
FINITE GROUPS WITH NORMAL NORMALIZERS 

C. HOBBY 

We say that a finite group G has property N if the normalizer of every 
subgroup of G is normal in G. Such groups are nilpotent since every Sylow 
subgroup is normal (the normalizer of a Sylow subgroup is its own nor­
malizer). Thus it is sufficient to study ^-groups which have property N. Note 
that property N is inherited by subgroups and factor groups. We shall show 
that P{G) 2 G3. I t follows that if p > 3, then G is regular and P(Gf) 2 G4. In 
particular, G' is one of the groups studied in (5). If G can be generated by 
n elements, then G has class at most 2n. We shall find all of the 2-generator 
^-groups (p > 3) which have property N. Since property N is inherited by 
subgroups, it follows that any group which has property N can be generated 
by elements Xi, . . . , xn where the groups (xu x3) are known. 

All groups considered are finite ^-groups. We shall use the following nota­
tion: hg = g~1hg; (h, g) = h~1h9; (H, K) is the subgroup generated by 
{(ft, k)\h G H,k e K}; Gi = G, Gn+1 = {Gn, G); G' = G2; P(G) is the sub­
group generated by pth powers; 4>{G) is the Frattini subgroup of G; NG(H) 
is the normalizer in G of H; H(x) is the (normal) subgroup generated by 
{x°\g£ G}. 

LEMMA 1. Suppose that G has property N. Then H(x) has class at most 2. If 
x has order p, then H(x) is abelian. 

Proof. I t follows from property N that H{x) normalizes the cyclic group 
(x). If M is the subgroup of H(x) consisting of elements which commute 
with x, then M is normal in H(x) and H(x)/M is isomorphic to a group of 
automorphisms of (x). Since the automorphism group of a cyclic group is 
abelian, it follows that M contains the commutator subgroup of H(x). Thus 
(x, H(x)f) = 1. Therefore (xç, H(xç)f) = 1 for every g Ç G. Since H(x) is 
generated by {xg\ g G G}, we see that H(x9) = H(x) and it follows that 
(H(x),H(x)') = 1. 

If x has order p, then (x) is a normal subgroup of order p in H(x) and 
hence is in the centre of H(x). Since H(x) = H(xs) for every g G G, it follows 
that x° is also in the centre of H(x). Therefore H(x) is abelian. 

THEOREM 1. If G has property N and if G can be generated by n elements, 
then G2w+i = 1. 
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Proof. Suppose that G = (xi, . . . , xn). Then G = H(xi) H(x2) . . . H(xn) 
where, by Lemma 1, each H{xt) has class at most 2. I t is known that whenever 
A, B are normal subgroups of G of class a, b, respectively, then AB has class 
at most a + b. The theorem follows from a straightforward argument. 

THEOREM 2. Suppose that G has property N. Then P(G) 2 G3. If P > 3, 
//zew G is regular. 

Proof. Let X = G/P(G). If P(G) does not contain G3, then K8 ^ 1. By 
Lemma 1, H(x) is abelian for every x in i£. Thus, K is a ^-group of exponent 
p in which every element commutes with all of its conjugates. Such groups 
are known to have class at most 2 when p ^ 3; see (1). Suppose now that 
p = 3. If Kz 9^ 1, there are elements a, b, cm K such that (a, 6, c) F^ 1. Since 
K has exponent 3, (a, &, c) = (6, c, a) = (c, a, b), and i£4 = 1; see (2, p. 
322). Let T be the subgroup generated by a, b. Clearly, b G NK(T); hence, 
it follows from property N that (b, c, a) £ T. Let M = (a, &, c). Every 
2-generator subgroup of M has class at most 2 since if x, y £ M, then 
(x, y) £ i7(x) C\H(y), where both of i?(x) and Jï(y) are abelian. Since 
Mz ^ 1, it follows that a, b are independent modulo M' ; hence, T C\ M' = T'. 
Since T?J = 1, J7 = ((a, b)). We now have (b, c, a) =̂  1 in T7, and we know 
that (6, c, a) is central in i£, hence (a, b) is central in i£. Therefore (a, 6, c) = 1, 
a contradiction. Thus i£3 = 1 for all p and it follows that P(G) 2 G3. 

Suppose now that £ > 3. A ^>-group is regular if and only if every 2-gene­
rator subgroup is regular. Let K be a 2-generator subgroup of G. Since K 
has property N we know that P(K) ~D i£3; consequently, (K: P(K)) % pz. 
By a theorem of P. Hall (4, Theorem 2.3) a p-group K is regular whenever 
(K: P(K)) < pv. Therefore K is regular. 

