FINITE GROUPS WITH NORMAL NORMALIZERS

C. HOBBY

We say that a finite group G has property N if the normalizer of every
subgroup of G is normal in G. Such groups are nilpotent since every Sylow
subgroup is normal (the normalizer of a Sylow subgroup is its own nor-
malizer). Thus it is sufficient to study p-groups which have property N. Note
that property N is inherited by subgroups and factor groups. We shall show
that P(G) D G;. It follows that if p > 3, then G is regular and P(G’) 2D G4 In
particular, G’ is one of the groups studied in (5). If G can be generated by
n elements, then G has class at most 2#. We shall find all of the 2-generator
p-groups (p > 3) which have property N. Since property N is inherited by
subgroups, it follows that any group which has property N can be generated

by elements «x, . .., x, where the groups (x;, x;) are known.
All groups considered are finite p-groups. We shall use the following nota-
tion: h! = g-lhg; (h,g) = h~h?; (H, K) is the subgroup generated by

{(h,kB)|h € H k € K}; G1 = G, Guy1 = (Gy, G); G' = G»; P(G) is the sub-
group generated by pth powers; ¢(G) is the Frattini subgroup of G; Nq(H)
is the normalizer in G of H; H(x) is the (normal) subgroup generated by

{x’ g € G}.

LEMMA 1. Suppose that G has property N. Then H(x) has class at most 2. If
x has order p, then H(x) is abelian.

Proof. 1t follows from property N that H(x) normalizes the cyclic group
(x). If M is the subgroup of H(x) consisting of elements which commute
with x, then M is normal in H(x) and H(x)/M is isomorphic to a group of
automorphisms of (x). Since the automorphism group of a cyclic group is
abelian, it follows that M contains the commutator subgroup of H(x). Thus
(x, H(x)") = 1. Therefore (x? H(x?)") =1 for every g € G. Since H(x) is
generated by {x? g € G}, we see that H(x?) = H(x) and it follows that
(H(x), H(x)") = 1.

If x has order p, then (x) is a normal subgroup of order p in H(x) and
hence is in the centre of H(x). Since H(x) = H(x?) for every g € G, it follows
that x? is also in the centre of H(x). Therefore H(x) is abelian.

THEOREM 1. If G has property N and if G can be generated by n elements,
then G2n+1 = 1.
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Proof. Suppose that G = (x1,...,%,). Then G = H(x:) H(x:) ... H(x,)
where, by Lemma 1, each H(x;) has class at most 2. It is known that whenever
A, B are normal subgroups of G of class «, b, respectively, then AB has class
at most @ + b. The theorem follows from a straightforward argument.

THEOREM 2. Suppose that G has property N. Then P(G) 2 Gs. If p > 3,
then G 1s regular.

Proof. Let K = G/P(G). If P(G) does not contain G;, then K; # 1. By
Lemma 1, H(x) is abelian for every x in K. Thus, K is a p-group of exponent
p in which every element commutes with all of its conjugates. Such groups
are known to have class at most 2 when p # 3; see (1). Suppose now that
p = 3.1 K; # 1, there are elements a, b, ¢ in K such that (a, b, ¢) # 1. Since
K has exponent 3, (a,b,¢) = (b,¢,a) = (¢, a,b), and K, = 1; see (2, p.
322). Let T be the subgroup generated by a, b. Clearly, b € Ng(T); hence,
it follows from property N that (b,¢,a) € T. Let M = (a,b,c). Every
2-generator subgroup of M has class at most 2 since if x,y € M, then
(x,y) € H(x) M H(y), where both of H(x) and H(y) are abelian. Since
M; 5~ 1, it follows that a, b are independent modulo M’ ; hence, TN\ M’'= T1".
Since 73 = 1, 77 = {(a, b)). We now have (b,¢,a) # 1 in T’, and we know
that (b, ¢, @) is central in K, hence (a, b) is central in K. Therefore (a, b, ¢) = 1,
a contradiction. Thus K3 = 1 for all p and it follows that P(G) D Gs.

Suppose now that p > 3. A p-group is regular if and only if every 2-gene-
rator subgroup is regular. Let K be a 2-generator subgroup of G. Since K
has property N we know that P(K) D Kj; consequently, (K: P(K)) = p3.
By a theorem of P. Hall (4, Theorem 2.3) a p-group K is regular whenever
(K: P(K)) < p?. Therefore K is regular.

