 2A, as we may see by considering
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