COROLLARY. If G has property N and p > 3, then P(G') 2 G4. 

Proof. By Theorem 2, G is regular and P{G) 2 G3. Therefore (G, P(G)) 2G 4 . 
The result follows from the fact that in a regular group, (G, P(G)) = P(Gf)\ 
see (3, Theorem 4.4). 

Remark. The restrictions on £ in Theorem 2 are necessary. When £ is 2 or 
3 there are irregular groups which have property N. The non-abelian groups 
of order 8 are examples for p = 2. An example for p = 3 is the group 
G = (a, b) denned by the relations a9 = 1, fr3 = a6, a5 = ac, ac = a4, 
c3 = (6, c) = 1. This group has the property that if x G G — G', then 
(X3) = (a3) = G3. i t follows that P(G) = (a3); hence (G : P(G)) = 33 whereas 
the elements of order 3 generate a subgroup of order 32. This cannot happen 
in a regular group. On the other hand, G normalizes every cyclic subgroup, 
hence G has property N. 

We shall now restrict our attention to ^-groups (for p > 3) which can be 
generated by two elements. 
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LEMMA 2. Suppose that G has property N and that p > 3. If G can be gene­
rated by two elements, then G4 = 1. 

Proof. Let K = G/G5. I t will suffice to show that i£4 = 1. By Theorem 2, 
K is regular; thus, we may suppose that the generators x, y of K are chosen 
from a canonical basis; see (3, p. 91). In particular, we may suppose that 
(x) Pi (y) = 1. By property N, (x, y) Ç H(x) C\ H(y) ; hence, (x, y, x) G (x) 
and (x, 3>, y) G (3/). Therefore, (x, y, x, x) = (x, y, y, y) = 1. The remaining 
generators for i£4 are (x, y, x, y) and (x, y, y, x). We shall use the identity 

(1) (u, v~\ w)v{v, w~\ u)w(w, u~\ v)u = 1 

which is valid in any group. Set u = (x, y), v = x, w = y. Then each term 
of (1) is in Ki which is central; thus, we can omit the conjugations by v, w, u. 
We have that 

(2) ((x, y), x"1, y) (x, y~\ (x, y))(yt (x, 3;)-1, x) = 1. 

Since K^ = 1, we have that 

(xyy,x-\y) = (x, y, x, y)~\ ((x^-1), (x, y)) - 1, 

(y, (x, y)~\ x) = (y, (x, y), x)"1 = (x, y, y, x). 

Substituting these results in (2) yields 

(x,y, y, x) = (x,y, x,y). 

The left-hand side of this equation is an element of (x) while the right-hand 
side is an element of (y), thus each side is 1. We have shown that a generating 
set for i£4 consists of elements which are 1, therefore K4 = 1. 

We shall show later that G' normalizes every cyclic subgroup of G. We 
observe now that G' normalizes (g) whenever g g <i>{G). 

LEMMA 3. Suppose that G has property N and that p > 3. If G can be gene­
rated by two elements and if g & <i>(G)y then G' normalizes (g). 

Proof. I t follows from the choice of g that there is an element h such that 
G = (g, h). Since g normalizes (g), any commutator involving g must nor­
malize (g). Therefore, G' normalizes (g). 

We can now describe the 2-generator groups which have property N. 

THEOREM 3. Suppose that G has property N and that p > 3. If G can be 
generated by two elements, then G = (x, y), where (x) C\ (y) = 1; (x, y, x) = xkp\ 
(x, y, y) = ykpS, where k is prime to p; G± = 1; if Gz is cyclic, then we may 
suppose that (x, y, y) = 1. Conversely, any group which satisfies these relations 
will have property N. 

Proof. Suppose that G satisfies the relations given in the theorem. We shall 
show that G' normalizes every cyclic subgroup of G. I t will follow imme­
diately that G has property N. Set c = (x, y). If g G G, then g = xuyvcn for 
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appropr ia te integers u, v, n. If h Ç G', then h = cwz for some integer w and 
some z in the centre of G. Since G4 = 1, (h, g) = (c, x)wu(c, y)wv; thus 
(fe, g) = x

uwkpSyvwkpS. We mus t show t h a t (h, g) is a power of g. Since p > S 
and G4 = 1, the group G is regular; thus |fs = xupSyvpSdpS for some d G G7. 
T h e order of the commuta to r (x, y) = c cannot be greater than the smallest 
power of x which lies in Z(G); see (3, Theorem 4.22). Therefore, cpS = 1, and 
hence, G' has exponent ps. T h u s , gpS = xupSyvpS. Therefore, (h, g) = gkwpS. 