COROLLARY. If G has property N and p > 3, then P(G') 2 G..

Proof. By Theorem 2, G is regular and P(G) 2D Gs. Therefore (G, P(G)) DG..
The result follows from the fact that in a regular group, (G, P(G)) = P(G');
see (3, Theorem 4.4).

Remark. The restrictions on p in Theorem 2 are necessary. When p is 2 or
3 there are irregular groups which have property N. The non-abelian groups
of order 8 are examples for p = 2. An example for p = 3 is the group
G = {(a,b) defined by the relations «® =1, b3 = ab a® = ac, a® = a¥
¢® = (b,c) = 1. This group has the property that if x € G — G’, then
(x?) = (a®) = G;. It follows that P(G) = (a®); hence (G: P(G)) = 3% whereas
the elements of order 3 generate a subgroup of order 3% This cannot happen
in a regular group. On the other hand, G’ normalizes every cyclic subgroup,
hence G has property N.

We shall now restrict our attention to p-groups (for p > 3) which can be
generated by two elements.
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LemMA 2. Suppose that G has property N and that p > 3. If G can be gene-
rated by two elements, then G, = 1.

Proof. Let K = G/Gs. It will suffice to show that Ky = 1. By Theorem 2,
K is regular; thus, we may suppose that the generators x, y of K are chosen
from a canonical basis; see (3, p. 91). In particular, we may suppose that
(x) N\ {y) = 1. By property N, (x,v) € H(x) M H(y); hence, (x,y,x) € (x)
and (x,v,y) € (y). Therefore, (x,y,x,x) = (x,9,%,¥) = 1. The remaining
generators for K, are (x,y, x,¥) and (x,y, v, x). We shall use the identity

(1) (u, o1 w) (v, wh, ) (w, w™h, 9)" = 1

which is valid in any group. Set # = (x,v), v = x, w = y. Then each term
of (1) is in K4 which is central; thus, we can omit the conjugations by v, w, u.
We have that

(2) ((x, ), 7, ) (2, 978, (2, 9)) (9, (v, )78, %) = 1.

Since K; = 1, we have that
(%, 9, 274 y) = (x,9,%9)7}, ((x, 971, (x,9)) =1,
(, (¢, )74 x) = @y, (x,9), )7 = (x,9,9,%).

Substituting these results in (2) yields

(%, 3, 9,%) = (x,9,%,9).

The left-hand side of this equation is an element of {x) while the right-hand
side is an element of (y), thus each side is 1. We have shown that a generating
set for K, consists of elements which are 1, therefore K, = 1.

We shall show later that G’ normalizes every cyclic subgroup of G. We
observe now that G’ normalizes (g) whenever g ¢ ¢(G).

LeMmMmaA 3. Suppose that G has property N and that p > 3. If G can be gene-
rated by two elements and if g ¢ ¢(G), then G' normalizes (g).

Proof. It follows from the choice of g that there is an element % such that
G = (g, h). Since g normalizes (g), any commutator involving g must nor-
malize (g). Therefore, G’ normalizes (g).

We can now describe the 2-generator groups which have property N.

THEOREM 3. Suppose that G has property N and that p > 3. If G can be
generated by two elements, then G = (x, y), where (x) M {y) = 1; (x, y, x) = x*°,
(x, 9, ¥) = ¥, where k is prime to p; Gy = 1; if Gs is cyclic, then we may
suppose that (x,y,y) = 1. Conversely, any group which satisfies these relations
will have property N.

Proof. Suppose that G satisfies the relations given in the theorem. We shall
show that G’ normalizes every cyclic subgroup of G. It will follow imme-
diately that G has property N. Set ¢ = (x, ). If g € G, then g = x¥%’" for
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appropriate integers #, v, n. If h € G’, then h = ¢*z for some integer w and
some z in the centre of G. Since Gy =1, (h, g) = (c, x)®(c, v)*’; thus
(h, g) = x*r*youkp® We must show that (%, g) is a power of g. Since p > 3
and G, = 1, the group G is regular; thus g*° = x?’y"”°d** for some d € G'.
The order of the commutator (x,y) = ¢ cannot be greater than the smallest
power of x which lies in Z(G); see (3, Theorem 4.22). Therefore, ¢** = 1, and
hence, G’ has exponent p°. Thus, g = x*'y®° Therefore, (k, g) = g"".