Suppose now t h a t G is a 2-generator ^>-group (p > 3) which has proper ty 
N . We know t h a t G4 = 1 (Lemma 2) and t h a t G is regular (Theorem 2) . Pick 
generators x, y for G from a canonical basis. Then G = (x, y), where 
(x) r\ (y) = 1. I t follows from Lemma 3 t h a t (x, y, x) = xkpS, (x,y, y) = yrpt 

for appropr ia te integers k, s, r, t, where we may assume t h a t k and r are 
prime to p. We mus t show t h a t we can take k = r, s = t. 

We first consider the case where G3 is non-cyclic. Thus , xpS 9e 1 and yv ^ 1. 
We know t h a t (x, y) normalizes xy (Lemma 3) ; thus, (x, y, xy) = (xy)n for 
some n. Since G4 = 1, (x, y, xy) = (x, y, x)(xf y, y) ; thus, (xy)n = xkpSyrpt. 
Since (xy)n is in the centre of G, and G = (x, xy), we know t h a t G' has ex­
ponent a t most n; hence, (g-xy)n = gn(xy)n for every g G G. In part icular, 
yn = ( x - 1 • xy)n = x~n (xy)n ; thus, yn~rpt = xkpS~n. Therefore, rpl = xps modulo d, 
where d is the minimum of \x\, \y\. There is no loss of generality if we suppose 
t h a t s S t. Since G3 is not cyclic, we know t h a t ps+1 divides d. lî s < t, we 
have t h a t (rpl~s — k)ps is divisible by ps+1, a contradiction. Therefore, 
s = t. Thus , (r - k)ps = 0 modulo d.lid = |x|, then xrpS = kkpS. If d = \y\, 
then yrpS = ykpS. In either case we may suppose t ha t r and k are equal. This 
completes the proof when G3 is non-cyclic. 

If Gs is cyclic bu t non-trivial, then we may suppose t ha t (x, y, x) = xkpS 9e 1, 
(x, y, y) = 1. We must show tha t ypS = 1. As above, (x, y, xy) — xkpS and 
hence (xy)n = xkpS for some n. Since (xy)n is central, (xy)n — xnyn. I t follows 
from xnyn = xkpS t h a t ^ = 1. Thus , xn = xkpS. Therefore, ps divides n bu t ps+1 

does not divide n. Therefore, ypS — 1. 
Finally, if G3 = 1, we see t h a t G satisfies the necessary relations if we set 

ps equal to the maximum of |x|, \y\. This completes the proof. 

If G is a group with proper ty N, then every pair of generators of G mus t 
give one of the groups described in Theorem 3. Since proper ty N is inherited 
by subgroups, one might conjecture t h a t a group G has proper ty N if and 
only if every 2-generator subgroup has property N. Unfortunately, this con­
jecture is false. (A counterexample is given below.) However, the correspond­
ing conjecture for 3-generator subgroups is t rue for all primes p. 

T H E O R E M 4. A group G has property N if and only if every d-generator sub­
group of G has property N . 

Proof. I t will suffice to show t h a t if G fails to have proper ty N, then there 
is a 3-generator subgroup which fails to have proper ty N . Suppose t h a t H is a 
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subgroup of G such that NG(H) is not normal in G. Then there is an element 
x in NG(H) and an element g in G such that x9 does not normalize H. Thus, 
there is an element h in H such that hx° does not belong to H. In particular, 
hxB does not belong to Hi, the normal subgroup of (h, x) generated by all 
conjugates of h obtained from elements of (h, x). Let Gi = (h, x, g). Then x 
normalizes Hi but x9 does not normalize Hi; thus, Gi does not have pro­
perty N. 

We shall now give an example of a 3-generator ^-group (p > 3) which 
does not have property N but in which every 2-generator subgroup does have 
property N. Let (a, b) be the non-abelian group of order pz and exponent p. 
Let H be the direct product of {a, b) with (u, v), an elementary abelian group 
of order p2. Form K by adjoining to H an element x of order p such that 
ax = au, ux = u, bx — b, vx = vc, where c denotes (a, b). The required group 
G is formed by adjoining to K an element g such that gv = c, x9 = xb, b9 = b, 
a9 = av, v9 = v, u9 = uc2. Clearly, G = (a, x, g). G does not have property N 
since x normalizes {a, u) but (x, g, a) (? (a, u). A long but routine calculation 
shows that every 2-generator subgroup does have property N. 
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