Suppose now that G is a 2-generator p-group (p > 3) which has property
N. We know that G4 = 1 (Lemma 2) and that G is regular (Theorem 2). Pick
generators x, vy for G from a canonical basis. Then G = (x, y), where
(x) N {y) = 1. It follows from Lemma 3 that (x,y, x) = «*°, (x,y,y) = y*'
for appropriate integers %, s, 7, {, where we may assume that & and 7 are
prime to p. We must show that we can take b =7, s = 1.

We first consider the case where Gj is non-cyclic. Thus, ¥”° # 1 and y”* # 1.
We know that (x, y) normalizes xy (Lemma 3); thus, (x, y, xy) = (xy)" for
some 7. Since Gy = 1, (x,9,xy) = (x,9, x)(x, y, v); thus, (xy)* = £*'y™",
Since (xy)" is in the centre of G, and G = (x, xy), we know that G’ has ex-
ponent at most #; hence, (g-xy)" = g"(xy)" for every g € G. In particular,
y* = (x~1-xy)" = x"(xy)"; thus, y*~"?" = x*"=" Therefore, rp* = xp* modulo d,
where d is the minimum of |x|, |y|. There is no loss of generality if we suppose
that s < ¢. Since Gj is not cyclic, we know that p**! divides d. If s < {, we
have that (rp— — k)p*® is divisible by p*+!, a contradiction. Therefore,
s = ¢. Thus, (r — k)p* = 0 modulo d. If d = |x|, then «™ = k¥, If d = |y],
then y™° = y*° In either case we may suppose that r and k are equal. This
completes the proof when G; is non-cyclic.

If G; is cyclic but non-trivial, then we may suppose that (x,y, x) = x*° > 1,
(x,v,y) = 1. We must show that y?° = 1. As above, (x,y, xy) = x*° and
hence (xy)* = x*° for some n. Since (xy)" is central, (xy)* = x"y". It follows
from x™y* = x*° that y" = 1. Thus, x* = x*°. Therefore, p°® divides n but p*+!
does not divide #n. Therefore, y*° = 1.

Finally, if G; = 1, we see that G satisfies the necessary relations if we set
p* equal to the maximum of |x|, |y|. This completes the proof.

If G is a group with property N, then every pair of generators of G must
give one of the groups described in Theorem 3. Since property N is inherited
by subgroups, one might conjecture that a group G has property N if and
only if every 2-generator subgroup has property N. Unfortunately, this con-
jecture is false. (A counterexample is given below.) However, the correspond-
ing conjecture for 3-generator subgroups is true for all primes p.

THEOREM 4. A group G has property N if and only if every 3-generator sub-
group of G has property N.

Proof. It will suffice to show that if G fails to have property N, then there
is a 3-generator subgroup which fails to have property N. Suppose that H is a
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subgroup of G such that Ng(H) is not normal in G. Then there is an element
x in N¢(H) and an element g in G such that x? does not normalize H. Thus,
there is an element % in H such that A* does not belong to H. In particular,
h” does not belong to Hj, the normal subgroup of (k, x) generated by all
conjugates of & obtained from elements of (%, x). Let G, = (h, x, g). Then x
normalizes H; but x? does not normalize H;; thus, G; does not have pro-
perty N.

We shall now give an example of a 3-generator p-group (p > 3) which
does not have property N but in which every 2-generator subgroup does have
property N. Let (a, b) be the non-abelian group of order p® and exponent p.
Let H be the direct product of {a, b) with (u, v), an elementary abelian group
of order p2. Form K by adjoining to H an element x of order p such that
a® = au, u® = u, b* = b, v* = vc, where ¢ denotes (a, b). The required group
G is formed by adjoining to K an element g such that g = ¢, x? = xb, b = ),
a’ = av, vY = 9, u? = uc?. Clearly, G = {a, x, g). G does not have property N
since x normalizes {(a, «) but (x, g, a) ¢ (a, u). A long but routine calculation
shows that every 2-generator subgroup does have property N.
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